最新整理初三数中考模拟试卷.doc
- 格式:doc
- 大小:499.00 KB
- 文档页数:4
初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7-16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k 的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2B.4+C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53.5°方向上.求:建筑物B到公路ON的距离.(参考数据:sin53.5°=0.8,cos53.5°=0.6,tan53.5°≈1.35)23.(11分)(2015•南宁校级一模)(2015•邢台一模)中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开“珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为人,其中选C的人数占调查人数的百分比为.(2)在这所学校中选“比较注意,偶尔水龙头滴水”的大概有人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题(3)在“水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?24.(10分)(2015•邢台一模)如图,直线y=kx﹣4与x轴,y轴分别交于B、C两点.且∠OBC=.(1)求点B的坐标及k的值;(2)若点A时第一象限内直线y=kx﹣4上一动点.则当△AOB的面积为6时,求点A的坐标;(3)在(2)成立的条件下.在坐标轴上找一点P,使得∠APC=90°,直接写出P点坐标.25.(13分)(2015•邢台一模)如图,足球上守门员在O处开出一高球.球从离地面1米的A处飞出(A在y轴上),把球看成点.其运行的高度y(单位:m)与运行的水平距离x(单位:m)满足关系式y=a(x﹣6)2+h.(1)①当此球开出后.飞行的最高点距离地面4米时.求y与x满足的关系式.②在①的情况下,足球落地点C距守门员多少米?(取4≈7)③如图所示,若在①的情况下,求落地后又一次弹起.据实验测算,足球在草坪上弹起后的抛物线与原来的抛物线形状相同,最大高度减少到原来最大高度的一半.求:站在距O 带你6米的B处的球员甲要抢到第二个落点D处的求.他应再向前跑多少米?(取2=5)(2)球员乙升高为1.75米.在距O点11米的H处.试图原地跃起用头拦截.守门员调整开球高度.若保证足球下落至H正上方时低于球员乙的身高.同时落地点在距O点15米之内.求h的取值范围.26.(14分)(2015•南宁校级一模)已知矩形ABCD中,AB=10cm,AD=4cm,作如下折叠操作.如图1和图2所示,在边AB上取点M,在边AD或边DC上取点P.连接MP.将△AMP或四边形AMPD沿着直线MP折叠得到△A′MP或四边形A′MPD′,点A的落点为点A′,点D的落点为点D′.探究:(1)如图1,若AM=8cm,点P在AD上,点A′落在DC上,则∠MA′C的度数为;(2)如图2,若AM=5cm,点P在DC上,点A′落在DC上,①求证:△MA′P是等腰三角形;②直接写出线段DP的长.(3)若点M固定为AB中点,点P由A开始,沿A﹣D﹣C方向.在AD,DC边上运动.设点P的运动速度为1cm/s,运动时间为ts,按操作要求折叠.①求:当MA′与线段DC有交点时,t的取值范围;②直接写出当点A′到边AB的距离最大时,t的值;发现:若点M在线段AB上移动,点P仍为线段AD或DC上的任意点.随着点M位置的不同.按操作要求折叠后.点A的落点A′的位置会出现以下三种不同的情况:不会落在线段DC上,只有一次落在线段DC上,会有两次落在线段DC上.请直接写出点A′由两次落在线段DC上时,AM的取值范围是.初三数学中考模拟试卷参考答案与试题解析一、选择题(共16小题,1-6小题,每小题2分,7-16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于2考点:实数与数轴;实数的性质.分析:根据数轴确定a的取值范围,选择正确的选项.解答:解:由数轴可知,a<﹣2,a的相反数>2,所以A不正确,a的绝对值>2,所以B不正确,a的倒数不等于2,所以C不正确,D正确.故选:D.点评:本题考查的是数轴和实数的性质,属于基础题,灵活运用数形结合思想是解题的关键.2.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、是轴对称图形,也是中心对称图形,故此选项正确;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.点评:此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的运算法则进行计算即可.解答:解:A、原式=2x3,故本选项错误;B、原式=x6,故本选项正确;C、原式=x9,故本选项错误;D、原式=x12﹣2=x10,故本选项错误.故选:B.点评:本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.4.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+6考点:平方差公式的几何背景.分析:由于边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),那么根据正方形的面积公式,可以求出剩余部分的面积,而矩形一边长为3,利用矩形的面积公式即可求出另一边长.解答:解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.点评:本题主要考查了多项式除以单项式,解题关键是熟悉除法法则.5.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是7考点:方差;算术平均数;中位数;众数.分析:分别求出这组数据的平均数、众数、中位数、方差,再对每一项分析即可.解答:解:A、把1,﹣2,4,2,5从小到大排列为:﹣2,1,2,4,5,最中间的数是2,则中位数是2,故本选项错误;B、1,﹣2,4,2,5都各出现了1次,则众数是1,﹣2,4,2,5,故本选项错误;C、平均数=×(1﹣2+4+2+5)=2,故本选项正确;D、方差S2=[(1﹣2)2+(﹣2﹣2)2+(4﹣2)2+(2﹣2)2+(5﹣2)2]=8,故本选项错误;故选C.点评:本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.6.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>2考点:根的判别式;一元二次方程的定义.分析:根据一元二次方程的定义和根的判别式△的意义得到k≠0且△>0,即(﹣4)2﹣4×k×2>0,然后解不等式即可得到k的取值范围.解答:解:∵关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,∴k≠0且△>0,即(﹣4)2﹣4×k×2>0,解得k<2且k≠0.∴k的取值范围为k<2且k≠0.故选C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.7.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.18考点:位似变换.分析:利用位似图形的定义得出四边形EFGH与四边形ABCD是位似图形,再利用位似图形的性质得出答案.解答:解:∵E,F,G,H分别是OA,OB,OC,OD的中点,∴四边形EFGH与四边形ABCD是位似图形,且位似比为:1:2,∴四边形EFGH与四边形ABCD的面积比为:1:4,∵四边形EFGH的面积是3,∴四边形ABCD的面积是12.故选:C.点评:此题主要考查了位似变换,根据题意得出位似比是解题关键.8.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°考点:旋转的性质.分析:如图,首先由旋转变换的性质得到∠PAQ=∠BAC;由平行线的性质得到∠PAQ=∠D=40°,即可解决问题.解答:解:如图,由旋转变换的性质得:∠PAQ=∠BAC;∵AP∥BD,∴∠PAQ=∠D=40°,∴∠BAC=40°.故选B.点评:该题主要考查了旋转变换的性质、平行线的性质等几何知识点及其应用问题,灵活运用旋转变换的性质来分析、判断、推理或解答是解题的关键.9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.考点:列表法与树状图法;专题:正方体相对两个面上的文字.分析:由数字3与4相对,数字1与5相对,数字2与6相对,直接利用概率公式求解即可求得答案.解答:解:∵数字3与4相对,数字1与5相对,数字2与6相对,∴任意掷这个玩具,上表面与底面之和为偶数的概率为:.故选D.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个考点:作图—基本作图.分析:根据角平分线的做法可得①正确,再根据直角三角形的高的定义可得②正确,然后计算出∠CAD=∠DAB=29°,可得AD≠BD,根据到线段两端点距离相等的点在线段的垂直平分线上,因此③错误,根据三角形内角和可得④正确.解答:解:根据作法可得AD是∠BAC的平分线,故①正确;∵∠C=90°,∴CD是△ADC的高,故②正确;∵∠C=90°,∠B=32°,∴∠CAB=58°,∵AD是∠BAC的平分线,∴∠CAD=∠DAB=29°,∴AD≠BD,∴点D不在AB的垂直平分线上,故③错误;∵∠CAD=29°,∠C=90°,∴∠CDA=61°,故④正确;共有3个正确,故选:C.点评:此题主要考查了基本作图,关键是掌握角平分线的做法和线段垂直平分线的判定定理.11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°考点:多边形内角与外角;等边三角形的性质.分析:根据图1先求出正三角形ABC内大钝角的度数是120°,则两锐角的和等于60°,正五边形的内角和是540°,求出每一个内角的度数,然后解答即可.解答:解:如图,图1先求出正三角形ABC内大钝角的度数是180°﹣30°×2=120°,180°﹣120°=60°,60°÷2=30°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴图3中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.点评:本题主要考查了多边形的内角与外角的性质,仔细观察图形是解题的关键,难度中等.12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k 的值为()A.1 B. 2 C.D.无法确定考点:反比例函数图象上点的坐标特征.分析:过点D作DE⊥x轴于点E,由点D为斜边OA的中点可知DE是△AOB的中位线,设A(x,),则D(,),再求出k的值即可.解答:解:过点D作DE⊥x轴于点E,∵点D为斜边OA的中点,点A在反比例函数y=上,∴DE是△AOB的中位线,设A(x,),则D(,),∴k=•=1.故选A.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤5考点:直线与圆的位置关系;平行四边形的性质.分析:过A作AM⊥BC于N,CN⊥AD于N,根据平行四边形的性质求出AD∥BC,AB=CD=5,求出AM、CN、AC、CD的长,即可得出符合条件的两种情况.解答:解:过A作AM⊥BC于N,CN⊥AD于N,∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD=5,∴AM=CN,∵AB=5,cosB==,∴BM=4,∵BC=8,∴CM=4=BC,∵AM⊥BC,∴AC=AB=5,由勾股定理得:AM=CN==3,∴当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是0<CE<3或5<CE≤8,故选C.点评:本题考查了直线和圆的位置关系,勾股定理,平行四边形的性质的应用,能求出符合条件的所有情况是解此题的关键,此题综合性比较强,有一定的难度.14.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)考点:二次函数图象与几何变换.分析:根据抛物线m的解析式求得点P、C的坐标,然后由点P′在y轴上,点C′在x轴上得到平移规律,由此可以确定点P′、C′的坐标.解答:解:∵y=﹣2x2﹣2x=﹣2x(x+1)或y=﹣2(x+)2+,∴P(﹣1,0),O(0,0),C(﹣,).又∵将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P的对应点P′落在y轴上,∴该抛物线向下平移了个单位,向右平移了1个单位,∴C′(,0),P′(0,﹣).综上所述,选项B符合题意.故选:B.点评:主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.会利用方程求抛物线与坐标轴的交点.15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 6考点:估算无理数的大小.专题:新定义.分析:根据[a]表示不超过a的最大整数计算,可得答案.解答:解:900→第一次[]=30→第二次[]=5→第三次[]=2→第四次[]=1,即对数字900进行了4次操作后变为1.故选:B.点评:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.16.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2B.4+C.6 D.4考点:轴对称-最短路线问题;一次函数图象上点的坐标特征.分析:在y轴的正半轴上截取OF=OE=3,连接EF,证得F是E关于直线y=x的对称点,连接BF交OA于P,此时△BEP周长最小,最小值为BF+EB,根据勾股定理求得BF,因为BE=1,所以△BEP周长最小值为BF+EB=5+1=6.解答:解:在y轴的正半轴上截取OF=OE=3,连接EF,∵A点为直线y=x上一点,∴OA垂直平分EF,∴E、F是直线y=x的对称点,连接BF交OA于P,根据两点之间线段最短可知此时△BEP周长最小,最小值为BF+EB;∵OF=3,OB=4,∴BF==5,∵EB=4﹣3=1,△BEP周长最小值为BF+EB=5+1=6.故选C.点评:本题考查了轴对称的判定和性质,轴对称﹣最短路线问题,勾股定理的应用等,作出P点是解题的关键.二、填空题(共4小题,每小题3分,满分12分)17.计算:=.考点:二次根式的加减法.分析:先将二次根式化为最简,然后合并同类二次根式即可得出答案.解答:解:=3﹣=2.故答案为:2.点评:本题考查二次根式的减法运算,难度不大,注意先将二次根式化为最简是关键.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为0.考点:一元二次方程的解.分析:把x=1代入已知方程,可得:a+b﹣1=0,然后适当整理变形即可.解答:解:∵x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,∴a+b﹣1=0,∴a+b=1,∴1﹣a﹣b=1﹣(a+b)=1﹣1=0.故答案是:0.点评:本题考查了一元二次方程的解的定义.把根代入方程得到的代数式巧妙变形来解题是一种不错的解题方法.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=360°﹣2α.(用含α的式子表示)考点:圆周角定理.分析:在优弧AB上取点D,连接AD、BD,根据圆内接四边形的性质求出∠D的度数,再根据圆周角定理求出∠AOB的度数.解答:解:在优弧AB上取点D,连接AD、BD,∵∠ACB=α,∴∠D=180°﹣α,根据圆周角定理,∠AOB=2(180°﹣α)=360°﹣2α.故答案为:360°﹣2α.点评:本题考查的是圆周角定理及圆内接四边形的性质,解答此题的关键是熟知以下概念:圆周角定理:同弧所对的圆周角等于它所对圆心角的一半;圆内接四边形的性质:圆内接四边形对角互补.20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是①②③④(填写序号).考点:动点问题的函数图象.分析:(1)当x=0时,y的值即是AB的长度;(2)图乙函数图象的最低点的y值是AH的值;(3)在直角△ACH中,由勾股定理来求AC的长度;(3)当点P运动到点H时,此时BP(H)=1,AH=,在Rt△ABH中,可得出∠B=60°,则判定△ABP是等边三角形,故BP=AB=2,即x=2(5)分两种情况进行讨论,①∠APB为钝角,②∠BAP为钝角,分别确定x的范围即可.解答:解:(1)当x=0时,y的值即是AB的长度,故AB=2,故①正确;(2)图乙函数图象的最低点的y值是AH的值,故AH=,故②正确;(3)如图乙所示:BC=6,BH=1,则CH=5.又AH=,∴直角△ACH中,由勾股定理得:AC===2,故③正确;(4)在Rt△ABH中,AH=,BH=1,tan∠B=,则∠B=60°.又△ABP是等腰三角形,∴△ABP是等边三角形,∴BP=AB=2,即x=2.故④正确;(5)①当∠APB为钝角时,此时可得0<x<1;②当∠BAP为钝角时,过点A作AP⊥AB,则BP==4,即当4<x≤6时,∠BAP为钝角.综上可得0<x<1或4<x≤6时△ABP为钝角三角形,故⑤错误.故答案为:①②③④.点评:此题考查了动点问题的函数图象,有一定难度,解答本题的关键是结合图象及函数图象得出AB、AH的长度,第三问推知△ABP是等边三角形是解题的难点.三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53.5°方向上.求:建筑物B到公路ON的距离.(参考数据:sin53.5°=0.8,cos53.5°=0.6,tan53.5°≈1.35)考点:解直角三角形的应用-方向角问题.分析:连结OB,作BD⊥ON于D,AC⊥OM于C,则∠CAO=∠NOA=53.5°,解Rt△AOC,求出AC=OA•cos53.5°=600米,再根据AAS证明△AOC≌△BOD,得出AC=BD=600米,即建筑物B到公路ON的距离为600米.解答:解:如图,连结OB,作BD⊥ON于D,AC⊥OM于C,则∠CAO=∠NOA=53.5°,在Rt△AOC中,∵∠ACO=90°,∴AC=OA•cos53.5°=1000×0.6=600(米),OC=OA•sin53.5°=1000×0.8=800(米).∵A、B关于∠MON的平分线OQ对称,∴∠QOM=∠QON=45°,∴OQ垂直平分AB,∴OB=OA,∴∠AOQ=∠BOQ,∴∠AOC=∠BOD.在△AOC与△BOD中,,∴△AOC≌△BOD(AAS),∴AC=BD=600米.即建筑物B到公路ON的距离为600米.点评:本题考查了解直角三角形的应用﹣方向角问题,轴对称的性质,全等三角形的判定与性质,准确作出辅助线证明△AOC≌△BOD是解题的关键.23.(11分)(2015•南宁校级一模)(2015•邢台一模)中国是世界上13个贫水国家之一.某校有800名在校学生,学校为鼓励学生节约用水,展开“珍惜水资源,节约每一滴水”系列教育活动.为响应学校号召,数学小组做了如下调查:小亮为了解一个拧不紧的水龙头的滴水情况,记录了滴水时间和烧杯中的水面高度,如图1.小明设计了调查问卷,在学校随机抽取一部分学生进行了问卷调查,并制作出统计图.如图2和图3.经结合图2和图3回答下列问题:(1)参加问卷调查的学生人数为60人,其中选C的人数占调查人数的百分比为10%.(2)在这所学校中选“比较注意,偶尔水龙头滴水”的大概有440人.若在该校随机抽取一名学生,这名学生选B的概率为.请结合图1解答下列问题(3)在“水龙头滴水情况”图中,水龙头滴水量(毫升)与时间(分)可以用我们学过的哪种函数表示?请求出函数关系式.(4)为了维持生命,每人每天需要约2400毫升水,该校选C的学生因没有拧紧水龙头,2小时浪费的水可维持多少人一天的生命需要?考点:一次函数的应用;用样本估计总体;扇形统计图;条形统计图;概率公式.分析:(1)根据A的人数除以占的百分比求出调查总人数;求出C占的百分比即可;(2)求出B占的百分比,乘以800得到结果;找出总人数中B的人数,即可求出所求概率;(3)水龙头滴水量(毫升)与时间(分)可以近似看做一次函数,设为y=kx+b,把两点坐标代入求出k与b的值,即可确定出函数解析式;(4)设可维持x人一天的生命需要,根据题意列出方程,求出方程的解即可得到结果.解答:解:(1)根据题意得:21÷35%=60(人),选C的人数占调查人数的百分比为×100%=10%;(2)根据题意得:选“比较注意,偶尔水龙头滴水”的大概有800×(1﹣35%﹣10%)=440(人);若在该校随机抽取一名学生,这名学生选B的概率为=;(3)水龙头滴水量(毫升)与时间(分)可以近似地用一次函数表示,设水龙头滴水量y(毫升)与时间t(分)满足关系式y=kt+b,依题意得:,解得:,∴y=6t,经检验其余各点也在函数图象上,∴水龙头滴水量y(毫升)与时间t(分)满足关系式为y=6t;(4)设可维持x人一天的生命需要,依题意得:800×10%×2×60×6=2400x,解得:x=24.则可维持24人一天的生命需要.故答案为:(1)60;10%;(2)440;.点评:此题考查了一次函数的应用,扇形统计图,条形统计图,以及用样本估计总体,熟练掌握运算法则是解本题的关键.24.(10分)(2015•邢台一模)如图,直线y=kx﹣4与x轴,y轴分别交于B、C两点.且∠OBC=.(1)求点B的坐标及k的值;(2)若点A时第一象限内直线y=kx﹣4上一动点.则当△AOB的面积为6时,求点A的坐标;(3)在(2)成立的条件下.在坐标轴上找一点P,使得∠APC=90°,直接写出P点坐标.考点:一次函数综合题.分析:(1)由y=kx﹣4可知C(0,﹣4),即OC=4,根据tan∠OBC=,得出OB=3,即可求得B的坐标为(3,0);(2)根据题意可知直线为y=x﹣4,根据三角形的面积求得A的纵坐标,把A的纵坐标代入直线的解析式即可求得A的坐标;(3)分两种情况分别讨论即可求得.。
中考数学模拟考试试卷(附含参考答案)1.本试题分第I卷(选择题)和第II卷(非选择题)两部分、第1卷满分为40分:第II卷满分为110分,本试题共8页,满分150分,考试时间为120分钟2.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置上,考试结束后,将本试卷和答题卡一并交回,本考试不允许使用计算器.第I卷(选择题共40分)注意事项:第1卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑:如需改动,用橡皮擦干净后,再选涂其他答案标号,答案写在试卷上无效.一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-3的相反数是()A.3B.-3C.﹣13D.132.图中立体图形的俯视图是( )3.从济南市文化和旅游局获悉,截至2月17日14时,2024年春节假期全市28家重点监测景区共接待游客4705000人次,可比增长55.6%,实现营业收入1.1亿元。
可比增长92.7%,把数字"4705000"用科学记数法表示为( )A.47.05x105B.4.705x106C.4.705x105D.0.4705x1064.已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,若∠1=20°,则∠2的度数为()A.20°B.30°C.15°D.25°5.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是()6.已知a、b在数轴上对应的点如图所示,则下列结论正确的是()A.a>bB.|a|>|b|C.b>-aD.a+b<0(第6题图) (第7题图)(第9题图)7.如图随机闭合开关K1、K2、K3中的两个,能让灯泡L1、L2至少一盏发光的概率为()A.16B.13C.12D.238.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b的图象可能是()9.如图,在平行四边形ABCD中,BC=2AB=8,连接BD,分别以点B、D为国心,大于12BD长为半径作弧,两弧交于点E和点F,作直线EF交AD于点I,交BC于点H、点H恰为BC的中点,连接AH,则AH的长为()A.4√3B.6C.7D.4√510.设二次函数y=ax2+c(a,e是常数,a<0),已知函数值y和自变量x的三对对应值如表所示,若方程ax2+c﹣m=0的一个正实数根为5.则下列结论正确的是()A.m>p>0B.m<q<0C.p>m>0D.q<m<0第II卷(非选择题共110分)注意事项:1.第1卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上:如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题(本大题共6个小题,每小题4分,共24分)11.分解因式:a2-14= .12.如图,在边长为2的正方形内有一边长为1的小正方形,一只青蛙在该图案内任意跳动,则这只青蛙跳入阴影部分的概率是.(第12题图) (第14题图) (第15题图)(第16题图)13.已知整数m满足√3<m<√15,则m的最大值是。
中考数学模拟测试试卷(附含有答案)学校:___________班级:___________姓名:___________考号:___________本试题分试卷和答题卡两部分、第1卷满分为40分;第11卷满分为110分,本试题共8页,满分为150分,考试时间为120分钟答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置,考试结束后,将试卷、答题卡一并交回,本考试不允许使用计算器.第1卷(选择题共40分)一.选择题(本大题共10个小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2的相反数是()A.2B.﹣12C.-2 D.122.如图是《九章算术》中"堑堵"的立体图形,它的左视图为()3.2023年10月26日神舟十七号载人飞船发射取得圆满成功,我国载人航天工程发射任务实现30战30捷,航天员在中国空间站俯瞰地球的高度约为400000米,将400000用科学记数法表示应为()A.4x105B.4x106C.40x104D.0.4x1064.如图,直线a∥b、若∠1=130°,则∠2等于()A.60°B.50°C.40°D.30°(第4题图)5.下列校徽的图案是轴对称图形的是()6.下列运算正确的是()A.2a+b=2abB.2a2b-a2b=a2bC.(a3)2=a8D.2a8÷a4=2a27.济南市体质健康测试的技能测试要求学生从篮球、足球、排球、游泳四个项目中自选一项。
两名同学选择相同项目的概率是()A.116B.18C.16D.148.如图,在平面直角坐标系中,点4(0,2),B(1,0),∠ABC=90°,BC=2AB.若点C在函数y=kx(x>0)的图象上,则k的值为( )A.6B.8C.10D.12(第8题图) (第9题图)9.用尺规作一个角等于已知角,已知∠AOB、求作:∠DEF,使∠DEF=∠AOB.作法如下:(1)作射线EG:(2)①为圆心,任意长为半径画弧,交OA于点P、交OB于点Q:(3)以点E为圆心,以②为半径画强交EG于点D:(4)以点D为圆心,以③为半径画弧交前面的弧于点片:(5)过点F作④,∠DEF即为所求作的角.以上作图步骤中,序号代表的内容错误的是()A.①表示点OB.②表示OPC.③表示OQD.④表示射线EF10.在平面直角坐标系中,对点M(a,b)和点M'(a,b')给出如下定义:若b'={b-4(a≥0)|a|(a<0),则称点M'(a,b')是点M(a,b)的伴随点,如:点A(1,-2)的伴随点是A'(1,-6),B(-1,-2)的伴随点是B'(-1,2).若点Q(m,n)在二次函数y=x2-4x-2的图象上,则当﹣2≤m<5时,其伴随点Q'(m,n')的纵坐标n'的值不可能是( )A.-10B.-1C.1D.10第II卷(非选择题共110分)二.填空题(本大题共6个小题,每小题4分,共24分,把答案填在答题卡的横线上)11.因式分解:m2-4= .12.如图,平行四边形ABCD的对角线AC、BD相交于点O,EF、GH过点O,且点E、H在边AB上,点G、F在边CD上,向平行四边形ABCD内部投掷飞镖,飞镖恰好落在阴影区域的概率为。
九年级数学模拟测试卷(word版)通过整理的九年级数学模拟测试卷(word版)相关文档,希望对大家有所帮助,谢谢观看!2021年福建中考模拟测试卷(一)一、选择题(每题4分,共40分) 1.的绝对值是() A.B.3C.-3D.2.如图所示的几何体的俯视图是()(第2题)ABCD 3.下列图形中,既是中心对称图形又是轴对称图形的是()A B CD 4.某市常住人口约为2 510 000人,2 510 000这个数用科学记数法表示为()A.B.C.D.5.下列计算正确的是()A.B.C.D.6.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()(第6题) A.B.C.D.7.如图,在△ABC中,AB=AC,∠C =65°,点D是BC边上任意一点,过点D作DF∥AB交AC于点E,则∠FEC的度数是()(第7题) A.120° B.130° C.145° D.150° 8.2021年10月,《长沙晚报》对外发布长沙高铁西站设计方案. 该方案以“三湘四水,杜鹃花开”为设计理念,塑造出“杜鹃花开”的美丽姿态. 该高铁站建设初期需要运送大量土石方,某运输公司承担了运送总量为土石方的任务,该运输公司平均运送土石方的速度(单位:天)与完成运送任务所需的时间t(单位:天)之间的函数关系式是()A.B.C.D.9.如图,已知OT是Rt△ABO斜边AB上的高线,AO=BO.以O为圆心,OT为半径的圆交OA于点C,过点C作⊙O的切线CD,交AB于点D.则下列结论中错误的是()(第9题) A.DC=DT B.AD=DT C.BD=BO D.2OC=5AC 10.已知二次函数(其中是自变量)的图象经过不同两点,,且该二次函数的图象与轴有公共点,则的值是()A.B.2 C.3 D.4 二、填空题(每题4分,共24分) 11.因式分解:(﹣2)﹣+2=___________.12.÷=___________.13.已知一个正多边形的内角和为1 440°,则它的一个外角的度数为_______度.14.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是_________.15.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2,以点O 为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为___________.(结果保留π)(第15题) 16.如图,经过原点O的直线与反比例函数y=(a>0)的图象交于A,D两点(点A在第一象限),点B,C,E在反比例函数y=(b<0)的图象上,AB∥y轴,AE∥CD∥x轴,五边形ABCDE 的面积为56,四边形ABCD的面积为32,则a﹣b的值为___________,的值为_________.(第16题)三、解答题(共86分) 17.解不等式组:18.如图,点A,B,C,D在一条直线上,EA=FB,AB=CD,EC=FD. 求证:(1)△AEC≌△BFD;(2)EA∥FB.(第18题)19. 先化简,再求值:,其中.20.如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法) (2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.(第20题)21.如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB交BC于点D,过点C作CE⊥AD于E,CE的延长线交AB于点F,过点E作EG∥BC 交AB于点G,AE·AD=16,AB.(1)求证:CE=EF;(2)求EG的长. (第21题)22.“中国人的饭碗必须牢牢掌握在咱们自己手中”的号召. 为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种的平均亩产量高100千克,A、B两个品种全部售出后总收入为21 600元.(1)A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了小麦的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加a%.求a的值.23.为打赢疫情防控阻击战,配餐公司为某校提供A、B、C三种午餐供师生选择,单价分别是8元、10元、15元.为了做好下阶段的经营与销售,配餐公司根据该校上周A、B、C三种午餐购买情况的数据制成如下所示统计表,又根据过去平均每份的利润与销售量之间的关系绘制成如图所示的统计图. 请你根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的中位数是元;(2)为了提倡均衡饮食,假如学校要求师生每人选择两种不同午餐交替食用,试通过列表或画树状图分析,求该校学生小明选择“AB”组合的概率;(3)经分析与预测,师生购买午餐种类与数量相对稳定.根据上级规定,配餐公司平均每份午餐的利润不得超过3元,否则应调低午餐的单价.①请通过计算分析,试判断配餐公司在下周的销售中是否需要调低午餐的单价?②为了便于操作,公司决定只调低一种午餐的单价,且调低幅度至少1元(只能整数元),才能使得下周平均每份午餐的利润在不违反规定下最接近3元,试通过计算说明,应把哪一种午餐的单价调整为多少元?种类数量(份)A 1 800 B 2 400 C 800 (第23题)24.如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.(1)求证:AD∥EC;(2)若AB=12,求线段EC的长.(第24题)25.已知抛物线的解析式为y=ax2(a>0),点P是抛物线上任意一点.(1)我们称F(0,)为抛物线y=ax2(a>0)的焦点,直线l:y=﹣为抛物线的准线,连接线段PF,作PH⊥l于点H.求证:PF =PH;(2)已知抛物线y=ax2过点M(﹣4,4).①求抛物线的解析式,并求抛物线的焦点坐标F;②将M(﹣4,4)绕焦点F顺时针旋转90°,得到点N,求△PNF周长的最小值;③直线p:y=kx+m与抛物线交于A、B两点,点O是坐标原点,OA⊥OB.求证:直线AB过定点.答案一、1. A2.C3.C4.C5.B 6. B7.B8.A9.D10. C 二、11.(x﹣2)(x﹣1)12.-a13.36 14.15. 3﹣π 16.24;﹣三、17.解:解不等式①,得x≥3, 解不等式②,得x>2, ∴不等式组的解集为x≥3.18.证明:(1)∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△AEC和△BFD中,∴△AEC≌△BFD(SSS). (2)由(1)知△AEC≌△BFD,∴EAC=FBD,∴EA∥FB. 19.解:原式 . 当时,原式.20.(1)解:如图即为所作图形.(第20题)(2)证明:∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP =∠ABC,∴∠BAP=∠CPD=∠ABC,∴PD∥AB. 21.(1)证明:∵AD 平分∠CAB,∴∠CAE=∠FAE.又∵AE⊥CF,∴∠CEA=∠FEA=90°.又∵AE=AE,∴△ACE≌△AFE.∴CE=EF.(2)解:∵∠ACB=90°,CE⊥AD,∠CAE=∠DAC,∴△CAE∽△DAC.∴.∴.在Rt△ACB中,,∴.又∵CE=EF,EG∥BC,∴FG=GB.∴EG是△FBC的中位线.∴. 22.解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克. 根据题意,得解得答:A、B两个品种去年平均亩产量分别是400千克和500千克. (2)根据题意,得2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21 600(1+a%),解得a=0.1,(舍去). 答:a的值为10.23.解:(1)10.(2)树状图如图所示:根据树状图能够得到6种等可能结果:AB,AC,BA,BC,CA,CB.其中“AB”组合共有2种结果,∴.(3)①根据条形统计图可知,上周A种午餐的利润为2元,B种午餐的利润为4元,C种午餐的利润为3元,因此总利润为1 800×2+4×2 400+3×800=15 600(元),平均利润为15 600÷(1800+2400+800)=3.12(元),∵3.12>3,∴应调低午餐单价.②假设调低A种午餐单价1元,平均每份午餐的利润为(元),调低B种午餐单价1元,平均每份午餐的利润为(元),调低C种午餐单价1元,平均每份午餐的利润为(元),∵当A,B,C种午餐单价调的越低,利润就越低,∴距离3元的利润就会越远. 综上,应该调低C种午餐1元,即C种的午餐的单价应该调整为14元时,才能使下周平均每份午餐的利润更接近3元.24.(1)证明:如图,连接OC. ∵CE与⊙O相切于点C,∴∠OCE=90°. ∵∠ABC=45°,∴∠AOC=90°,∴∠AOC+∠OCE=180°,∴AD∥EC.(第24题)(2)解:如图,过点A作AF⊥EC交EC于点F. ∵∠BAC =75°,∠ABC=45°,∴∠ACB=60°,∴∠D=∠ACB=60°,由题易知△ABD是直角三角形. ∴sin∠ADB=,∴AD==8,∴OA=OC=4,∵AF⊥EC,∠OCE=90°,∠AOC=90°,∴四边形OAFC 是矩形,又∵OA=OC,∴四边形OAFC是正方形,∴CF=AF=OA=4,∵∠BAD=90°﹣∠D=30°,∴∠EAF=180°﹣90°﹣30°=60°,∴tan∠EAF=,∴EF=AF=12,∴C E=EF+CF=12+4.25.(1)证明:如图①,设点P的坐标为(m,am2),根据题意得PF2=m2+(am2﹣)2=(am2+)2,PH=am2+,∵PF>0,∴PF=am2+,∴PF=PH. (2)①将点M的坐标代入,得4=a (﹣4)2,解得a=,∴抛物线的解析式为y=x2,∴点F的坐标为(0,1);②如图②,由题意得点N的坐标为(3,5),由(1)知,PF=PH,而FN为常数,故当N,P,H三点共线时,PF+NP=NH为最小,此时△PNF周长最小值=FN+PF+NP=NH+FN=(4+1)+=10. ③如图③,整理得:x2﹣4kx﹣4m=0,∴xAxB=﹣4m,过点A,B分别作x轴的垂线,垂足分别为M,N,∵∠AOM+∠BON=90°,∠BON+∠OBN=90°,∴∠AOM=∠OBN,∴tan∠AOM=tan∠OBN,即,则,即,整理,得xAxB=﹣16. 又∵xAxB=-4m,-4m=-16. 解得m=4,∴直线p的解析式为y=kx+4,当x=0时,y=4,∴直线p过定点(0,4).。
九年级数学中考模拟试卷三一、填空题:(每题3分 共36分)1、下列各式 ①xy 2=②732+-=x y ③ x y -=1 ④x y 43=⑤ 221x y -= ⑥()3121--=x y 其中是一次函数的有( ),是正比例函数的有( ) (填序号)2、x x y -++=231中,自变量的取值范围是( )3、已知点()b a M ,其中b a ,是一元二次方程0322=--x x 的两根,则点M 的坐标为( )4、若一次函数()()32++-=n x m y 的图象经过原点且y 随x 的增大而减小,则n m , 应满足的条件是( )5、函数b kx y +=如果0>k ,0<b 则它的图象经过( )象限,y 随x 的增大而( )6、在⊙O 中,已知∠AOB=︒100 则弦AB 所对的圆周角是( )7、已知α是锐角,且21sin x-=α 则x 的取值范围是( )8、已知32+是方程01tan 42=+⋅-x x θ的一根,则=θcos ( )(θ为锐角)9、如图:∠BAC=︒50 ADBCE 为⊙O 内接五边形,则∠D+∠E 的度数为( )10、如图,在⊙O 中,直径AB=10 弦AD=8 E P 是弦AD 上一个动点, 那么OP 的取值范围是 ( )(第9题) (第10题)二、选择题(每题3分,共30分)11、四边形ABCD 是⊙O 的内接四边形,则∠A ∠B ∠C ∠D 的度数比依次是( ) (A )1:2:3:4 (B )6:7:8:9 (C )4:1:3:2 (D )14:3:1:1212、已知∠A 是锐角,且43cos =A 则有( ) (A )︒<<︒300A (B )︒<<︒4530A (C )︒<<︒6045A (D )︒<<︒9060A13、判断下列数量关系中,①正方形周长与它的一边长 ②圆周长和它的半径 ③圆的面积和它的周长 ④矩形面积一定时,长y 与宽x ⑤买15斤梨售价25元,买x 斤梨的售价y(元)与斤数x ⑥某人年龄与体重,其中是正比例函数关系的有( ) (A )①②④ (B )①②⑤ (C )①④⑤ (D )①③⑤14、已知方程0cot 62222=∂+-x x 有两个相等的实数根,则锐角∂等于( ) (A )︒30 (B )︒60 (C )︒45 (D )以上都不对15、若()2122-+=--m mx m m y 为一次函数,则m 的值为( )(A )m=2或1-=m (B )2=m 且0≠m (C )2=m (D )1-=m16、点N 在y 轴左侧,且到x 轴的距离为4,到y 轴距离为3的点N 的坐标是( ) (A )()3,4- (B )()4,3- (C )()3,4-或()3,4-- (D )()4,3-或()4,3-- 17、下列各命题中不是..真命题的有( ) (A )相等的弧所对的弦相等 (B )相等的弦所对的弧相等 (C ) 圆内接平行四边形是矩形(D ) 圆内接梯形是等腰梯形18、已知平面直角坐标系中,有三点()0,0A ()2,2B ()0,4C 则△ABC 的形状是( ) (A )等腰三角形 (B )直角三角形 (C )等边三角形 (D )等腰直角三角形 19、星期天晚饭后,小红从家里出去散步,右图描述了她散步过程中离家的距离s(m)与所用时间t(min)的函数关系,依据图象,下面的描述符合小红散步情景的是( ) (A) 从家出发到了一个公共阅报栏看了一会报就回家了(B) 从家出发到了公共阅报栏,看了一会报后继续向前走了一段,然后回家了 (C) 从家出发一直散步(没有停留)然后回家了(D) 从家出发散了一会步就找同学去了,18分钟后开始返回20、⊙O 的弦AB 、CD 的延长线相交于P ,若∠P ︒=40∠AMC ︒=100则∠ABC=( ) (A )︒75 (D )(第19题) (第20题三、解答题:(21、22、23各6分,24、25各8分)21、国庆期间,几名教师包租一辆车前往合肥游览,面包车的租价为180元,出发时又增加两名教师,结果每一位教师比原来少分摊了3元车费,求参加旅游的教师共多少人?22、已知一次函数的图象与x y 2-=平行且过点()1,3--(1)求这个函数的解析式(2)设此函数图象与x 轴、y 轴交点为A 、B 求△AOB 的面积23、已知AB 是⊙O 的直径,弦CD 与AB 相交于E ,∠ADC=︒50 ∠ACD=︒60求∠AEC的度数C24、已知:C 为⊙O 外一点过点C 的两条直线分别交⊙O 于E 、D直径AB ⊥DE 于H 求证:(1)∠CFE=∠DFB (2)BF CF ⋅25、某移动通讯公司开设了两种通讯业务“全球通”使用者先缴50元月租费,然后每通话1分钟再付话费0.4元,“快捷通”不缴月租费,每通话1分钟,付话费0.6元(均指市内通话)若一个月内通话x 分钟,两种方式的话费分别为1y 元与2y 元 (1) 写出1y 与2y 与x 之间的函数关系式(2)一月内通话多少分钟,两种话费一样多?(3)某人估计一个月内通话300分钟,选哪一种方式更合算些?四、思考题:(10分)26、已知:函数)0(4≠+=k kx y 当1=x 时6=y ,此函数图象与x 轴、y 轴交点分别为A 、B(1)求k 值,并求出点A 与点B 的坐标(2)试问分别过△ABO 的三个顶点中的一点,且把该三角形面积分成1:3两部分的直线l 共有几条?并求出其中任意一条直线l 的解析式(每多写出一条直线的解析式可以加5分)(附加题总分不超过20分)答案一、填空题:(每空3分,共计36分)1、②④⑥ ④2、-3<x ≤23、(3,-1)或(-1,3)4、m>2且n=-35、一、三、四 增大6、︒50或︒1307、11<<-x8、22 9、︒230 10、3≤OP ≤5二、选择题(每题3分,共计30分) DBBAC DBDBB 三、解答题:21、解:设参加旅游的教师共x 人 依题意得:31802180=--xx 3分解这个方程 ()()232180180-=--x x x x整理,得 012022=--x x解得: 121=x 102-=x5分经检验:121=x 102-=x 是原方程的解,但102-=x 不合题意,舍去∴12=x答:参加旅游的教师共12人。
初三数学模拟试卷一、精心选一选,相信自己的判断!(共10小题,每小题3分,共30分)1. (★)计算屈一血的结果是()3. (★)将二次函数y = %2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A. y = (%-l)2+2 B. y = (x+l)2+2 C. y = (x-l)2-2 D. y = (% + l)2 -2况是( )A.有两个不等实根B.有两个相等实根C.没有实根D.无法确定。
6. (★★)把长为8cm 的矩形按虚线对折,按图屮的虚线剪出一个直角梯形,找开得到一个等腰梯形, 剪掉部分的面积为6cn?,则打开后梯形的周长是()A. (10 + 2-\/^3) cmB. (10 + VTJ ) cm C ・ 22cm D. 18cm7. (★★)下面右边的图形是由8个棱长为1个单位的小立方体组成的立体图形,这个立体图形的左视图是 ()A. B.C. D. ~8. (★★)己知腮的面积为36,将腮沿兀的方向平移到C 的位置,使〃和C 重合,连结化/交才C 于〃,则DC 的面 积为 ( ) A. 6 B. 9 C. 12 D. 18X 0根的情 5.4. (★)如图1,现有一个圆心角为90。
,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接 缝忽略不计),则该圆锥底面圆的半径为( )B C &)C (第8题)9. (★★)某探究性学习小组仅利用一幅三角板不能完成的操作是( )A.作已知直线的平行线B.作已知角的平分线C.测量钢球的直径D.找已知圆的圆心10. (★★★)如图,正方形力滋9的边长是3cm,—个边长为lcm 的小正方形 沿着正方形昇彩的边AB-BC-dDAfAB 连续地翻转,那么这个小正方形笫 一次回到起始位置时,它的方向是()A. B. C. D.二、细心填一填,试试自己的身手!(共6小题,每小题3分,共18分) 10. (★)在函数y =』2-x 中,自变量兀的取值范围是 ______________ .11. (★)国家游泳屮心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260000平方米,将260000用科学记数法表示应为 ________________ .x — 3 v 0 12. (★)不等式组彳 .的解集是2无一1三0------------13. (★★)如图,(甲)是四边形纸片ABCD ,其中Z 尿120。
初三数学中考全真模拟第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.计算:22-=( ).A .41B . 2C .41-D .4 2.如果代数式34-x 有意义,则x 的取值范围是( ). A .3≠x B .3<x C .3>x D .3≥x3.某班抽取6名同学参加体能测试的成绩如下(单位:分):70,95,75,75,80,80.关于这组数据的表述错误..的是( ). A .众数是75 B .中位数是75 C .平均数是80 D .极差是20 4. 右图空心圆柱体的主视图的画法正确的 是( ).5. 不等式组⎩⎨⎧<->+423532x x 的解等于( ).A .21<<xB . 1>xC .2<xD .x<1或x>26.许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水,若1年按365 天计算,这个水龙头一年可以流掉( )千克水.(用科学计数法表示,保留3个有效数字)A .3.1410⨯B .0.31510⨯C . 3.06410⨯D .3.07410⨯7. 已知两圆半径1r 、2r 分别是方程01072=+-x x 的两根,两圆的圆心距为7,则两圆的位置关系是( ).A .相交B . 内切C .外切D .外离 8.已知矩形ABCD 中,AB=1,在BC 上取一点E, 沿AE 将△ABE 向上折叠,使B 点落在AD 上 的F 点,若四边形EFDC 与矩形ABCD 相似, 则AD=( ).A .215- B . 215+ C .3 D .2 9.轮船从B 处以每小时50海里的速度沿南偏东30°方向匀速航行,在B 处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C 处,在C 处观测灯塔A 位于北偏东60°方向上,则C 处与灯塔A 的距离是( )海里.A .253B .252C .50D .25 10.甲乙两位同学用围棋子做游戏。
一、选择题(每题3分,共30分)1. 下列各数中,是整数的是()A. -3.5B. 0.001C. 2.3D. 52. 下列各数中,是负数的是()A. 0.5B. -0.5C. 2D. -23. 下列各数中,是偶数的是()A. 3B. 5C. 4D. 74. 下列各数中,是质数的是()A. 4B. 6C. 7D. 95. 下列各数中,是合数的是()A. 4B. 5C. 6D. 76. 下列各数中,是正数的是()A. -2B. 0C. 2D. -37. 下列各数中,是实数的是()A. 2.5B. -3C. 0D. 2.5i8. 下列各数中,是复数的是()A. 2B. -3C. 0D. 2.5i9. 下列各数中,是无限循环小数的是()A. 0.333...B. 0.5C. 0.125D. 0.833...10. 下列各数中,是有限小数的是()A. 0.333...B. 0.5C. 0.125D. 0.833...二、填空题(每题3分,共30分)11. 5的倒数是______。
12. -3的相反数是______。
13. 2的平方根是______。
14. 9的立方根是______。
15. 下列各数的绝对值分别是:|3|=______,|-5|=______。
16. 下列各数的倒数分别是:3的倒数是______,-2的倒数是______。
17. 下列各数的平方分别是:2的平方是______,-3的平方是______。
18. 下列各数的立方分别是:4的立方是______,-5的立方是______。
19. 下列各数的算术平方根分别是:9的算术平方根是______,16的算术平方根是______。
20. 下列各数的立方根分别是:8的立方根是______,27的立方根是______。
三、解答题(每题10分,共40分)21. 计算下列各式的值:(1)-3 + 5 - 2(2)3 × (-2) + 4 × (-1)(3)-5 ÷ 5 + 3 × 2(4)-4 + 2 × (-3) - 522. 解下列方程:(1)2x - 5 = 3(2)5x + 2 = 7(3)3x - 1 = 2(4)-2x + 4 = 623. 计算下列各式的值:(1)(2 + 3) × (4 - 1)(2)(-2) × (-3) + 5 × 2(3)-4 × (-1) + 3 × 3(4)2 × (-2) + (-3) × 424. 解下列方程组:(1)x + y = 52x - y = 3(2)2x + 3y = 11x - y = 2四、附加题(每题10分,共20分)25. (拓展题)已知等腰三角形ABC中,AB = AC,∠BAC = 40°,求∠ABC和∠ACB的度数。
最新九年级数学中考模拟考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y=x^3B. y=x^2C. y=|x|D. y=2x2. 已知一组数据的方差是9,那么这组数据每个数都加上5后,方差是()A. 4B. 9C. 14D. 253. 下列等式中,正确的是()A. sin30°=1/2B. cos60°=1/2C. tan45°=1D. tan30°=1/24. 一个正方体的体积是8cm^3,那么它的表面积是()A. 24cm^2B. 32cm^2C. 36cm^2D. 48cm^25. 下列各数中是无理数的是()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)1. 任何两个实数的和仍然是实数。
()2. 一元二次方程的解一定是实数。
()3. 对角线互相垂直的四边形一定是矩形。
()4. 任何数乘以0都等于0。
()5. 相似三角形的面积比等于边长比的平方。
()三、填空题(每题1分,共5分)1. 已知一组数据的平均数是10,那么这组数据的总和是______。
2. 一个等腰三角形的底边长是8cm,腰长是5cm,那么这个三角形的周长是______cm。
3. 若a+b=6,ab=2,则a=______,b=______。
4. 在直角坐标系中,点A(2,3)关于x轴的对称点是______。
5. 两个等差数列的通项公式分别是an=a1+(n1)d和bn=b1+(n1)d,那么这两个数列的前n项和分别是______和______。
四、简答题(每题2分,共10分)1. 简述平行线的性质。
2. 请解释无理数的概念。
3. 什么是二次函数的顶点坐标?4. 简述三角形面积的计算方法。
5. 请举例说明什么是等差数列。
五、应用题(每题2分,共10分)1. 某商店进行打折促销,原价100元的商品打8折,那么折后价格是多少?2. 一个长方体的长、宽、高分别是4cm、3cm、2cm,求它的体积。
中考模拟试题
一、填空题(每小题3分,共24分)
1、若关于x的方程x2-2(a-1)x=(6-2)2有两个不相等的实数根,则20xx0+b=()
2、8的平方根是()。
3、-(-3)的相反数是()。
4、发射的神州六号载人飞船,在大空飞行了115小时32分后返回地面,用科学计数法表示为()秒。
5、在函数y=中,自变量x的取值范围上()。
6、在平面直角坐标系中,圆O的圆心在原点,半径为3,圆A的圆心A的坐标为(-,
1)半径为1,那么圆O和圆A的位置关系是()。
7、在半径为1的圆O中,弦AB=1,则弧AB的长是()。
8、保持压力不变,压强P与受力面积S成反比例关系,如图所
示,压力为()牛。
二、选择题(每小题3分,共24分)
9、从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起
洗匀后,从中抽出10张,恰好三种牌都能抽到,这件事情是
()
A、可能发生
B、不可能发生
C、很有可能发生
D、必然发生
10、若a:b:c=3:5:7,且3a+2b-4c=9,则a+b+c=()
A、-3
B、-5
C、-7
D、-15
11、不等式组的解集是()
A、-1<x 2
B、-1 x<2
C、-1 x 2
D、-1<x<2
12、如图,将半径为2的圆形纸片,沿半径OA、OB将其裁成1:
3的两部分,用所得扇形围成圆锥的侧面,其圆锥的底面积为
()
A、1/2
B、1
C、1/2或3/2
D、1或3
13、函数y=kx-k与y=k/x在同一坐标系中的图象大致是()
14、如图,AB、AC与圆O相切于B、C,点P是圆上异于B、C的一动点,A=500,BPC 的度数是()
A、650
B、1150
C、650或1150
D、1300或500
15、下列命题错误的是()
A、对顶角相等
B、对角线互相垂直平分且相等的四边
形是正方形C、直径平分弦必垂直弦D、两直线平行,
同位角相等
16、方程x2-x+2=0的根的情况是()
A、无实根
B、有两个不相等的实根
C、有两个相等的实根
D、以上都不对
三、运算题(每小题7分,共28分)
17、
18、先化简,请你取一个x的值,求代数式的值。
19、如图,水库大坝的横断面是梯形,坝顶BC=8m,坝高为
18m,迎水坡CD的坡角为450,背水坡AB的余弦值是4/5,
求:
(1)背水坡AB的坡度
(2)坝底宽AD
20、方程,当m取何值时,方程是一元二次方程,并求出它的解。
四、操作证明(每小题8分,共16分)
21、如图,在平面直角坐标系中,已知∆ABC的顶点坐
标为A(-1,4)、B(-2,0)C(1,0)
(1)写出∆DEF的顶点坐标。
(2)写出∆ABC变换至∆DEF要通过什么变换?
(3)画出∆ABC关于力轴的轴反射图形。
22、如图,梯形ABCD中,AB平行CD且AB=2CD,
E、F分别是AB、BC的中点,EF与BD相交于点M,
求证∆EDM~∆FBM
五、实践与应用(每小题8分,共16分)
23、已知:二次函数y=x2-(m+1)x+m的图象交x轴于A(x,0),B(x2,0)两点交y轴正半轴于点C且x12+x22=10
(1)求此二次函数的解析式
(2)是否存在过点D(0,5/2)的直线与抛物线交于点M,N与x轴交于点E,使点M、N关于E对称?若存在,求直线MN的解析式。
若不存大,说明理由。
24、李大伯承包了一片荒山,在山上种植了一部分优质油桃,今年已经进入第三年收获期,今年收获油桃6912千克,已知李大伯第一年收获的油桃重4800千克。
(1)求平均增长率
(2)照此增长率,预计明年油桃的产量是多少千克?。