大坪中学湘教版七年级上期期末数学模拟试题五
- 格式:doc
- 大小:155.00 KB
- 文档页数:4
湘教版七年级数学上册期末模拟考试(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③ 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A.y=2x+3 B.y=x﹣3 C.y=2x﹣3 D.y=﹣x+36.如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,N表示的有理数互为相反数,则图中表示绝对值最小的数的点是()A.点M B.点N C.点P D.点Q7.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+18.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折 B.7折 C.8折 D.9折9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.已知三条不同的射线OA、OB、OC有下列条件:①∠AOC=∠BOC ②∠AOB=2∠AOC ③∠AOC+∠COB=∠AOB ④∠BOC=12∠AOB,其中能确定OC平分∠AOB的有()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.已知a 、b 为两个连续的整数,且11a b <<,则a b +=__________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.正五边形的内角和等于______度.4.若x 2+kx+25是一个完全平方式,则k 的值是__________.5.若25.36=5.036,253.6=15.906,则253600=__________.6.如图,AB ∥CD,直线EF 分别交AB 、CD 于E 、F,EG 平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解不等式组:331213(1)8x x x x-⎧+≥+⎪⎨⎪--<-⎩并在数轴上把解集表示出来.2.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,b=﹣123.已知坐标平面内的三个点A (1,3),B (3,1),O (0,0),求△ABO 的面积.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.为了解学生对“垃圾分类”知识的了解程度,某学校对本校学生进行抽样调查,并绘制统计图,其中统计图中没有标注相应人数的百分比.请根据统计图回答下列问题:(1)求“非常了解”的人数的百分比.(2)已知该校共有1200名学生,请估计对“垃圾分类”知识达到“非常了解”和“比较了解”程度的学生共有多少人?6.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、A4、B5、D6、C7、B8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、72、-43、5404、±10.5、503.66、54°三、解答题(本大题共6小题,共72分)1、−2<x≤1,数轴见解析2、5.3、4.4、(1)证明略;(2)证明略.5、(1)20%;(2)6006、每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.。
湘教版七年级上册数学期末考试试题一、单选题1.若|a|=3,,则a=()A .3B .-3C .3±D .13±2.下列计算正确的是()A .﹣3+9=6B .4﹣(﹣2)=2C .(﹣4)×(﹣9)=﹣36D .23÷32=13.下列方程是一元一次方程的为()A .2531-=+x x x B .3711+=x y C .29x =D .424-=x x4.下列图形属于棱柱的有()A .2个B .3个C .4个D .5个5.下列方程中,其解为1-的方程是()A .2143x x -=+B .33x x =+C .122x =-D .()233x -=6.下列调查活动中最适合用全面调查的是()A .调查某批次汽车的抗撞击能力B .调查你所在班级学生的身高情况C .调查全国中学生的视力情况D .对端午节市场粽子质量进行调查7.如图:O 为直线AB 上的一点,OC 为一条射线,OD 平分AOC ∠,OE 平分BOC ∠,图中互余的角共有()A .1对B .2对C .4对D .6对8.按照图中图形变化的规律,则第2021个图形中黑色正方形的数量是()A .1010B .1012C .3030D .30329.已知a 2-2a =-1,则代数式2a 2-4a+2的值是()A .-1B .0C .1D .210.已知∠A=50°,则∠A 的补角等于()A .40°B .100°C .130°D .150°二、填空题11.比较大小:18-______17-(选填“>”,“=”、“<”)12.如果多项式2245627x x x x +---与多项式2ax bx c ++(其中a ,b ,c 是常数)相等,则=a ________,b =________,c =________.13.为了贯彻和落实“双减政策”,某学校七年级在课后辅导中开设剪纸、做豆腐、硬笔书法、篮球、戏剧赏析五个课程.为了了解七年级学生对这五个课程的选择情况,小明同学随机抽取了部分学生进行调查(规定每人必须并且只能选择其中一个课程),并把调查结果绘制成如图所示的统计图,根据这个统计图可以估计七年级500名学生中选择做豆腐课程的学生约为___名.14.如图,点C ,D 在线段AB 上,且AD =BC ,则AC___BD (填“>”、“<”或“=”).15.幻方历史悠久,传说最早出现在夏禹时代的“洛书”当中.把洛书用今天的数学符号翻译出来,就是一个三阶幻方.将数字1~9分别填人如图所示的幻方中,要求每一横行,每一竖行以及两条对角线上的数字之和都是15,则m 的值为_________.16.如图,小明和小宇一起玩三巧板,小明说:“看,我把三巧板排成了一个正方形”,小宇说:“我把你的正方形变成了一面小旗子”,根据他们的拼图,请写出小宇所拼小旗子“旗杆”长方形ABCD 的周长为________(用含有m 的式子表示)17.如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为_____.18.假设“▲、●、■”分别表示三种不同的物体.如图,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放______个■.三、解答题19.计算:(1)23136348⎛⎫⨯-+ ⎪⎝⎭(2)()22840.25535⎡⎤-÷-⨯--⎣⎦20.解方程:(1)7234(2)x x -=+-(2)2121136x x -+=-21.先化简,再求值:()()222243323a b ababa b ---+,其中1a =-,2b =-.22.如图,C 为线段AD 上一点,点B 为CD 的中点,且8cm,2cmAD BD ==(1)图中共有_______条线段;(2)求AC 的长;(3)若点E 在直线AD 上,且3cm EA =,则BE 的长为_______cm .23.学校准备组织七年级学生参观冰雪大世界.参观门票学生票价为160元,冰雪大世界经营方为学校推出两种优惠方案,方案一:“所有学生门票一律九折”;方案二:“如果学生人数超过100人,则超出的部分打八折”.(1)求参观学生为多少人时,两种方案费用一样.(2)学校准备租车送学生去冰雪大世界,如果单独租用45座的客车若干辆,则有15人没有座位;若租用同样数量的60座客车,则多出一辆,且其余客车恰好坐满,求我校七年级共有多少学生参观冰雪大世界?(司机不占用客车座位数)(3)在(2)的条件下,学校采用哪种优惠方案购买门票更省钱?24.如图所示,已知OD 平分AOB ∠,射线OC 在AOD ∠内,2BOC AOC ∠=∠,120AOB ∠=︒,求COD ∠的补角.25.如图在长方形ABCD 中,AB=12cm ,BC=8cm ,点P 从A 点出发,沿A→B→C→D 路线运动,到D 点停止;点Q 从D 点出发,沿D→C→B→A 运动,到A 点停止.若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,用x (秒)表示运动时间.(1)求点P 和点Q 相遇时的x 值.(2)连接PQ ,当PQ 平分矩形ABCD 的面积时,求运动时间x 值.(3)若点P 、点Q 运动到6秒时同时改变速度,点P 的速度变为每秒3cm ,点Q 的速度为每秒1cm ,求在整个运动过程中,点P 、点Q 在运动路线上相距路程为20cm 时运动时间x 值.26.若关于x 的方程0ax b +=(0a ≠)的解与关于y 的方程0cy d +=(0c ≠)的解是满足1x y -≤,则称方程0ax b +=(0a ≠)与方程0cy d +=(0c≠)是“友好方程”.例如:方程210x -=的解是0.5x =,方程10y -=的解是1y =,因为1x y -<,方程210x -=与方程10y -=是“友好方程”.(1)请通过计算判断方程2953x x -=+与方程()()512132y y y ---=+是不是“友好方程”;(2)若关于x 的方程()33410x x -+-=与关于y 的方程3212y ky k +-=+是“友好方程”,请你求出k 的最大值和最小值;(3)请判断关于x 的方程1252018x m x -=-与关于y 的方程72018140362018y y m +⨯-=+是不是“友好方程”,并说明理由.27.学校准备添置一批课桌椅,原计划订购80套,每套120元.店方表示:如果多购可以优惠.结果校方购了95套,每套减价3元,但商店获得同样多的利润.(1)求每套课桌椅的成本;(2)求商店获得的利润.参考答案1.C 2.A 3.A 4.B 5.C 6.B 7.C 8.D 9.B 11.>12.-23-7【详解】∵2245627x x x x +---=2327x x +--∴=a -2,b =3,c =-7故答案为:-2;3;-7.13.100【分析】用整体1减去篮球、硬笔书法、戏剧赏析、剪纸所占的百分比,求出做豆腐课程所占的百分比,再用该学校500名学生乘以做豆腐课程所占的百分比即可得出答案.【详解】解:根据题意得,估计该学校500名学生中选择做豆腐课程的学生约为500×(1-30%-20%-14%-16%)=100(名),故答案为:100.【点睛】本题考查了用样本估计总体,依据扇形统计图求出做豆腐课程所占的百分比是解题的关键.14.=【分析】利用线段的和差关系与AD BC =可得:,AC CD CD BD +=+从而可得答案.【详解】解: AD =BC ,,AC BD ∴=故答案为:=【点睛】本题考查的是线段的和差关系,等式的基本性质,利用图形掌握线段的和差关系是解题的关键.15.8【分析】利用幻方中每一横行,每一竖行以及两条对角线上的数字之和都是15,相继求得a 、b 的值,再利用幻方中对角线上的数字之和为15,即可得出关于m 的一元一次方程,解之即可得出结论.【详解】解:根据题意:2+7+a=15,∴a=15-2-7=6,∵4+b+a=15,解得:b=15-6-4=5,∵2+b+m=15,解得:m=8,故答案为:8.【点睛】本题考查了一元一次方程的应用以及数字常识,找准等量关系,正确列出一元一次方程是解题的关键.16.812m +【分析】由小宇图得AB 的长为梯形的上底加下底的长度,再根据小明拼图即可求出长度计算周长即可.【详解】解:由题意,梯形的上底为3m +,下底为23m +,故AB 的长为32336m m m +++=+,长方形周长为:()236812m m m ++=+故答案为:812m +.【点睛】题目主要考查列代数式,根据图形找到各边长度是解题的关键.17.116°【分析】由图示可得,∠1与∠BOC 互余,结合已知可求∠BOC ,又因为∠2与∠COB 互补,即可求出∠2的度数.【详解】解:∵126∠=︒,∠AOC =90°,∴∠BOC =64°,∵∠2+∠BOC =180°,∴∠2=116°.故答案为:116°.18.619.(1)1.5;(2)9-【详解】解:(1)23136348⎛⎫⨯-+ ⎪⎝⎭231363636348=⨯-⨯+⨯2427 4.5=-+1.5=(2)()22840.25535⎡⎤-÷-⨯--⎣⎦5160.25(59)8=-⨯-⨯-100.25(4)=--⨯-101=-+9=-20.(1)x=2;(2)32x =-【分析】(1)去括号,移项,合并同类项,系数化为1,即可;(2)去分母,去括号移项,合并同类项,系数化为1,即可;【详解】⑴方程整理得:7-2x=3+4x-86x=7-3+86x=12x=2(2)方程整理得:2(2x-1)=2x+1-64x-2=2x-52x=-332x =-【点睛】本题考查了解一元一次方程,掌握一元一次方程的解法是解题的关键.21.2232a b ab +,14-【分析】首先根据整式的混合运算法则化简,然后代入1a =-,2b =-求解即可.【详解】解:()()222243323a b ab ab a b---+222222=124=2639a b ab ab a b a b ab -+-+将1a =-,2b =-代入得:原式=()()()()22312212=68=-14⨯-⨯-+⨯-⨯---.【点睛】此题考查了整式的化简和代数求值,解题的关键是熟练掌握整式的混合运算法则.22.(1)6;(2)4cm ;(3)3或9【分析】(1)根据线段的定义找出线段即可;(2)先根据点B 为CD 的中点,BD=2cm 求出线段CD 的长,再根据AC=AD-CD 即可得出结论;(3)由于不知道E 点的位置,故应分E 在点A 的左边与E 在点A 的右边两种情况进行解答.【详解】解:(1)图中共有6条线段;故答案为6;(2)∵点B 为CD 的中点.∴CD=2BD .∵BD=2cm ,∴CD=4cm .∵AC=AD-CD 且AD=8cm ,CD=4cm ,∴AC=4cm ;(3)当E 在点A 的左边时,则BE=BA+EA 且BA=6cm ,EA=3cm ,∴BE=9cm当E 在点A 的右边时,则BE=AB-EA 且AB=6cm ,EA=3cm ,∴BE=3cm ;综上,BE 的长为3cm 或9cm .故答案为:3或9.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.23.(1)200人,(2)240人,(3)方案二【分析】(1)设参观学生为x 人时,两种方案费用一样,根据题意列出方程求解即可;(2)设租用45座的客车y 辆,根据题意列出方程求解即可;(3)求出两种方案的费用,比较大小即可.【详解】解:(1)设参观学生为x 人时,两种方案费用一样,根据题意列方程得,0.9×160x=160×100+0.8×160(x-100),解得,x=200,答:参观学生为200人时,两种方案费用一样.(2)设租用45座的客车y 辆,根据题意列方程得,45y+15=60(y-1),解得,y=5,60×(5-1)=240(人),答:我校七年级共有240学生参观冰雪大世界(3)方案一费用为:0.9×160×240=34560(元);方案二费用为:160×100+0.8×160×140=33920(元);学校采用方案二优惠方案购买门票更省钱.【点睛】本题考查了一元一次方程的应用,解题关键是找准题目中的等量关系,列出方程求解.24.160︒【分析】根据120AOB ∠=︒和2BOC AOC ∠=∠,即可求出AOC ∠的大小.由OD 平分AOB ∠即可求出AOD ∠的大小.最后根据COD AOD AOC ∠=∠-∠,即求出COD ∠的大小.即可得出COD ∠的补角的大小.【详解】∵AOB BOC AOC ∠=∠+∠,2BOC AOC ∠=∠,∴2AOB AOC AOC ∠=∠+∠,即3120AOC ∠=︒,∴40AOC ∠=︒.∵OD 平分AOB ∠,∴111206022AOD BOD AOB ∠=∠=∠=⨯︒=︒.∵COD AOD AOC ∠=∠-∠,∴604020COD ∠=︒-︒=︒.∴COD ∠的补角为180********COD ︒-∠=︒-︒=︒.【点睛】本题考查角平分线的性质以及补角的定义,掌握角平分线的性质结合题意找出各角之间的等量关系是解答本题的关键.25.(1)x=323;(2)4或20;(3)4或14.5【分析】(1)根据P 、Q 两点运动的路程和等于AB+BC+CD 列方程求解即可;(2)分点P 在AB 边上,点Q 在CD 边上和点Q 运动到A 点,点P 运动到点C 两种情况进行讨论即可得;(3)分变速前与变速后两种情况进行即可得.【详解】解:(1)由题意得:x+2x=12×2+8,解得:x=323;(2)当点P 在AB 边上,点Q 在CD 边上,由题意得:2x=12-x解得,x=4;当点Q 运动到点A 时,用时(12+8+12)÷2=16秒,此时点P 运动到BC 边上,当点P 运动到点C 时,PQ 平分矩形ABCD 的面积,此时用时:(12+8)÷1=20秒,综上:当PQ 平分矩形ABCD 在面积时,x 的值为4或20;(3)变速前:x+2x=32-20,解得:x=4;变速后:12+(x-6)+6+3×(x-6)=32+20,解得:x=14.5;综上:x 的值为4或14.5.【点睛】本题考查了一元一次方程的应用,通过数形结合、分类讨论进行分析是解题的关键.26.(1)不是;(2)k 的最大值为0,最小值为23-;(3)是,理由见解析.【分析】(1)解出两个一元一次方程的解分别是4x =-和2y =,根据题意1x y -≤求出本题中426--=>1,即可得出结论;(2)由题意可知|x−y|≤1,分别求出两个方程的解(都用k 的式子来表示),求出k 的取值范围,再从中确定k 的最大值和最小值.(3)分别解出两个一元一次方程的解(都用m 的式子来表示),求出两个解的绝对值与1比大小即可.【详解】解:(1)解方程2953x x -=+得,4x =-,解方程()()512132y y y ---=+得,2y =,∵426--=>1,∴方程2953x x -=+与方程()()512132y y y ---=+不是“友好方程”;(2)关于x 的方程()33410x x -+-=的解为1x =,关于y 的方程3212y k y k +-=+的解为32y k =+,∵关于x 的方程()33410x x -+-=与关于y 的方程3212y k y k +-=+是“友好方程”,∴|1−(3k +2)|≤1,∴当−1≤1−(3k +2)≤0时,解得13-≤k≤0,当0<1−(3k +2)≤1时,解得23-≤k <13-,∴23-≤k≤0,∴k 的最大值是0,最小值23-;(3)解方程1252018x m x -=-得,1009020184035m x -=,解方程72018140362018y y m +⨯-=+得,1412520184035m y -=,∵100902018141252018140354035m m x y ---=-=-,∴1x y -=,∴关于x的方程1252018x m x-=-与关于y的方程72018140362018y y m+⨯-=+是“友好方程”.【点睛】本题是新定义问题,考查了一元一次方程及一元一次不等式组的解法,准确理解题意和熟知一元一次方程及一元一次不等式组的解法是解决本题的关键.27.(1)101元(2)1520元【分析】(1)设每套课桌椅的成本为x元,根据题意列出一元一次方程即可求解;(2)根据利润等于数量乘以每套课桌椅的利润即可求解.(1)解:设每套课桌椅的成本为x元,根据题意得:80×120﹣80x=95×(120﹣3)﹣95x,解得:x=101.答:每套课桌椅的成本为101元;(2)80×(120﹣101)=1520(元).答:商店获得的利润为1520元.。
湘教版七年级上册数学期末考试试题一、单选题1.如果||a a =-,下列成立的是()A .0a >B .0a <C .0a ≥D .0a ≤2.若盈余60万元记作+60万元,则﹣60万元表示()A .盈余60万元B .亏损60万元C .亏损﹣60万元D .不盈余也不亏损3.把202400000记成科学记数法正确的是()A .82.02410⨯B .720.2410⨯C .80.202410⨯D .52.02410⨯4.下列方程中是一元一次方程的是()A .536x y -=B .132x -=C .321x x+=D .2625x =5.下列各题中去括号正确的是()A .()531531x x -+=--B .1242414x x ⎛⎫-+=-+ ⎪⎝⎭C .1241244x x ⎛⎫-+=-- ⎪⎝⎭D .()()22312433x y x y ---=---6.当3x =时,整式31ax bx +-的值等于﹣100,那么当3x =-时,整式31ax bx +-的值为()A .100B .﹣100C .98D .﹣987.下列说法正确的是()A .25x y π的系数是5B .233x y π的次数是6C .323xy -的系数是23-D .223xy -的次数是28.实数a 、b 在数轴上的位置如图所示,则a -与b 的大小关系是()A .a b ->B .a b -=C .a b-<D .不能判断9.下列几何体中,其侧面展开图为扇形的是()A .B .C .D .10.一个角的补角加上30°后,等于这个角的余角的3倍,则这个角是()A .10°B .15°C .30°D .25°11.规定一种新运算:23a b a b ⊗=-,若()2110x ⊗⊗-=⎡⎤⎣⎦,则x 的值为()A .2B .﹣2C .1D .﹣112.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB=35°,则∠AOD 等于()A .35°B .70°C .110°D .145°二、填空题13.已知x=-2是关于x 的方程ax+3x-6=0的解,则a 的值为______.14.单项式2415m x y +-与423m n x y -是同类项,则m n =______.15.规定一种运算:()()22a b a b a b *=-+,那么()432**=______.16.某企业2018年9月份产值为x 万元,10月份比9月份减少了10%,11月份比10月份增加了10%,则11月份的产值是______万元(用含x 的代数式表示)17.按如图所示的运算程序,当2x =,4y =输出的结果为_______.三、解答题18.计算:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦19.解方程:(1)()322050x x --+=;(2)5415313412y y y ++--=+.20.先化简再求值:已知()22310a b -++=,求代数式()()22262234a ab a ab b --+-的值.21.如图,已知线段AB 和CD 的公共部分1134BD AB CD ==,线段AB 、CD 的中点E 、F 之间距离是15cm ,求AB ,CD 的长.22.为体现社会对教师的尊重,教师节这天上午,出租车司机小王在东西走向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下.(单位:千米)+3,﹣8,+13,+15,﹣10,﹣12,﹣13,﹣17(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是多少?(2)若出租车的耗油量为0.4升/千米,这天上午出租车共耗油多少升?23.臭豆腐是长沙的特色名小吃.某包装臭豆腐厂有60名工人生产包装臭豆腐料包,已知每袋包装臭豆腐里有1个汤料包和4个配料包,每名工人每小时可以加工100个汤料包或者200个配料包,为使每天加工生产出的汤料包和配料包刚好配套,请问安排多少名工人去加工汤料包?24.已知点C 在线段AB 上,2AC BC =,点D 、E 在直线AB 上,点D 在点E 的左侧.若18AB =,8DE =,线段DE 在线段AB 上移动.(1)如图1,当E 为BC 中点时,求AD 的长;(2)点F (异于A ,B ,C 点)在线段AB 上,3AF AD =,3CE EF +=,求AD 的长.25.对于任意有理数a 、b 、c 、d ,可以组成两个有理数对(),a b 与(),c d .我们规定:()()a,b c,d ac bd ⊗=-.例如:()()()2,41,3214314⊗-=⨯--⨯=-.根据上述规定,解决下列问题:(1)有理数对()()2,45,6-⊗-=______;(2)若有理数对()()3,2,418x ⊗--=,则x =______;(3)当满足等式()()11229,x x y,y -⊗-=中的x 是整数时,求整数y 的值.26.如图,OB 是AOC ∠的平分线,OD 是COE ∠的平分线.(1)若30AOB ∠=︒,20DOE ∠=︒,那么BOD ∠是多少度?(2)若150∠=︒AOE ,40AOB ∠=︒,那么COD ∠是多少度?参考答案1.D 2.B 3.A 4.B 5.C 6.C 7.C 8.A 9.C 10.C 11.D12.C13.-6【分析】把x=-2代入方程ax+3x-6=0得出-2a-6-6=0,再求出方程的解即可.【详解】解:把x=-2代入方程ax+3x-6=0,得-2a-6-6=0,解得:a=-6,故答案为:-6.【点睛】本题考查了一元一次方程的解和解一元一次方程,能得出关于a 的一元一次方程是解此题的关键,注意:使方程左右两边相等的未知数的值,叫方程的解.14.1【分析】两个单项式中,所含的字母相同,相同字母的指数也相等,则成为同类项,据此解题.【详解】解析:∵单项式2415m x y +-与423m n x y -是同类项,∴2424m m n +=⎧⎨-=⎩,解得21m n =⎧⎨=-⎩,∴()211mn=-=,故答案为:1.【点睛】本题考查同类项定义,难度较易,掌握相关知识是解题关键.15.﹣180【分析】根据a ∗b=(a−2b)(2a+b)先求出3∗2=-7,然后求出4∗(-7)即可.【详解】解:由题意:()()()()()323223223434177*=-⨯⨯+⨯=-⨯+=-⨯=-;∴()()()()()432474144141810180**=*-=+⨯-=⨯-=-.故答案为:﹣180.【点睛】本题主要考查了新定义下的运算,解题的关键在于能够熟练掌握平方差公式.16.(1﹣10%)(1+10%)x 【分析】根据题目中的数量关系.10月份比9月份减少了10%.则10月份为(1﹣10%)x 万元.11月份比10月份增加了10%.则11月份的产值为(1﹣10%)(1+10%)x 万元.【详解】∵某企业今年9月份产值为x 万元,10月份比9月份减少了10%,∴该企业今年10月份产值为(1﹣10%)x 万元,又∵11月份比10月份增加了10%,∴该企业今年11月份产值为(1﹣10%)(1+10%)x 万元.故答案为:(1﹣10%)(1+10%)x .【点睛】本题结合百分比考查列代数式解决问题,理解题意,找准数量关系是解答关键.17.12【分析】根据运算程序,把2x =,4y =代入代数式,求值,即可求解.【详解】解:∵41y =≥,∴当2x =,4y =时,22x y +=222412+⨯=,故答案是:12.【点睛】本题主要考查按程序图求代数式的值,掌握含乘方的有理数的混合运算法则是解题的关键.18.6【分析】先算乘方,再算乘除,最后算减法;同级运算,应按从左到右的顺序进行计算.【详解】解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭()4166=-+-410=-+6=【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.19.(1)7x =(2)13y =-【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可;(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(1)解:去括号,可得:3x-40+2x+5=0,移项,可得:3x+2x=40-5,合并同类项,可得:5x=35,系数化为1,可得:x=7;(2)解:去分母,可得:4(5y+4)-3(y+1)=12+5y-3,去括号,可得:20y+16-3y-3=12+5y-3,移项,可得:20y-3y-5y=12-3-16+3,合并同类项,可得:12y=-4,系数化为1,可得:y=-13.【点睛】此题主要考查了解一元一次方程的方法,要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.20.2102ab b -+,32【分析】化简代数式,先去括号,然后合并同类项,根据绝对值和乘方的非负性求得a ,b 的值,代入求值即可.【详解】解:()()22262234a ab a ab b--+-22262682a ab a ab b =---+2102ab b =-+∵()22310a b -++=,∴30a -=,10b +=,即3a =,1b =-,∴原式()()210312130232=-⨯⨯-+⨯-=+=【点睛】本题考查整式的化简求值,掌握去括号及有理数的混合运算法则正确化简计算是本题的解题关键.21.18cm AB =,2cm CD =【分析】根据线段中点的性质,可得12AE AB =,12CF CD =,根据线段的和差,可得AC 的长、EF 的长,根据解方程,可得x 的值.【详解】解:设BD xcm =,则3AB xcm =,4CD xcm =,6AC xcm =.∵点E 、点F 分别为AB 、CD 的中点,∴1 1.52AE AB xcm ==,122CF CD xcm ==.∴6 1.52 2.5EFAC AE CF x x x xcm =--=--=.∵15EF cm =,∴2.515x =,解得:6x =.∴18AB cm =,24CD cm =.【点睛】本题考查与线段中点有关的计算、解一元一次方程,利用方程思想解决线段之间的数量关系是解答的关键.22.(1)当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米(2)这天上午出租车共耗油36.4升【分析】(1)根据有理数的加法运算,将所有数据相加即可;(2)求出这天上午行驶的路程,再乘每千米耗油量,即可得答案.(1)31813151012131729-++----=-,∴当最后一名老师到达目的地时,小王距离开始接送第一位老师之前的地点的距离是29千米.(2)3813151012131791++-+++++-+-+-+-=,910.436.4⨯=(升).答:这天上午出租车共耗油36.4升.【点睛】本题考查了正数和负数,掌握有理数的加法运算是解题关键.23.安排20人加工汤料包.【分析】设安排x 人加工汤料包,根据每袋包装臭豆腐里有1个汤料包和4个配料包得:4×100x=200(60-x ),即可解得x 答案.【详解】解:设安排x 人加工汤料包,则安排(60-x )人加工配料包,根据题意得:4×100x=200(60-x ),解得x=20,答:安排20人加工汤料包.【点睛】本题考查一次方程的应用,解题的关键是读懂题意,找到等量关系列方程.24.(1)7(2)3或5【分析】(1)由2AC BC =,18AB =,可求出6BC =,12AC =.再根据E 为BC 中点,即得出3CE =,从而可求出CD 的长,进而可求出AD 的长;(2)分类讨论:当点E 在点F 的左侧时和当点E 在点F 的右侧时,画出图形,根据线段的倍数关系和和差关系,利用数形结合的思想即可解题.(1)∵2AC BC =,18AB =,8DE =,∴163BC AB ==,2123AC AB ==,如图,∵E 为BC 中点,∴132CE BC ==,∴5CD DE CE =-=,∴18567AD AB CD BC =--=--=;(2)分类讨论:①如图,当点E 在点F 的左侧时,∵3CE EF +=,6BC =,∴点F 是BC 的中点,∴3CF BF ==,∴18315AF AB BF =-=-=,∴153AD AF ==;②如图,当点E 在点F 的右侧,∵12AC =,3CE EF CF +==,∴9AF AC CF =-=,∴39AF AD ==,∴3AD =.综上所述:AD 的长为3或5;【点睛】本题考查线段中点的有关计算,线段n 等分点的有关计算,线段的和与差.利用数形结合和分类讨论的思想是解题关键.25.(1)-14(2)6(3)0y =或1y =或1y =-或2y =或4y =-或5y =【分析】(1)根据题目中的法则即可运算;(2)根据法则表达出(−3,x)⊗(-2,4),再解方程即可;(3)根据法则表达出(1,x−1)⊗(x−2y ,2y),列出方程,再根据x 是整数,求出y 的值即可.(1)解:()()()()2,45,62546102414-⊗-=-⨯--⨯=-=-;(2)解:()()3,2,418x ⊗--=,()()32418x ⨯--⨯-=,解得6x =;(3)解:由()()11229,x x y,y -⊗-=得()2219x y y x ---=,即()129y x -=,∵x 是整数,∴121y -=±或3±或9±,∴0y =或1y =或1y =-或2y =或4y =-或5y =.【点睛】本题考查了新定义下的有理数运算问题,解题的关键是掌握题中新定义的运算法则.26.(1)50°(2)35°【详解】解:(1)OB 是AOC ∠的平分线,∴30BOC AOB ∠=∠=︒;∵OD 是COE ∠的平分线,∴20COD DOE ∠=∠=︒,∴302050BOD BOC COD ∠=∠+∠=︒+︒=︒;(2)OB 是AOC ∠的平分线,∴280AOC AOB ∠=∠=︒,∴1508070COE AOE AOC ∠=∠-∠=︒-︒=︒,∵OD 是COE ∠的平分线,∴1352COD COE ∠=∠=︒.。
湘教版七年级数学上册期末模拟考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199 D .100992.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.如图,直线,a b 被,c d 所截,且//a b ,则下列结论中正确的是( )A .12∠=∠B .34∠=∠C .24180∠+∠=D .14180∠+∠=4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.图甲和图乙中所有的正方形都全等,将图甲的正方形放在图乙中的①②③④某一位置,所组成的图形不能围成正方体的位置是( )A .①B .②C .③D .④6.观察下列图形,是中心对称图形的是( )A .B .C .D .7.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .8.若2()(3)6x a x x mx +-=-- 则m等于( )A .-2B .2C .-1D .19.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 10.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a |﹣|a +b |的值等于( )A .c +bB .b ﹣cC .c ﹣2a +bD .c ﹣2a ﹣b二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为34”,则这个袋中白球大约有________个. 3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.4.已知x =3是方程2x a -—2=x —1的解,那么不等式(2—5a )x <13的解集是________.5.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第________块。
湘教版七年级数学上册期末模拟考试(参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知m=4+3,则以下对m的估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<6 2.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙320n n为( )A.2 B.3 C.4 D.54.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个6.已知关于x的不等式3x﹣m+1>0的最小整数解为2,则实数m的取值范围是()A.4≤m<7 B.4<m<7 C.4≤m≤7 D.4<m≤77.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A .0B .1C .4D .68.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .6二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.已知a 是最大的负整数,b 是最小的正整数,c 是绝对值最小的数,则(a +c )÷b =___________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,若∠BCD=150°,则∠ABC=_______度.5.如图,AD∥BC,∠D=100°,CA平分∠BCD,则∠DAC=________度.6.一个正多边形的一个外角为30°,则它的内角和为________.三、解答题(本大题共6小题,共72分)1.计算那列各式(1)计算:﹣14+(﹣2)3÷4×[5﹣(﹣3)2](2)解方程435x-﹣1=723x-2.解不等式组:3561162x xx x<+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.3.如图,直线AB//CD,BC平分∠ABD,∠1=54°,求∠2的度数.4.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.5.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?6.某商场计划用56000元从厂家购进60台新型电子产品,已知该厂家生产甲、,台,其中每台乙、丙三种不同型号的电子产品,设甲、乙型设备应各买入x y的价格、销售获利如下表:()1购买丙型设备台(用含,x y的代数式表示) ;()2若商场同时购进三种不同型号的电子产品(每种型号至少有一台),恰好用了56000元,则商场有哪几种购进方案?()3在第()2题的基础上,为了使销售时获利最多,应选择哪种购进方案?此时获利为多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、D5、B6、A7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、5或-72、-13、∠A +∠ABC =180°或∠C +∠ADC =180°或∠CBD =∠ADB 或∠C =∠CDE4、1205、40°6、1800°三、解答题(本大题共6小题,共72分)1、(1)7;(2)x =﹣14232、32x -<≤,x 的整数解为﹣2,﹣1,0,1,2.3、72°4、20°5、(1)m 的值是50,a 的值是10,b 的值是20;(2)1150本.6、(1) 60x y --; (2) 购进方案有三种,分别为:方案一:甲型49台,乙型5台,丙型6台;方案二:甲型46台,乙型10台,丙型4台;方案三:甲型43台,乙型15台,丙型2台;(3) 购进甲型49台,乙型5台,丙型6台,获利最多,为14410元。
湘教版数学七年级上册期末模拟测试卷及答案一、选择题(每题3分,共30分)1.下列各数中,不是负数的是()A.-2 B.3 C.-58D.-0.102.下列计算正确的是()A.-1-1=0B.a3-a=a2C.3(a-2b)=3a-2bD.-32=-93.下列调查方式,你认为最合适的是()A.日光灯管厂要检测一批灯管的使用寿命采用全面调查方式B.了解衢州市每天的流动人口数,采用抽样调查方式C.了解衢州市居民日平均用水量,采用全面调查方式D.了解汽车通过某一路口的车流情况,采用全面调查方式4.已知ax=bx,下列结论错误的是()A.a=b B.ax+c=bx+c C.(a-b)x=0 D.axπ=bxπ5.如图,若A是有理数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是()A.a<1<-a B.a<-a<1 C.1<-a<a D.-a<a<16.如图,两个三角尺的直角顶点O重合在一起,且OB平分∠COD,则∠AOD 的度数为()A.45°B.120°C.135°D.150°7.若方程(m2-1)x2-mx-x+2=0是关于x的一元一次方程,则代数式|m-1|的值为()A.0 B.2 C.0或2 D.-28.如图,把一根绳子对折成线段AB,从P处把绳子剪断,已知PB=2P A,若剪断后的各段绳子中最长的一段为40 cm,则绳子的原长为()A.30 cm B.60 cmC.120 cm D.60 cm或120 cm9.甲队有工人96人,乙队有工人72人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x人到甲队,那么下面列出的方程正确的是()A.96+x=13(72-x) B.13(96-x)=72-xC.13(96+x)=72-x D.13×96+x=72-x10.如图所示的图案均是由长度相同的木棒按一定规律拼搭而成的,第1个图案需7根木棒,第2个图案需13根木棒……依此规律,第11个图案需要木棒的根数是()A.156根B.157根C.158根D.159根二、填空题(每题3分,共24分)11.-(-3)的绝对值是______.12.某中学要了解七年级学生的视力情况,在全校七年级学生中抽取了25名学生进行检查,在这个问题中,总体是________________________,样本是________________________.13.我国“南仓”级远洋综合补给舰满载排水量为37 000 t,把数37 000用科学记数法表示为__________________________________________________.14.若方程x+5=7-2(x-2)的解也是方程6x+3k=14的解,则k=________.15.从正午12时开始,时钟的时针转过了80°的角,则此时的时间是______________.16.如图①所示的是一个正方体的表面展开图,将对应的正方体(经放大后)从如图②所示的位置依次翻到第1格、第2格、第3格,这时正方体朝上的一面上的字是________.17.如图,O 是直线AC 上一点,OB 是一条射线,OD 平分∠AOB ,OE 在∠BOC 内,且∠BOE =13∠EOC ,∠DOE =60°,则∠EOC =________.18.某市为提倡节约用水,采取分段收费.若每户每月用水量不超过20 m 3,每立方米收费2元;若用水量超过20 m 3,超过部分每立方米加收1元.小明家5月份交水费64元,则他家该月用水________.三、解答题(19~21题每题6分,22,23题每题8分,24,25题每题10分,26题12分,共66分) 19.计算:(1)-32-(-17)-|-23|+(-15); (2)-23-(-2)×⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-56+38×(-24).20.解方程:(1)3x +7=32-2x ; (2)2y -12-1=5y -73.21.化简求值:已知|2x +1|+3⎝ ⎛⎭⎪⎫y -142=0,求4x 2y -[6xy -3(4xy -2)-x 2y ]+1的值.22.若多项式2x 2+mx -y +6与2nx 2-3x +5y -1的差的值与x 所取的值无关,试求多项式13m 2-2n 2-⎝ ⎛⎭⎪⎫14m 2-3n 2的值.23.如图,OC 是∠AOD 的平分线,∠BOC =12∠COD ,那么∠BOC 是∠AOD的几分之几?说明你的理由.24.元宵节是我国的传统佳节,历来有吃元宵的习俗.某食品厂为了了解市民对去年销量较好的肉馅(A )、豆沙馅(B )、菜馅(C )、黑芝麻馅(D )四种不同口味元宵的喜爱情况,在节前对某居民区的居民进行了抽样调查,并将调查情况绘制成如图所示的两幅统计图(尚不完整).请根据以上信息回答下列问题.(1)这次调查中随机抽取了多少名居民?(2)将图①和图②补充完整;(3)图②中A对应扇形的圆心角是多少度?25.某牛奶加工厂现有鲜奶8 t,若市场上直接销售鲜奶,每吨可获取利润500元;若制成酸奶销售,每吨可获取利润1 200元;若制成奶片销售,每吨可获取利润2 000元.该工厂的生产能力是:若制成酸奶,每天可加工3 t;若制成奶片,每天可加工1 t.受人员制约,两种加工方式不可同时进行;受气温制约,这批牛奶必须在4天内全部销售或加工完毕.为此,该工厂设计了两种可行方案:方案一:尽可能多地制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成.你认为选择哪种方案获利较多?多获利多少?26.如图,数轴上线段AB=2(单位长度),线段CD=4(单位长度),点A在数轴上表示的数是-10,点C在数轴上表示的数是16.若线段AB以每秒6个单位长度的速度向右匀速运动,同时线段CD以每秒2个单位长度的速度向左匀速运动.设运动时间为t s.(1)当点B与点C相遇时,点A,D在数轴上表示的数分别为______________;(2)当t为何值时,点B刚好与线段CD的中点重合;(3)当运动到BC=8(单位长度)时,求出此时点B在数轴上表示的数.湘教版数学七年级上册期末模拟测试卷参考答案一、1.B2.D3.B4.A5.A6.C7.A8.D9.C10.B点拨:第1个图案需7根木棒,7=1×(1+3)+3,第2个图案需13根木棒,13=2×(2+3)+3,第3个图案需21根木棒,21=3×(3+3)+3……易得第n个图案需[n(n+3)+3]根木棒,所以第11个图案需11×(11+3)+3=157(根)木棒.故选B.二、11.312.该中学七年级学生的视力情况;抽取的25名学生的视力情况13.3.7×10414.2 315.14时40分16.真17.90°点拨:设∠BOE=x°,则∠EOC=3x°,∠DOB=60°-x°.由OD平分∠AOB,得∠AOB=2∠DOB,故有3x+x+2(60-x)=180,解方程得x=30,所以∠EOC=90°,故答案为90°.18.28 m3点拨:设小明家5月份用水x m3,因为20×2=40(元),64>40,所以x>20.根据题意可得2×20+(2+1)(x-20)=64,解得x=28.三、19.解:(1)原式=-32+17-23-15=-53.(2)原式=-8-23+⎝⎛⎭⎪⎫-1124×(-24)=-8-23+11=213.20.解:(1)移项,得3x+2x=32-7.合并同类项,得5x=25.系数化为1,得x=5.(2)去分母,得3(2y-1)-6=2(5y-7).去括号,得6y-3-6=10y-14.移项、合并同类项,得-4y=-5.系数化为1,得y=5 4.21.解:由|2x +1|+3⎝ ⎛⎭⎪⎫y -142=0得2x +1=0,y -14=0,即x =-12,y =14.原式=4x 2y -6xy +12xy -6+x 2y +1=5x 2y +6xy -5.当x =-12,y =14时,原式=5x 2y +6xy -5=516-34-5=-5716.22.解:2x 2+mx -y +6-(2nx 2-3x +5y -1)=2x 2+mx -y +6-2nx 2+3x -5y +1=(2-2n )x 2+(m +3)x -6y +7. 依题意得2-2n =0,m +3=0, 解得n =1,m =-3,则13m 2-2n 2-⎝ ⎛⎭⎪⎫14m 2-3n 2=112m 2+n 2=112×(-3)2+12=74.23.解:∠BOC 是∠AOD 的14.理由如下:因为OC 是∠AOD 的平分线, 所以∠COD =12∠AOD .因为∠BOC =12∠COD ,所以∠BOC =12×12∠AOD =14∠AOD .24.解:(1)这次调查中随机抽取了60÷10%=600(名)居民.(2)喜爱C 的有600-180-60-240=120(名)居民, A 所占的百分比为180600×100%=30%, C 所占的百分比为120600×100%=20%, 补全的统计图如图所示.(3)A 对应扇形的圆心角是360°×30%=108°.25.解:方案一:易知最多生产4 t奶片,其余的直接销售鲜奶.利润为4×2 000+(8-4)×500=10 000(元).方案二:设生产x天奶片,则生产(4-x)天酸奶,根据题意,得x+3(4-x)=8.解得x=2.利润为2×2 000+(4-2)×3×1 200=4 000+7 200=11 200(元).11 200-10 000=1 200(元),所以第二种方案获利较多,多获利1 200元.26.解:(1)8,14(2)由题意易知两条线段未运动时点B在数轴上表示的数是-8,线段CD的中点在数轴上表示的数是18,则依题意,得(6+2)t=18-(-8),解得t=13 4.故当t为134时,点B刚好与线段CD的中点重合.(3)当点B在点C的左侧时,依题意得(6+2)t=16-(-8)-8,解得t=2,此时点B在数轴上表示的数是-8+6×2=4;当点B在点C的右侧时,依题意得(6+2)t=16-(-8)+8,解得t=4,此时点B在数轴上表示的数是-8+6×4=16.综上所述,点B在数轴上表示的数是4或16.。
湘教版七年级数学上册期末模拟考试(及参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°3.已知:20n 是整数,则满足条件的最小正整数n 为( )A .2B .3C .4D .54.已知a =b ,下列变形正确的有( )个.①a +c =b +c ;②a ﹣c =b ﹣c ;③3a =3b ;④ac =bc ;⑤a b c c =. A .5 B .4 C .3 D .25.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.如图,直线AB ,CD 相交于点O ,射线OM 平分AOC ∠,ON OM ⊥,若30AOM ∠=︒,则CON ∠的度数为( )A .30︒B .40︒C .60︒D .50︒7.点()1,3M m m ++在y 轴上,则点M 的坐标为( )A .()0,4-B .()4,0C .()2,0-D .()0,28.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.已知3,5a b x x ==,则32a b x -=( )A .2725B .910C .35D .5210.已知实数a 、b 、c 满足2111(b)(c)(b-c)0a a 4+++=.则代数式ab+ac 的值是( ).A .-2B .-1C .1D .2二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x元,足球的单价为y元,依题意,可列方程组为____________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程组4(1)3(1)2223x y yx y--=--⎧⎪⎨+=⎪⎩2.若不等式组122x ax x+≥⎧⎨->-⎩①有解;②无解.请分别探讨a的取值范围.3.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.4.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧..作△ADE,使AD=AE,∠DAE =∠BAC,连接CE.(1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A 微信、B 支付宝、C 现金、D 其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A 种支付方式所对应的圆心角为 度.(3)若该超市这一周内有1600名购买者,请你估计使用A 和B 两种支付方式的购买者共有多少名?6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、C6、C7、D8、B9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-22、20°.3、-2≤m <34、78°5、45435 3x y x y +=⎧⎨-=⎩6、±3三、解答题(本大题共6小题,共72分)1、23x y =⎧⎨=⎩2、①a >-1②a ≤-13、(1)略;(2)略.4、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.5、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A 种支付方式所对应的圆心角为108;(3)使用A 和B 两种支付方式的购买者共有928名.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
湘教版七年级数学上册期末模拟考试及完整答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.用科学记数法表示2350000正确的是()A.235×104B.0.235×107C.23.5×105D.2.35×106 2.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.3.估计6+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间4.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A .8B .9C .10D .116.如图,若AB ∥CD ,CD ∥EF ,那么∠BCE =( )A .∠1+∠2B .∠2-∠1C .180°-∠1+∠2D .180°-∠2+∠17.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.如图,已知在四边形ABCD 中,90BCD ∠=︒,BD 平分ABC ∠,6AB =,9BC =,4CD =,则四边形ABCD 的面积是( )A .24B .30C .36D .429.若关于x 的不等式mx - n >0的解集是15x <,则关于x 的不等式()m n x n m >-+的解集是( )A .23x >-B .23x <-C .23x <D .23x >10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.若代数式1x-在实数范围内有意义,则x的取值范围是_______.2.绝对值不大于4.5的所有整数的和为________.3.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________4.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.5.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=__________6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.解方程:1314(1)(5) 243x x x⎡⎤--=+⎢⎥⎣⎦.2.已知关于x,y的二元一次方程组3426x y mx y+=+⎧⎨-=⎩的解满足3x y+<,求满足条件的m的所有非负整数值.3.已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,点P是直线l3上一动点(1)如图1,当点P在线段CD上运动时,∠PAC,∠APB,∠PBD之间存在什么数量关系?请你猜想结论并说明理由.(2)当点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2和图3),上述(1)中的结论是否还成立?若不成立,请直接写出∠PAC,∠APB,∠PBD之间的数量关系,不必写理由.4.如图,已知A、O、B三点共线,∠AOD=42°,∠COB=90°.(1)求∠BOD的度数;(2)若OE平分∠BOD,求∠COE的度数.5.小颖同学学完统计知识后,随机调查了她所在辖区若干名居民的年龄,将调查数据绘制成如下扇形和条形统计图:请根据以上不完整的统计图提供的信息,解答下列问题:(1)小颖同学共调查了多少名居民的年龄,扇形统计图中a,b各等于多少?(2)补全条形统计图;(3)若该辖区年龄在0~14岁的居民约有1500人,请估计年龄在15~59岁的居民的人数.6.绵阳中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9 000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、B4、C5、C6、D7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)x≥1、12、03、15°4、如果两个角是同一个角的余角,那么这两个角相等5、-1或-46、两点确定一条直线.三、解答题(本大题共6小题,共72分)x=1、12、满足条件的m的所有非负整数值为:0,1,23、(1)∠APB=∠PAC+∠PBD;(2)不成立4、(1)∠BOD =138°;(2)∠COE=21°.5、(1)300,a=20%,b=12%;(2)答案见解析;(3)5100.6、(1)原计划拆建各4 500平方米;(2)可绿化面积1 620平方米.。
湘教版七年级数学上册期末模拟考试带答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3B .a <﹣3C .a >3D .a ≥32.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元5.如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°6.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( ) A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤77.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.已知20192019a x =+,20192020b x =+,20192021c x =+,则222a b c ab ac bc ++---的值为( )A .0B .1C .2D .39.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( ) A .22x=16(27﹣x ) B .16x=22(27﹣x ) C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )10.如图,在菱形ABCD 中,AC=62,BD=6,E 是BC 边的中点,P ,M 分别是AC ,AB 上的动点,连接PE ,PM ,则PE+PM 的最小值是( )A .6B .3C .6D .4.5二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简a cb abc ab c abc+++结果是________. 2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.若0a <,0b >,0c >,a b c >+,则a b c ++________0. 4.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =________.5.若不等式(a ﹣3)x >1的解集为13x a <-,则a 的取值范围是________. 6.已知13a a +=,则221+=a a__________; 三、解答题(本大题共6小题,共72分)1.解方程组:(1)53x y y x +=⎧⎨=-⎩ (2)223346a b a b ⎧+=-⎪⎨⎪-=⎩2.化简求值:已知:(x ﹣3)2+|y+13|=0,求3x 2y ﹣[2xy 2﹣2(xy 232x y -)+3xy]+5xy 2的值.3.在△ABC 中,AB=AC ,点D 是射线CB 上的一个动点(不与点B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD=AE ,∠DAE=∠BAC ,连接CE .(1)如图1,当点D 在线段CB 上,且∠BAC=90°时,那么∠DCE=______度. (2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系(不需证明).4.如图,已知点E、F在直线AB上,点G在线段CD上,ED与FG交于点H,∠C=∠EFG,∠CED=∠GHD.(1)求证:CE∥GF;(2)试判断∠AED与∠D之间的数量关系,并说明理由;(3)若∠EHF=80°,∠D=30°,求∠AEM的度数.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)6.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花发费用;(3)在(2)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、C5、C6、A7、C8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、-4π3、<4、2 35、3a<.6、7三、解答题(本大题共6小题,共72分)1、(1)41xy=⎧⎨=⎩;(2)23ab=-⎧⎨=-⎩2、2.3、(1)90°;(2)①α+β=180°;②α=β.4、(1)证明略;(2)∠AED+∠D=180°,略;(3)110°5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1) 每套队服150元,每个足球100元;(2)甲:100a+14000(元),乙80a+15000(元);(3)当a=50时,两家花费一样;当a<50时,到甲处购买更合算;当a>50时,到乙处购买更合算。
湘教版七年级数学上册期末模拟考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 2.下列说法中正确的是( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01±3.有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为( )①a ﹣b >0 ②ab <0 ③1a >1b④a 2>b 2.A .1B .2C .3D .44.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱5.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( )A .点MB .点NC .点PD .点Q7.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.如图,已知1l AB ∕∕,AC 为角平分线,下列说法错误的是( )A .14∠=∠B .15∠=∠C .23∠∠=D .13∠=∠ 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为( )A .10B .9C .8D .7二、填空题(本大题共6小题,每小题3分,共18分)1.若3的整数部分是a ,小数部分是b ,则3a b -=________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m的取值范围是_________________.4.分解因式:23m m -=________.5.分解因式:4ax 2-ay 2=_____________.6.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为________.三、解答题(本大题共6小题,共72分)1.解不等式组:3(1)531152x x x x --≥⎧⎪-+⎨-<⎪⎩2.化简求值(1)先化简,再求值:()2222232245a b ab a b ab ab ⎡⎤---+-⎣⎦,其中2a =-,12b = (2)已知2|4|(1)0a b -++=,求222225[2(42)]4ab a b ab a b a b ---+的值.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,已知∠1,∠2互为补角,且∠3=∠B,(1)求证:∠AFE=∠ACB(2)若CE平分∠ACB,且∠1=80°,∠3=45°,求∠AFE的度数.5.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.6.某数学兴趣小组研究我国古代《算法统宗》里这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.(1)求该店有客房多少间?房客多少人?(2)假设店主李三公将客房进行改造后,房间数大大增加.每间客房收费20钱,且每间客房最多入住4人,一次性订客房18间以上(含18间),房费按8折优惠.若诗中“众客”再次一起入住,他们如何订房更合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、A5、C6、C7、C8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1.2、203、-2≤m <34、(3)m m -5、a (2x+y )(2x-y )6、36°或37°.三、解答题(本大题共6小题,共72分)1、71x -<≤-.2、(1)32;(2)36.3、(1)35°;(2)36°.4、(1)详略;(2)70°.5、(1)40;(2)72;(3)280.6、(1)该店有客房8间,房客63人;(2)诗中“众客”再次一起入住,他们应选择一次性订房18间更合算.。
大坪中学七年级上期期末数学模拟试题五
班级 学号 姓名 成绩
一、填空题:(310'⨯)
1、-2002的倒数的相反数是__________________.
2、某校学生给希望学校邮寄每册a 元的图书240册,每册图书的邮费为书
价的5%,则需邮费_______ _____元。
3、上海浦东磁悬浮铁路全长30千米,单程运行时间约8分钟,那么磁悬浮
列车的平均速度用科学记数法表示约 米/分钟。
4、冰箱开始启动时内部温度是10℃,如果每小时冰箱内部的温度降低5℃,
那么4小时后,冰箱内部的温度是_______________。
5、计算:521114(1)11()8229
--+⨯÷-⨯= 。
6、已知3x =-是方程610ax a -=+的解,则a =_____________。
7、不等式3447y y -≥-的所有正整数解之和为 。
8、能使不等式11(31)(52)24
x x --->成立的x 的最大整数值是 。
9、正方体有________个顶点,_________条棱,_________个面。
10、已知一组数据23、25、20、15、x 、15,若它们的中位数是21,那么它们的平均数为 。
二、选择题:(38'⨯)
11、绝对值等于5的数是 ( )
A 、5
B 、-5
C 、5或-5
D 、0和5
12、下列各式从左到右正确的是 ( )
A 、(32)32x x -+=-+
B 、(27)27x x ---=-+
C 、(56)65x x --=-
D 、(27)27x x ---=-
13、若0a <,则a 与2a 的大小关系是 ( )
A 、2a a >
B 、2a a ≥
C 、2a a <
D 、无法比较
14、若32a -=,则3a +的值为 ( )
A 、 5
B 、 8
C 、5或1
D 、8或4
15、由x y <得ax ay >的条件应该是 ( )
A 、0a ≥
B 、0a ≤
C 、0a <
D 、0a >
16、下列结论错误的是 ( )
A 、0a b >>,则a b >
B 、0a b <<,则a b
> C 、,则11a b > D 、1a b <<,则11a b
< 17、某商品按成本价提高40%后标价,又以八折出售可获得利润60元。
若
按七五折(即75%)出售则可获得利润 ( )
A 、525元
B 、500元
C 、45元
D 、25元
18、用一根长80 cm 的绳子围成一个长方形,且长方形的长比宽多10 cm ,
则这个长方形的面积是 ( )
A 、252cm
B 、452cm
C 、375 2cm
D 、15752cm
三、计算求解题:(4262''⨯+⨯)
19、321[21(1)635]73-⨯-+÷⨯-÷ 20
21、253164
y y ---
= 22、818326x x --≥-
四、求值:(8')
23、若21(1)0x y -+--=,求200520042003200232x y x y x y x -+-+
+-+的值。
五、列方程求解:(8')
24、某储蓄所去年储户存款为4600万元,今年与去年相比,定期存款增加20%,而活期存款减少25%,但总存款增加15%,问今年定期存款是多少?
六、列不等式求解:(10')
25、贝贝骑车从家到学校,他如果每小时行10千米,则迟到15分钟;他如果每小时行12千米,则可提前12分钟到达;若班主任要求他们至少提前半小时到校,那么他每小时至少要骑多少千米?(出发时间不变)
'⨯)
附加题:(102
26、若干张扑克牌被平均分成三份,分别放在左边,中间,右边。
然后从左边一堆中拿出两张放进中间一堆中,再从右边一堆中拿出一张放进中间一堆。
最后,从中间一堆中拿出一些牌放到左边,使左边的张数是最初的2倍。
(1)如果一开始每份都是8张牌,最后中间一堆剩几张牌?
(2)如果一开始每份都是12张牌,最后中间一堆剩几张牌?如果一开始每份都是16张牌,最后中间一堆剩几张牌?
(3)根据(1)、(2),你得到的结论有什么规律?说说你的理由。
27、商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度。
现在A型冰箱打折出售,问商场至少打几折,消费者购买才合算?(按使用期为10年,每年365天,每度电0.40元计算)。