淄博市临淄区九年级上期末考试数学试卷含答案
- 格式:docx
- 大小:562.46 KB
- 文档页数:10
山东省淄博市临淄区临淄区实验中学2023-2024学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.某芯片的电子元件的直径为0.0000034米,该电子元件的直径用科学记数法可以表示为()A .0.34×10-6米B .3.4×10-6米C .34×10-5米D .3.4×10-5米2.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A .B .C .D .3.下列计算正确的是()A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 24.在ABC 中,56AB BC B ==,,为锐角且3sin 5B =,则C ∠的正弦值等于()A .56B .23C .31313D .213135.若31x x --在实数范围内有意义,则x 的取值范围是()A .3x ≥B .31x x ≥≠且C .13x <≤D .13x x >≤且6.已知一元二次方程260x x c -+=有一个根为2,则另一个根为()A .2B .3C .4D .8-A .B .C .D .二、填空题16.如图,把长为EFCD 后,分别裁出扇形则a b =.中,17.如图,在ABC∠=∠,点D为边ACM ACB连接AD DE AE,,.设AC三、解答题18.计算:(−1)−1+|3−2|219.如图,矩形ABCD中,接AC,DF.请判断四边形20.如图,在平面直角坐标系中,反比例函数限,AD平行于x轴,且AB21.“抢红包”是2015年春节十分火爆的一项网络活动,某企业有4000名职工,从中随机抽取350人,按年龄分布和对“抢红包”所持态度情况进行了调查,并将调查结果绘成了条形统计图和扇形统计图.(1)这次调查中,如果职工年龄的中位数是整数,那么这个中位数所在的年龄段是哪一段?(2)如果把对“抢红包”所持态度中的“经常(抢红包)”和“偶尔(抢红包)”统称为“参与抢红包”,那么这次接受调查的职工中“参与抢红包”的人数是多少?(3)请估计该企业“从不(抢红包)”的人数是多少?22.在“双十二”期间,,A B 两个超市开展促销活动,活动方式如下:A 超市:购物金额打9折后,若超过2000元再优惠300元;B 超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B 两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在B 商场购买的数量比在A 商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)23.如图,已知在ABC 中,90ACB ∠= ,2BC =,4AC =,点D 在射线BC 上,以点D 为圆心,BD 为半径画弧交边AB 于点E ,过点E 作EF AB ⊥交边AC 于点F ,射线ED 交射线AC 于点G .(1)求证:EFG AEG ∽△△;(2)请探究线段AF 与FG 的倍数关系,并证明你的结论.(3)设FG x =,EFG 的面积为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围;如图,已知正方形ABCD的边长为2,于点E,求DE的长;⊥,交AB于点F,求BF 过点EF作EF CE⊥,交CD于点G,求DG 过点E作EG CE。
山东省淄博市临淄区2023-2024学年九年级上学期期末数学模拟试题本试卷共8页,满分150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共10小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填在下面的表中,每小题4分,满分40分,错选、不选或选出的答案超过一个,均记0分.)1.三根等高的木杆竖直立在平地上,其俯视图如图所示,在某一时刻三根木杆在太阳光下的影子合理的是()A .B .C .D .2.如果采用我们数学课本上所使用的科学计算器,按照此顺序进行输入:,显示屏显示的结果为88..将这个数据精确到0.1,下列说法正确的是( )A .36.79°的正切函数值约为88.4B .正切函数值为36.79的角约是88.4°C .的正切函数值约为88.4D .正切函数值为36.79的角约是3679'︒884'︒3.已知二次函数,其中,,则该函数的图象可能为( 2)0(y ax bx c a =+-≠0b >0c >)A .B .C .D .4.如图是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角∠O =120°形成的扇面,若OA =5m ,OB =3m ,则阴影部分的面积是()48 A.4cm5π三、解答题(第16,19.(本题满分10分)(1)求出m,n的值;(1)分别用含x 的代数式表示BC 与S ;(2)若S =54,求x 的值:(3)如图2,若在分成的两个小矩形的正前方各开一个1.5米宽的门(无需篱笆),当x 为何值时,S 取最大值,最大值为多少?22.(本题满分13分)如图,四边形ABCE 内接于,AB 是的直径,点D 在AB 的延长线上,延长AE 交BC O O 的延长线于点F ,点C 是BF 的中点,∠BCD =∠CAE .(1)求证:CD 是的切线;O (2)求证:△CEF 是等腰三角形;(3)若BD =1,CD =2,求EF 的长.23.(本题满分13分)已知抛物线,交x 轴于A ,B 两点,交y 轴于C 点,点F 为抛物线项点,直22y ax x c =++线EF 垂直于x 轴于E 点,点P 是线段BE 上的动点(除B ,E 外),过点P 作x 轴的垂线交抛物线于点D ,当时,.0y ≥13x -≤≤(1)求抛物线的表达式;(2)如图1,当点P 的横坐标为2时,求四边形ACFD 的面积(3)如图2,直线AD ,BD 分别与抛物线对称轴交于M ,N 两点.试问,EM +EN 是否为定值?如果是,请求出这个定值;如果不是,请说明理由.(4)如图3,点在抛物线上,当△AQD 是以AQ 为斜边的直角三角形时,求点P 的()2,3Q 坐标。
2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.如右图要测量小河两岸相对的两点P 、A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得50PC =米,44PCA ∠=︒,则小河宽PA 为( )A .50tan 44︒米B .50sin55︒米C .1100sin35︒米D .100tan55︒米2.已知二次函数(0)y ax bx c a =++≠的图象如图所示,下列结论:①0b <;②20b a -=;③240b ac ->;④()22a b b +<.其中正确的结论是( )A .①②B .①③C .①③④D .①②③3.如图,,A B 两点在反比例函数1k y x =的图象上,,C D 两点在反比例函数1k y x=的图象上,AC y ⊥轴于点E ,BD y ⊥轴于点F ,3,2,5AC BD EF ===,则12k k -的值是( )A .2B .3C .4D .64.用配方法解一元二次方程x 2﹣2x =5的过程中,配方正确的是( )A .(x +1)2=6B .(x ﹣1)2=6C .(x +2)2=9D .(x ﹣2)2=95.如图,点P 从菱形ABCD 的顶点A 出发,沿A D B →→以1/cm s 的速度匀速运动到点B ,下图是点P 运动时,PBC ∆的面积()2y cm 随时间()x s 变化的关系图象是( )A .B .C .D .6.若点()()()1233,,1,,1,A y B y C y --在反比例函数3y x=的图象上,则123,,y y y 的大小关系是( ) A .123y y y << B .213y y y << C .312y y y << D .321y y y <<7.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事.一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,三天后累计票房收入达10亿元,若把平均每天票房的增长率记作x ,则可以列方程为( )A .3(1)10x +=B .23(1)10x +=C .233(1)10x ++=D .233(1)3(1)10x x ++++= 8.已知函数2y ax =的图象经过点P(-1,4),则该图象必经过点( )A .(1,4)B .(-1,-4)C .(-4,1)D .(4,-1)9.已知关于x 的一元二次方程x 2-(2k+1)x+k+1=0, 若x 1+x 2=3,则k 的值是( )A .0B .1C .﹣1D .210.如图,以原点O 为圆心的圆交x 轴于点A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内O 上的一点,若DAB 25∠=,则OCD ∠的度数是( )A .45B .60C .65D .70二、填空题(每小题3分,共24分)11.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是__________.12.如图,点A 、B 、C 为⊙O 上的三个点,∠BOC=2∠AOB ,∠BAC=40°,则∠ACB=度.13.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .14.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A (1,0)点的一条直线1将这10个正方形分成面积相等的两部分,则该直线的解析式为_____.15.小明制作了一张如图所示的贺卡. 贺卡的宽为xcm ,长为40cm ,左侧图片的长比宽多4cm . 若1416x ,则右侧留言部分的最大面积为_________2cm .16.已知正六边形的外接圆半径为2,则它的内切圆半径为______.17.2019年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则中奖总值至少300元的概率为_____.18.已知一组数据:12,10,1,15,6,1.则这组数据的中位数是__.三、解答题(共66分)19.(10分)如图,菱形ABCD 的边AB 在x 轴上,点A 的坐标为()1,0,点()44D ,在反比例函数k y x =(0x >)的图象上,直线23y x b =+经过点C ,与y 轴交于点E ,连接AC ,AE .(1)求k ,b 的值;(2)求ACE ∆的面积.20.(6分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x 元(x 为正整数),每天的销售利润为y 元.(1)求y 与x 的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?21.(6分)如图,在ABC 中,90ACB ∠=︒,CD 平分ACB ∠交AB 于点D ,将CDB △绕点C 顺时针旋转到CEF △的位置,点F 在AC 上.(1)CDB △旋转的度数为______︒;(2)连结DE ,判断DE 与BC 的位置关系,并说明理由.22.(8分)已知:△ABC 是等腰直角三角形,∠BAC =90°,将△ABC 绕点C 顺时针方向旋转得到△A ′B ′C ,记旋转角为α,当90°<α<180°时,作A ′D ⊥AC ,垂足为D ,A ′D 与B ′C 交于点E .(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F .①写出旋转角α的度数;②求证:EA ′+EC =EF ;(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接PA ,PF ,若AB =2,求线段PA +PF 的最小值.(结果保留根号)23.(8分)在半圆O 中,AB 为直径,AC 、AD 为两条弦,且∠CAD +∠CAB =90°.(1)如图1,求证:弧AC 等于弧CD ;(2)如图2,点E 在直径AB 上,CE 交AD 于点F ,若AF =CF ,求证:AD =2CE ;(3)如图3,在(2)的条件下,连接BD ,若AE =4,BD =12,求弦AC 的长.24.(8分)如图,点C 在以AB 为直径的O 上,ACB ∠的平分线交O 于点D ,过点D 作AB 的平行线交CA 的延长线于点E .(1)求证:DE 是O 的切线;(2)若6AC =,8BC =,求DE 的长度.25.(10分)(1)计算:1sin 30tan 45cos 60︒︒︒--; (2)解方程:22630x x -+=.26.(10分)(1)计算: 201224()(12)8--+-⨯-- (2)化简:2291(1)693x x x x -⋅+-++参考答案一、选择题(每小题3分,共30分)1、A【分析】根据锐角三角函数的定义即可得出结论.【详解】解:在Rt △ACP 中,tan ∠ACP=PA PC∴50tan44PA PC tan ACP =•∠=︒米故选A .【点睛】此题考查是解直角三角形,掌握锐角三角函数的定义是解决此题的关键.2、C【分析】由抛物线开口方向得到a >0,由抛物线的对称轴方程得到b=-2a ,则可对①②进行判断;利用判别式的意义可对③进行判断;利用平方差公式得到(a+b )2-b 2=(a+b-b )(a+b+b ),然后把b=-2a 代入可对④进行判断.【详解】∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x=-2b a =1, ∴b=-2a <0,所以①正确;∴b+2a=0,所以②错误;∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,所以③正确;∵(a+b )2-b 2=(a+b-b )(a+b+b )=a (a+2b )=a (a-4a )=-3a 2<0,∴(a+b )2<b 2,所以④正确.故选:C .【点睛】考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.3、D【分析】连接OA 、OB 、OC 、OD ,由反比例函数的性质得到112AOE BOF S S k ==,221122COE DOF S S k k ===-,结合两式即可得到答案.【详解】连接OA 、OB 、OC 、OD ,由题意得112AOE BOF SS k ==,221122COE DOF S S k k ===-, ∵AOC AOE COE SS S =+, ∴1211()22AC OE k k ⋅=-, ∵BOD BOF DOF SS S =+, ∴1211()22BD OF k k ⋅=-, ∴BD OF AC OE ⋅=⋅,∵AC=3,BD=2,EF=5,∴解得OE=2,∴12326k k AC OE -=⋅=⨯=,故选:D.【点睛】此题考查反比例函数图象上点的坐标特点,比例系数与三角形面积的关系,掌握反比例函数解析式中k 的几何意义是解题的关键.4、B【分析】在方程左右两边同时加上一次项系数一半的平方即可.【详解】解:方程两边同时加上一次项系数一半的平方,得到x 2﹣2x+1=5+1,即(x ﹣1)2=6,故选:B .【点睛】本题考查了配方法,解题的关键是注意:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、A【分析】运用动点函数进行分段分析,当点P 在AD 上和在BD 上时,结合图象得出符合要求的解析式.【详解】①当点P 在AD 上时,此时BC 是定值,BC 边的高是定值,则△PBC 的面积y 是定值;②当点P 在BD 上时,此时BC 是定值,BC 边的高与运动时间x 成正比例的关系,则△PBC 的面积y 与运动时间x 是一次函数,并且△PBC 的面积y 与运动时间x 之间是减函数,y ≥1.所以只有A 符合要求.故选:A .【点睛】此题主要考查了动点函数的应用,注意将函数分段分析得出解析式是解决问题的关键,有一定难度.6、B【分析】将横坐标代入反比例函数求出纵坐标,即可比较大小关系.【详解】当x=−3时,y 1=−1,当x=−1时,y 2=−3,当x=1时,y 3=3,∴y 2<y 1<y 3故选:B.【点睛】本题考查反比例函数值的大小比较,将横坐标代入函数解析式求出纵坐标是解题的关键.7、D【分析】根据题意分别用含x 式子表示第二天,第三天的票房数,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为x ,由题意可得出,第二天的票房为3(1+x),第三天的票房为3(1+x)2,根据题意可列方程为233(1)3(1)10x x ++++=.故选:D .【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.8、A【解析】把P 点坐标代入二次函数解析式可求得a 的值,则可求得二次函数解析式,再把选项中所给点的坐标代入判断即可;【详解】∵二次函数2y ax =的图象经过点P(-1,4),∴()24-1a =⨯,解得a=4,∴二次函数解析式为24y x =;当x=1或x=-1时,y=4;当x=4或x=-4时,y=64;故点(1,4)在抛物线上;故选A.【点睛】本题主要考查了二次函数图象上点的坐标特征,掌握二次函数图象上点的坐标特征是解题的关键.9、B【分析】利用根与系数的关系得出x 1+x 2=2k+1,进而得出关于k 的方程求出即可.【详解】解:设方程的两个根分别为x 1,x 2,由x 1+x 2=2k+1=3,解得:k=1,故选B .【点睛】本题考查了一元二次方程的根与系数的关系,能把求k 的值的问题转化为解方程得问题是关键.10、D【分析】根据圆周角定理求出DOB ∠,根据互余求出∠COD 的度数,再根据等腰三角形性质即可求出答案.【详解】解:连接OD ,25DAB ∠=,250BOD DAB ∠∠∴==,905040COD ∠∴=-=,OC OD =,()1180702OCD ODC COD ∠∠∠∴==-=. 故选D .【点睛】本题考查了圆周角定理,等腰三角形性质等知识.熟练应用圆周角定理是解题的关键.二、填空题(每小题3分,共24分)11、611【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.详解:∵袋子中共有11个小球,其中红球有6个, ∴摸出一个球是红球的概率是611,故答案为:6 11.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.12、1.【分析】根据圆周角定理进行分析可得到答案. 【详解】解:∵∠BAC=12∠BOC,∠ACB=12∠AOB,∵∠BOC=2∠AOB,∴∠ACB=12∠BAC=1°.故答案为1.考点:圆周角定理.13、1【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm∴较小的三角形的周长为643484cm ⨯=故答案为:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.14、y=98x-98,【解析】根据题意即可画出相应的辅助线,从而可以求得相应的函数解析式.【详解】将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD 的面积只要等于5即可,∴设BC=4-x ,则[]4x 3325-+⨯÷=,解得,x=113, ∴点B 的坐标为11,33⎛⎫ ⎪⎝⎭, 设过点A 和点B 的直线的解析式为y=kx+b ,01133k b k b +=⎧⎪⎨+=⎪⎩,解得,9898k b ⎧=⎪⎪⎨⎪=-⎪⎩,即过点A 和点B 的直线的解析式为y=9988x -. 故答案为:y=9988x -. 【点睛】本题考查待定系数法求一次函数解析式,正方形的性质.15、320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x 的函数解析式,利用二次函数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm∴右侧留言部分的面积()()()22363632432418324x x x x x =-=--++=--+ 又14≤x≤16 ∴当x=16时,面积最大()21618324320=--+=(2)cm故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解题关键是根据题意写出面积的函数表达式.163【解析】解:如图,连接OA 、OB ,OG .∵六边形ABCDEF 是边长为2的正六边形,∴△OAB 是等边三角形,∴∠OAB =60°,∴OG =OA •sin60°=2×32 =3, ∴半径为2的正六边形的内切圆的半径为3.故答案为3.【点睛】本题考查了正多边形和圆、等边三角形的判定与性质;熟练掌握正多边形的性质,证明△OAB 是等边三角形是解决问题的关键.17、3335. 【分析】有15张奖券中抽取2张的所有等可能结果数为1514210⨯=种,其中中奖总值低于300元的有4312⨯=种知中奖总值至少300元的结果数为21012198-=种,再根据概率公式求解可得.【详解】解:从15张奖券中抽取2张的所有等可能结果数为15×14=210种, 其中中奖总值低于300元的有4×3=12种, 则中奖总值至少300元的结果数为210﹣12=198种,所以中奖总值至少300元的概率为198210=3335, 故答案为:3335. 【点睛】本题主要考查列表法与树状图法,解题的关键根据题意得出所有等可能的结果数和符合条件的结果数.18、2【解析】根据这组数据是从大到小排列的,求出最中间的两个数的平均数即可【详解】解:将数据从小到大重新排列为:6、1、1、10、12、15,所以这组数据的中位数为81092+= , 故答案为:2.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)即可三、解答题(共66分)19、(1)16k =,2b =-;(2)6∆=AEC S .【解析】(1)由菱形的性质可知()6,0B ,()9,4C ,点()44D ,代入反比例函数k y x=,求出k ;将点()9,4C 代入23y x b =+,求出b ; (2)求出直线223y x =-与x 轴和y 轴的交点,即可求AEC ∆的面积; 【详解】解:(1)由已知可得5AD =,∵菱形ABCD ,∴()6,0B ,()9,4C , ∵点()44D ,在反比例函数()0k y x x =>的图象上, ∴16k =,将点()9,4C 代入23y x b =+, ∴2b =-;(2)()0,2E -, 直线223y x =-与x 轴交点为()3,0, ∴()122462AEC S ∆=⨯⨯+=; 【点睛】本题考查反比例函数、一次函数的图象及性质,菱形的性质;能够将借助菱形的边长和菱形边的平行求点的坐标是解题的关键.20、(1)y=﹣5x 2+110x +1200;(2) 售价定为189元,利润最大1805元【解析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y =(200﹣x ﹣170)(40+5x )=﹣5x 2+110x +1200;(2)y =﹣5x 2+110x +1200=﹣5(x ﹣11)2+1805,∵抛物线开口向下,∴当x =11时,y 有最大值1805,答:售价定为189元,利润最大1805元;【点睛】本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键.21、(1)90;(2)DE ∥BC ,见解析【分析】(1)根据旋转的性质即可求得旋转角的度数;(2)先利求得∠DCE=∠BCF=90°,CD=CE ,可得△CDE 为等腰直角三角形,即∠CDE=45°,再根据角平分线定义得到∠BCD=45°,则∠CDE=∠BCD ,然后根据平行线的判定定理即可说明.【详解】解:(1)解:∵将△CDB 绕点C 顺时针旋转到△CEF 的位置,点F 在AC 上,∴∠BCF=90°,即旋转角为90°;故答案为90°.(2)DE BC ∥,理由如下:∵将CDB △绕点C 顺时针旋转到CEF △的位置,点F 在AC 上,∴90DCE BCF ∠=∠=︒,CD CE =,∴CDE △为等腰直角三角形,∴45CDE ∠=︒,∵CD 平分ACB ∠交AB 于点D ,∴45BCD ∠=︒,∴CDE BCD ∠=∠,∴DE BC ∥.【点睛】本题考查了旋转的性质、等腰三角形的性质以及平行线的判定,掌握旋转变换前后图形的特点以及旋转角的定义是解答本题的关键.22、(1)①105°,②见解析;(2)626+【分析】(1)①解直角三角形求出∠A′CD 即可解决问题,②连接A′F ,设EF 交CA′于点O ,在EF 时截取EM=EC ,连接CM .首先证明△CFA′是等边三角形,再证明△FCM≌△A′CE(SAS),即可解决问题.(2)如图2中,连接A′F,PB′,AB′,作B′M⊥AC交AC的延长线于M.证明△A′EF≌△A′EB′,推出EF=EB′,推出B′,F关于A′E对称,推出PF=PB′,推出PA+PF=PA+PB′≥AB′,求出AB′即可解决问题.【详解】①解:由∠CA′D=15°,可知∠A′CD=90°-15°=75°,所以∠A′CA=180°-75°=105°即旋转角α为105°.②证明:连接A′F,设EF交CA′于点O.在EF时截取EM=EC,连接CM.∵∠CED=∠A′CE+∠CA′E=45°+15°=60°,∴∠CEA′=120°,∵FE平分∠CEA′,∴∠CEF=∠FEA′=60°,∵∠FCO=180°﹣45°﹣75°=60°,∴∠FCO=∠A′EO,∵∠FOC=∠A′OE,∴△FOC∽△A′OE,∴OFA O'=OCOE,∴OFOC=A OOE',∵∠COE=∠FOA′,∴△COE∽△FOA′,∴∠FA′O=∠OEC=60°,∴△A′CF是等边三角形,∴CF=CA′=A′F,∵EM=EC,∠CEM=60°,∴△CEM是等边三角形,∠ECM=60°,CM=CE,∵∠FCA′=∠MCE=60°,∴∠FCM=∠A′CE,∴△FCM ≌△A′CE (SAS ),∴FM =A′E ,∴CE+A′E =EM+FM =EF .(2)解:如图2中,连接A′F ,PB′,AB′,作B′M ⊥AC 交AC 的延长线于M .由②可知,∠EA′F =′EA′B′=75°,A′E =A′E ,A′F =A′B′,∴△A′EF ≌△A′EB′,∴EF =EB′,∴B′,F 关于A′E 对称,∴PF =PB′,∴PA+PF =PA+PB′≥AB′,在Rt △CB′M 中,CB′=BC 2AB =2,∠MCB′=30°,∴B′M =12CB′=1,CM 3 ∴AB′22AM B M '+22(23)1++626+∴PA+PF 626+【点睛】本题属于四边形综合题,考查旋转变换相关,全等三角形的判定和性质,相似三角形的判定和性质以及三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题,难度较大.23、(1)详见解析;(2)详见解析;(3)5【分析】(1)如图1,连接BC 、CD ,先证∠CBA =∠CAD ,再证∠CDA =∠CAD ,可得出AC =CD ,即可推出结论; (2)过点C 作CG ⊥AD 于点G ,则∠CGA =90°,证CG 垂直平分AD ,得出AD =2AG ,再证△ACG ≌△CAE ,推出AG =CE ,即可得出AD =2CE ;(3)取BD中点H,连接OH、OC,则BH=DH=12BD=6,OH⊥BD,证Rt△OEC≌Rt△BHO,推出OE=BH=6,OC=OA=10,则在Rt△OEC中,求出CE的长,在Rt△AEC中,可求出AC的长.【详解】(1)证明:连接BC、CD,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CAB+∠CAD=90°,∴∠CBA=∠CAD,又∵∠CDA=∠CBA,∴∠CDA=∠CAD,∴AC=CD,∴AC CD;(2)过点C作CG⊥AD于点G,则∠CGA=90°,由(1)知AC=CD,∴CG垂直平分AD,∴AD=2AG,∵AF=CF,∴∠CAD=∠ACE,∵∠CAD+∠CAB=90°,∴∠ACE+∠CAB=90°,∴∠AEC=90°=∠CGA,∵AC=CA,∴△ACG≌△CAE(AAS),∴AG=CE,∴AD=2CE;(3)取BD中点H,连接OH、OC,则BH=DH=12BD=6,OH⊥BD,∴∠OHB=90°=∠CEO,∵OA=OB,∴OH是△ABD的中位线,∴AD=2OH,由(2)知AD=2CE,∴OH=CE,∵OC=OB,∴Rt△OEC≌Rt△BHO(HL),∴OE=BH=6,∴OC=OA=AE+OE=4+6=10,∴在Rt△OEC中,CE2=OC2﹣OE2=82,∴在Rt△AEC中,AC=22AE CE+=45.【点睛】本题考查了圆的有关概念及性质、全等三角形的判定与性质、勾股定理等,第证明∠AEC=90°和通过作适当的辅助线构造全等三角形是.解题的关键.24、(1)见解析;(2)35 4【分析】(1)连接OD,由AB为O的直径得到∠ACB=90︒,根据CD平分∠ACB及圆周角定理得到∠AOD=90︒,再根据DE∥AB推出OD⊥DE ,即可得到DE是O的切线;(2)过点C作CH⊥AB于H,CD交AB于M,利用勾股定理求出AB,再利用面积法求出CH,求出OH,根据△CHM∽△DOM求出HM得到AM,再利用平行线证明△CAM∽△CED,即可求出DE.【详解】(1)如图,连接OD,∵AB为O的直径,∴∠ACB=90︒,∵CD平分∠ACB,∴∠ACD=45︒,∴∠AOD=90︒,即OD⊥AB,∵DE∥AB,∴OD⊥DE ,∴DE是O的切线;(2)过点C 作CH ⊥AB 于H ,CD 交AB 于M , ∵∠ACB=90︒,6AC =,8BC =,∴AB=22226810AC BC +=+=, ∵S △ABC =1122AC BC AB CH ⋅⋅=⋅⋅, ∴CH=68 4.810⨯=, ∴AH=22226 4.8 3.6AC CH -=-=, ∴OH=OA-AH=5-3.6=1.4,∵∠CHM=∠DOM=90︒,∠HMC=∠DMO, ∴△CHM ∽△DOM,∴CH HM CM DO OM DM== ∴CM DM = 4.824525HM OM ==,2449CM CD =, ∴HM=2435, ∴AM=AH+HM=307, ∵AB ∥DE, ∴△CAM ∽△CED,∴2449AM CM ED CD ==, ∴DE=354.【点睛】此题考查圆的性质,圆周角定理,切线的判定定理,三角形相似,勾股定理,(2)是本题的难点,利用平行线构建相似三角形求出DE 的长度,根据此思路相应的添加辅助线进行证明.25、 (1)0;(2) 1x =,2x =. 【分析】(1)原式利用特殊角的三角函数值计算即可得到结果;(2)方程利用公式法求出解即可.【详解】解:(1)原式112112-=-11=-0=.(2)22630x x -+=,在这里2a =,6b =-,3c =.()2246423120b ac ∆-=--⨯⨯=>,∴()622x --==⨯,∴132x +=,232x -=. 【点睛】此题考查了解一元二次方程−公式法,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.26、(1)1;(2)43x x +- 【分析】(1)根据实数的混合运算法则计算即可;(2)根据分式的运算法则计算即可.【详解】解:(1)201222()(18--++⨯-- 原式=2+11--144=1; (2)2291(1)693x x x x -⋅+-++()()()2334•33x x x x x +-+=+- 43x x +=-. 【点睛】本题考查了实数的混合运算,以及分式的混合运算,熟练掌握运算法则是解答本题的关键.。
2025届山东省淄博市临淄区第一中学九年级数学第一学期期末调研模拟试题 考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)1.如图,ABC 在中,中线AD ,BE 相交于点F ,EG BC ∥,交于AD 于点G ,下列说法①2BD GE =;②2AF FD =;③AGE 与BDF 面积相等;④ABF 与四边形DCEF 面积相等.结论正确的是( )A .①③④B .②③④C .①②③D .①②④2.如图,在扇形纸片AOB 中,OA =10,ÐAOB=36°,OB 在直线l 上.将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为( ) A . B . C . D .3.国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .()9121x -=B .()2911x -=C .()9121x +=D .()2911x += 4.如图,⊙O 的半径OA 等于5,半径OC 与弦AB 垂直,垂足为D ,若OD =3,则弦AB 的长为( )A .10B .8C .6D .45.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( ) A .2% B .4.4% C .20% D .44%6.已知在Rt ABC 中,90C ∠=︒,1sin 3A =,那么下列说法中正确的是( ) A .1cos 3B = B .1cot 3A = C .22tan 3A = D .22cot 3B = 7.已知AB 、CD 是⊙O 的两条弦,AB ∥CD ,AB =6,CD =8,⊙O 的半径为5,则AB 与CD 的距离是( ) A .1 B .7C .1或7D .无法确定8.已知线段c 是线段a 和b 的比例中项,若a =1,b =2,则c =( )A .1B .2C .2±D .3±9.在数轴上表示不等式﹣2≤x <4,正确的是( )A .B .C .D .10.顺次连结菱形各边中点所得到四边形一定是( )A .平行四边形B .正方形C .矩形D .菱形 11.如图,AB 是O 的直径,点C 、D 、E 在O 上.若25AED ∠=︒,则BCD ∠的度数为( )A .105︒B .110︒C .115︒D .120︒12.下列各式运算正确的是( )A .235a a a +=B .236a a a ⋅=C .()326ab ab =D .1055a a a ÷=二、填空题(每题4分,共24分)13.如图,Rt △ABC 中,∠C =90°,AC =4,BC =3,点D 是AB 边上一点(不与A 、B 重合),若过点D 的直线截得的三角形与△ABC 相似,并且平分△ABC 的周长,则AD 的长为____.14.函数y =x 2﹣4x +3的图象与y 轴交点的坐标为_____.15.已知关于x 的方程220x x m -+=有两个不相等的实数根,则m 的取值范围是________.16.如图,如果一只蚂蚁从圆锥底面上的点B 出发,沿表面爬到母线AC 的中点D 处,则最短路线长为_____.17.如果关于x 的一元二次方程x 2+2ax+a+2=0有两个相等的实数根,那么实数a 的值为 .18.在Rt △ABC 中,∠C =90°,AC =6,BC =8(如图),点D 是边AB 上一点,把△ABC 绕着点D 旋转90°得到A B C ''',边B C ''与边AB 相交于点E ,如果AD =BE ,那么AD 长为____.三、解答题(共78分)19.(8分)如图,O 为正方形ABCD 对角线上一点,以O 为圆心,OA 长为半径的O 与BC 相切于点M .(1)求证:CD 与O 相切.(2)若正方形ABCD 的边长为1,求半径OA 的长.20.(8分)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)21.(8分)如图,AB 是⊙O 的直径,半径OD 与弦AC 垂直,若∠A =∠D ,求∠1的度数.22.(10分)“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速要比设计时速减少m%,以便于有充分时间应对突发事件,这样,从重庆到上海的实际运行时间将增加小时,求m 的值.23.(10分)如图,在Rt ABC ∆中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC 、AB 相交于点D 、E ,连接AD ,已知CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若30B ∠=︒,3AC =BD 与弦BD 所围阴影图形的面积;(3)若4AC =,6BD =,求AE 的长.24.(10分)已知关于x 的一元二次方程x 2+x +m ﹣1=1.(1)当m =1时,求方程的实数根.(2)若方程有两个不相等的实数根,求实数m 的取值范围.25.(12分)解一元二次方程:x 2﹣5x+6=1.26.如图,平面直角坐标系内,二次函数2y ax bx c =++的图象经过点()(),2,04,0A B -,与y 轴交于点()0,6C .()1求二次函数的解析式;()2点D 为x 轴下方二次函数图象上一点,连接,,,AC BC AD BD ,若ABD △的面积是ABC 面积的一半,求D 点坐标.参考答案一、选择题(每题4分,共48分)1、D【分析】,D E 为BC,AC 中点,可得,;AE EC BD DC == 由于GE BC ,可得:1:2AE AC =;可证2.BD GE =故①正确.②由于:1:2,GE BD =则:1:2GF FD =可证2AF FD =,故②正确.设,GEF Sx =,可得483,8BDF ABF AGE DCEF S x S x S x S x ====四边形,,可判断③错,④正确.【详解】解:①∵,D E 为BC,AC 中点,,;AE EC BD DC ∴==GE BC ,:1:2AE AC ∴=;:1:2,:1:2,2.GE CD GE BD BD GE ∴==∴=故①正确.②:1:2,:1:2,GE BD GF FD =∴=:1:1,:2:1,2GA GD AF FD AF FD =∴=∴=,故②正确.③④设,483,8GEF BDF ABF AGE DCEF S x S x S x S x S x =====四边形则,,,故③错,④正确.【点睛】本题考查了平行线段成比例,解题的关键是掌握平行线段成比例以及面积与比值的关系.2、A【分析】点O 所经过的路线是三段弧,一段是以点B 为圆心,10为半径,圆心角为90°的弧,另一段是一条线段,和弧AB 一样长的线段,最后一段是以点A 为圆心,10为半径,圆心角为90°的弧,从而得出答案.【详解】由题意得点O 所经过的路线长. 故选A.【点睛】 解题的关键是熟练掌握弧长公式:,注意在使用公式时度不带单位. 3、B【分析】等量关系为:2016年贫困人口()212018⨯-=下降率年贫困人口,把相关数值代入计算即可.【详解】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得:()2911x -=,故选B .【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键.4、B【解析】试题分析:由OC 与AB 垂直,利用垂径定理得到D 为AB 的中点,在直角三角形AOD 中,由OA 与OD的长,利用勾股定理求出AD 的长,由AB=2AD 即可求出AB 的长.∵OC ⊥AB ,∴D 为AB 的中点,即AD=BD=0.5AB ,在Rt △AOD 中,OA=5,OD=3,根据勾股定理得:AD=4则AB=2AD=1.故选B .考点:垂径定理点评:此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键5、C【解析】分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x ,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选C.点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.6、A【分析】利用同角三角函数的关系解答.【详解】在Rt△ABC中,∠C=90°,1sin3A=,则cosA=21221193sin A-=-=A、cosB=sinA=13,故本选项符合题意.B、cotA=2222313cosAsinA==.故本选项不符合题意.C、tanA=1234223sinAcosA==.故本选项不符合题意.D、cotB=tanA=24.故本选项不符合题意.故选:A.【点睛】此题考查同角三角函数关系,解题关键在于掌握(1)平方关系:sin2A+cos2A=1;(2)正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比.7、C【分析】由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:①当弦AB和CD在圆心同侧时,如图①,过点O作OF⊥CD,垂足为F,交AB于点E,连接OA,OC,∵AB∥CD,∴OE⊥AB,∵AB=8,CD=6,∴AE=4,CF=3,∵OA=OC=5,∴由勾股定理得:EO=22-=3,OF=2254-=4,53∴EF=OF﹣OE=1;②当弦AB和CD在圆心异侧时,如图②,过点O作OE⊥AB于点E,反向延长OE交AD于点F,连接OA,OC,EF=OF+OE=1,所以AB与CD之间的距离是1或1.故选:C.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧. 也考查了勾股定理及分类讨论的思想的应用.8、B【分析】根据线段比例中项的概念,可得a:c=c:b,可得c2=ab=2,故c的值可求,注意线段不能为负.【详解】解:∵线段c是a、b的比例中项,∴c2=ab=2,解得c=2又∵线段是正数,∴2故选:B.【点睛】本题考查了比例中项的概念,注意:求两个数的比例中项的时候,应开平方.求两条线段的比例中项的时候,负数应舍去.9、A【分析】根据不等式的解集在数轴上表示出来即可.【详解】解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.【点睛】此题主要考查不等式解集的表示,解题的关键是熟知不等式解集的表示方法.10、C【分析】根据三角形的中位线定理首先可以证明:顺次连接四边形各边中点所得四边形是平行四边形.再根据对角线互相垂直,即可证明平行四边形的一个角是直角,则有一个角是直角的平行四边形是矩形.【详解】如图,四边形ABCD是菱形,且E. F. G、H分别是AB、BC、CD、AD的中点,则EH∥FG∥BD,EF=FG=12BD;EF∥HG∥AC,EF=HG=12AC,AC⊥BD.故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°,∴边形EFGH是矩形.故选:C.【点睛】本题考查平行四边形的判定和三角形中位线定理,解题的关键是掌握平行四边形的判定和三角形中位线定理.11、C【分析】连接AD,BD,由圆周角定理可得∠ABD=25°,∠ADB=90°,从而可求得∠BAD=65°,再由圆的内接四边形对角互补得到∠BCD=115°.【详解】如下图,连接AD,BD,∵同弧所对的圆周角相等,∴∠ABD=∠AED=25°,∵AB为直径,∴∠ADB=90°,∴∠BAD=90°-25°=65°,∴∠BCD=180°-65°=115°.故选C【点睛】本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.12、D【分析】逐一对选项进行分析即可.【详解】A. 23,a a 不是同类项,不能合并,故该选项错误;B. 235a a a ⋅=,故该选项错误;C. ()3236ab a b =,故该选项错误;D. 1055a a a ÷=,故该选项正确;故选:D .【点睛】本题主要考查同底数幂的乘除法,积的乘方,掌握同底数幂的乘除法和积的乘方的运算法则是解题的关键.二、填空题(每题4分,共24分)13、83、 103、 54 【分析】根据直线平分三角形周长得出线段的和差关系,再通过四种情形下的相似三角形的性质计算线段的长.【详解】解:设过点D 的直线与△ABC 的另一个交点为E ,∵AC =4,BC =3,∴2234+设AD=x ,BD=5-x ,∵DE 平分△ABC 周长,∴周长的一半为(3+4+5)÷2=6, 分四种情况讨论:①△BED ∽△BCA ,如图1,BE=1+x解得x=54,②△BDE∽△BCA,如图2,BE=1+x∴BD BEBC AB=,即:5135x x-+=,解得:x=11 4,BE=154>BC,不符合题意.③△ADE∽△ABC,如图3,AE=6-x∴AD AEAB AC=,即654x x-=,解得:x=103,④△BDE∽△BCA,如图4,AE=6-x解得:x=83,综上:AD的长为83、103、54.【点睛】本题考查的相似三角形的判定和性质,根据不同的相似模型分情况讨论,根据不同的线段比例关系求解.14、(0,3).【分析】令x=0,求出y的值,然后写出与y轴的交点坐标即可.【详解】解:x=0时,y=3,所以.图象与y轴交点的坐标是(0,3).故答案为(0,3).【点睛】本题考查了求抛物线与坐标轴交点的坐标,掌握二次函数与一元二次方程的联系是解答本题的关键. 15、1m<【详解】根据题意得:△=(﹣2)2-4×m=4-4m>0,解得m<1.故答案为m<1.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)根的判别式:(1)当△=b2﹣4ac>0时,方程有两个不相等的实数根;(2)当△=b2﹣4ac=0时,方程有有两个相等的实数根;(3)当△=b2﹣4ac<0时,方程没有实数根.16、3.【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵64 180nππ⋅=,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF=2263-=33,∴最短路线长为33.故答案为:33.【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.17、﹣1或1【解析】试题分析:根据方程有两个相等的实数根列出关于a的方程,求出a的值即可.∵关于x的一元二次方程x1+1ax+a+1=0有两个相等的实数根,∴△=0,即4a1﹣4(a+1)=0,解得a=﹣1或1.考点:根的判别式.18、70 11.【解析】在Rt△ABC中,由旋转的性质,设AD=A′D=BE=x,则DE=2x-10,∵△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,∴∠A′=∠A,∠A′DE=∠C=90°,∴B DE '∽△BCA,∴DE B D AC BC '= , ∵10B D A D ='-'=10-x, ∴2101068x x --= , ∴x=7011 ,故答案为7011.三、解答题(共78分)19、(1)见解析;(2)22OA =-【分析】(1)根据正方形的性质可知,AC 是角平分线,再根据角平分线的性质进行证明即可;(2)根据正方形的边长求出AC 的长,再根据等腰直角三角形的性质得出OC=2OA即可求出.【详解】解:(1)如图,连接OM ,过点O 作ON CD ⊥于点N ,∵O 与BC 相切,∴OM BC ⊥∵四边形ABCD 是正方形,∴AC 平分BCD ∠,∴OM ON =,∴CD 与O 相切.(2)∵四边形ABCD 为正方形, ∴1,90,45AB B ACD ︒︒=∠=∠=,∴2,45AC MOC MCO ︒=∠=∠=,∴MC OM OA ==,∴222OC OM MC OA =+=.又AC OA OC =+,∴22OA OA =,解得22OA =【点睛】本题主要考查了正方形的性质和圆的切线的性质和判定,还运用了数量关系来证明圆的切线的方法.20、(1)树AB 的高约为3;(2)3【解析】(1)AB=ACtan30°=12×33=3.答:树高约为43米.(2)如图(2),B1N=AN=AB1sin45°=43×22=26(米).NC1=NB1tan60°=26×3=62(米).AC1=AN+NC1=26+62.当树与地面成60°角时影长最大AC2(或树与光线垂直时影长最大或光线与半径为AB的⊙A相切时影长最大)AC2=2AB2=83;(1)在直角△ABC中,已知∠ACB=30°,AC=12米.利用三角函数即可求得AB的长;(2)在△AB1C1中,已知AB1的长,即AB的长,∠B1AC1=45°,∠B1C1A=30°.过B1作AC1的垂线,在直角△AB1N 中根据三角函数求得AN,BN;再在直角△B1NC1中,根据三角函数求得NC1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.21、30°【分析】利用垂径定理和圆周角定理证得∠A=∠1=∠ABD,然后根据直角三角形两锐角互余即可求得∠1的度数.【详解】解:∵半径OD与弦AC垂直,∴AD CD,∴∠1=∠ABD,∵半径OD与弦AC垂直,∴∠ACB=90°,∴OD∥BC,∴∠1=∠D,∵∠A=∠D,∴∠A=∠1=∠ABD,∵∠A+∠ABC=90°,∴3∠1=90°,∴∠1=30°.【点睛】本题考查了垂径定理和和圆周角定理的推论,解决本题的关键是正确理解题意,熟练掌握垂径定理,能够理清各线段和角的关系.22、(2)2600;(2)2.【分析】(2)利用“从重庆到上海比原铁路全程缩短了32千米,列车设计运行时速比原铁路设计运行时速提高了l2千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用26小时”,分别得出等式组成方程组求出即可; (2)根据题意得出:进而求出即可.【详解】试题解析:(2)设原时速为xkm/h ,通车后里程为ykm ,则有:, 解得:,答:渝利铁路通车后,重庆到上海的列车设计运行里程是2600千米;(2)由题意可得出:, 解得:,(不合题意舍去), 答:m 的值为2.考点:2.一元二次方程的应用;二元一次方程组的应用.23、(1)见解析;(2)439π-;(35【分析】(1)连接OD ,利用圆的半径相等及已知条件证明13∠=∠,再根据直角三角形两锐角互余得到1290∠+∠=︒,再根据平角定义即可得到结论;(2)连接OD ,作OF BD ⊥于F ,根据30B ∠=︒及直角三角形的性质求出BD=2,根据垂径定理及三角函数求出,OF ,再根据30︒角所对的直角边等于斜边的一半求出OB ,即可利用扇形面积减去三角形的面积求出阴影部分的面积; (3)先证明ACD BCA ∆∆∽求出AB ,再根据勾股定理求出半径,即可求得AE 的长.【详解】(1)证明:连接OD ,如图1所示:∵OB OD =,∴3B ∠=∠,∵1B ∠=∠,∴13∠=∠,在Rt ACD ∆中,1290∠+∠=︒,∴4180239()0∠=︒-∠+∠=︒,∴OD AD ⊥,则AD 为O 的切线;(2)连接OD ,作OF BD ⊥于F ,如图2所示:∵OB OD =,30B ∠=︒,∴330B ∠=∠=︒,∴120DOB ∠=︒,∵90C ∠=︒,130B ∠=∠=︒, ∴313CD AC ==,33BC AC ==, ∴2BD BC CD =-=,∵OF BD ⊥,∴112DF BF BD ===,3333OF BF ==, ∴2323OB OF ==, ∴劣弧BD 与弦BD 所围阴影部分的面积=扇形ODB 的面积ODB -∆的面积2231203134323602393ππ⎛⎫⨯ ⎪⎝⎭-⨯⨯=-;(3)∵130B ∠=∠=︒,C C ∠=∠,∴ACD BCA ∆∆∽,∴AC CD AD BC AC AB==, ∴()2AC CD BC CD CD BD =⨯=+,即()246CD CD =+,解得:2CD =,或8CD =-(舍去),∴2CD =,∴AD == ∵CD AD AC AB=,∴24=∴AB =∵OD AD ⊥,∴在Rt AOD ∆中,222AD OD OA ,∴设O 的半径为x ,则OA x =,∴(()222x x +=,∴2x =,∴AE AB BE =-==【点睛】此题是圆的综合题,考查圆的性质,垂径定理,勾股定理,三角形相似的判定及性质定理,弓形面积,综合运用知识点,总结解题的方法.24、(1)x 1=12-,x 2=12-(2)m <54 【分析】(1)令m =1,用公式法求出一元二次方程的根即可;(2)根据方程有两个不相等的实数根,计算根的判别式得关于m 的不等式,求解不等式即可.【详解】(1)当m =1时,方程为x 2+x ﹣1=1.△=12﹣4×1×(﹣1)=5>1,∴x =x 1=,x 2= (2)∵方程有两个不相等的实数根,∴△>1,即12﹣4×1×(m ﹣1)=1﹣4m +4=5﹣4m >1,∴m 54<. 【点睛】本题考查了一元二次方程的解法、根的判别式.一元二次方程根的判别式△=b 2﹣4ac .25、x 1=2,x 2=2【分析】根据因式分解法解一元二次方程,即可求解.【详解】∵x 2﹣5x+6=1,∴(x ﹣2)(x ﹣2)=1,∴x ﹣2=1或x ﹣2=1,∴x 1=2,x 2=2.【点睛】本题主要考查解一元二次方程,掌握因式分解法解方程,是解题的关键.26、(1)233642y x x =-++;(2)点D 坐标为()1,3-或)1,3- 【分析】(1)根据A 、B 、C 三点坐标,运用待定系数法即可解答;(2)由ABD △的面积是ABC 面积的一半,则D 点的纵坐标为-3,令y=3,求得x 的值即为D 点的纵坐标.【详解】解:()1233642y x x =-++ ()2设D 的坐标为(x ,y D )∵ABD △的面积是ABC 面积的一半 ∴132D y OC ==, 又∵点D 在x 轴下方,即3D y =-.令y=-3,即2333642x x -=-++解得:11x =,21x =,∴点D 坐标为()1,3-或)1,3- 【点睛】本题主要考查了求二次函数解析式和三角形的面积,确定二次函数解析式并确定△ABD 的高是解答本题的关键.。
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图,在Rt △ABC 中,∠ABC=90°,tan ∠BAC=2,A (0,a ),B (b ,0),点C 在第二象限,BC 与y 轴交于点D (0,c ),若y 轴平分∠BAC ,则点C 的坐标不能表示为( )A .(b+2a ,2b )B .(﹣b ﹣2c ,2b )C .(﹣b ﹣c ,﹣2a ﹣2c )D .(a ﹣c ,﹣2a ﹣2c )2.如图,在平面直角坐标系中,⊙P 的圆心坐标是(-3,a)(a > 3),半径为3,函数y=-x 的图像被⊙P 截得的弦AB 的长为42,则a 的值是 ( )A .4B .32+C .32D .333.如图,在ABC ∆中,点D ,E 分别在AB ,AC 边上,//DE BC ,ACD B ∠=∠,若2AD BD =,6BC =,则线段CD 的长为( )A .23B .32C .26D .54.用min{a ,b }表示a ,b 两数中的最小数,若函数{}22min 1,1y x x=+-,则y 的图象为( )A .B .C .D .5.抛物线y =﹣2x 2经过平移得到y =﹣2(x +1)2﹣3,平移方法是( )A .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位6.为执行“均衡教育”政策,某区2018年投入教育经费7000万元,预计到2020年投入2.317亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A .7000(1+x 2)=23170 B .7000+7000(1+x )+7000(1+x )2=23170 C .7000(1+x )2=23170D .7000+7000(1+x )+7000(1+x )2=23177.下列事件属于随机事件的是( ) A .抛出的篮球会下落B .两枚骰子向上一面的点数之和大于1C .买彩票中奖D .口袋中只装有10个白球,从中摸出一个黑球8.下列函数中,图象不经过点(2,1)的是( ) A .y=﹣x 2+5 B .y=2xC .y=12x D .y=﹣2x+39.若反比例函数y =kx(k ≠0)的图象经过点P (﹣2,3),则k 的值为( ) A .-2B .12C .6D .-610.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(﹣1,2),(2,1),若抛物线y=ax 2﹣x+2(a≠0)与线段MN 有两个不同的交点,则a 的取值范围是( )A .a≤﹣1或14≤a <13 B .14≤a <13C .a≤14或a >13D .a≤﹣1或a≥14二、填空题(每小题3分,共24分)11.如图,平面直角坐标系中,等腰Rt ABC ∆的顶点.A B 分别在x 轴、y 轴的正半轴, 90,ABC =∠CA x ⊥轴, 点C 在函数()0ky x x=>的图象上.若2,AB =则k 的值为_____.12.若m 是关于x 的方程2320x x +-=的一个根,则23m m +的值为_________.13.为庆祝中华人民共和国成立70周年,某校开展以“我和我亲爱的祖国”为主题快闪活动,他们准备从报名参加的3男2女共5名同学中,随机选出2名同学进行领唱,选出的这2名同学刚好是一男一女的概率是:_________. 14.已知二次函数y =x 2﹣5x+m 的图象与x 轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为_____.15.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.16.若二次函数24y ax x a =++(a 为常数)的最大值为3,则a 的值为________.17.如图,甲、乙两楼之间的距离为30米,从甲楼测得乙楼顶仰角为α=30°,观测乙楼的底部俯角为β=45°,乙楼的高h =_____米(结果保留整数3≈1.7,2≈1.4).18.某水果公司以1.1元/千克的成本价购进10000kg 苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下: 苹果损坏的频率mn0.106 0.097 0.101 0.098 0.099 0.101估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克. 三、解答题(共66分)19.(10分)如图,ABC ∆是等边三角形,ABD ∆顺时针方向旋转后能与CBD '∆重合.(1)旋转中心是___________,旋转角度是___________度, (2)连接DD ',证明:BDD '∆为等边三角形. 20.(6分)如图,AB 是O 的直径,AC 是O 的切线,切点为A ,BC 交O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与O 的位置关系,并说明理由;(2)若O 的半径为2,50B ∠=,5AC =,求图中阴影部分的周长.21.(6分)解下列方程 (1)x 2+4x ﹣1=0(2)(y+2)2=(3y ﹣1)222.(8分)某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门,已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为多少?23.(8分)如图,一次函数4y x =-+的图象与反比例函数ky x=(k 为常数,且0k ≠)的图象交于A (1,a )、B 两点.(1)求反比例函数的表达式及点B 的坐标;(2)在x 轴上找一点P ,使PA+PB 的值最小,求满足条件的点P 的坐标及△PAB 的面积. 24.(8分)如图,在△ABC 中,AB=AC ,点D 、E 在边BC 上,∠DAE=∠B=30°,且32AD AE=,那么DEBC的值是______.25.(10分)某篮球队对队员进行定点投篮测试,每人每天投篮10次,现对甲、乙两名队员在五天中进球数(单位:个)进行统计,结果如下: 甲 10 6 10 6 8 乙79789经过计算,甲进球的平均数为8,方差为3.2. (1)求乙进球的平均数和方差;(2)如果综合考虑平均成绩和成绩稳定性两方面的因素,从甲、乙两名队员中选出一人去参加定点投篮比赛,应选谁?为什么?26.(10分)图中是抛物线拱桥,点P 处有一照明灯,水面OA 宽4m ,以O 为原点,OA 所在直线为x 轴建立平面直角坐标系,已知点P 的坐标为(3,32).(1)求这条抛物线的解析式; (2)水面上升1m ,水面宽是多少?参考答案一、选择题(每小题3分,共30分) 1、C【分析】作CH ⊥x 轴于H ,AC 交OH 于F .由△CBH ∽△BAO ,推出2BH CH BCAO BO AB===,推出BH=﹣2a ,CH=2b ,推出C (b+2a ,2b ),由题意可证△CHF ∽△BOD ,可得CH HF BO OD =,推出2b FHb c=,推出FH=2c ,可得C (﹣b ﹣2c ,2b ),因为2c+2b=﹣2a ,推出2b=﹣2a ﹣2c ,b=﹣a ﹣c ,可得C (a ﹣c ,﹣2a ﹣2c ),由此即可判断; 【详解】解:作CH ⊥x 轴于H ,AC 交OH 于F .∵tan ∠BAC=BCAB=2, ∵∠CBH+∠ABH=90°,∠ABH+∠OAB=90°,∴∠CBH=∠BAO ,∵∠CHB=∠AOB=90°, ∴△CBH ∽△BAO , ∴2BH CH BCAO BO AB===, ∴BH=﹣2a ,CH=2b , ∴C (b+2a ,2b ),由题意可证△CHF ∽△BOD ,∴CH HFBO OD =, ∴2b FH b c=, ∴FH=2c ,∴C (﹣b ﹣2c ,2b ), ∵2c+2b=﹣2a ,∴2b=﹣2a ﹣2c ,b=﹣a ﹣c , ∴C (a ﹣c ,﹣2a ﹣2c ), 故选C . 【点睛】本题考查解直角三角形、坐标与图形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考选择题中的压轴题. 2、B【分析】如图所示过点P 作PC ⊥x 轴于C ,交AB 于D ,作PE ⊥AB 于E ,连结PB ,可得OC=3,PC=a ,把x=-3代入y=-x 得y=3,可确定D 点坐标,可得△OCD 为等腰直角三角形,得到△PED 也为等腰直角三角形,又PE ⊥AB ,由垂径定理可得AE=BE=12AB=22,在Rt △PBE 中,由勾股定理可得PE=223-22=1(),可得PD=2PE=2,最终求出a 的值.【详解】作PC ⊥x 轴于C ,交AB 于D ,作PE ⊥AB 于E ,连结PB ,如图,∵⊙P 的圆心坐标是(-3,a ),∴OC=3,PC=a , 把x=-3代入y=-x 得y=3, ∴D 点坐标为(-3,3), ∴CD=3,∴△OCD 为等腰直角三角形, ∴△PED 也为等腰直角三角形, ∵PE ⊥AB ,∴AE=BE=12AB=12× 在Rt △PBE 中,PB=3,∴,∴,∴. 故选B . 【点睛】本题主要考查了垂径定理、一次函数图象上点的坐标特征以及勾股定理,熟练掌握圆中基本定理和基础图形是解题的关键. 3、C【解析】设2AD x =,BD x =,所以3AB x =,易证ADE ABC ∆∆,利用相似三角形的性质可求出DE 的长度,以及23AE AC =,再证明ADE ACD ∆∆,利用相似三角形的性质即可求出得出AD AE DEAC AD CD==,从而可求出CD 的长度.【详解】解:设2AD x =,BD x =, ∴3AB x =, ∵//DE BC , ∴ADE ABC ∆∆,∴DE AD AEBC AB AC ==, ∴263DE xx=, ∴4DE =,23AE AC =, ∵ACD B ∠=∠,ADE B ∠=∠,∴ADE ACD ∠=∠, ∵A A ∠=∠, ∴ADE ACD ∆∆,∴AD AE DEAC AD CD==, 设2AE y =,3AC y =,∴23AD yy AD=,∴AD =,4CD=,∴CD = 故选C . 【点睛】本题考查相似三角形,解题的关键是熟练运用相似三角形的性质与判定,本题属于中等题型. 4、C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x 2+1,1-x 2}表示x 2+1与1-x 2中的最小数, 不论x 取何值,都有x 2+1≥1-x 2, 所以y=1-x 2;可知,当x=0时,y=1;当y=0时,x=±1; 则函数图象与x 轴的交点坐标为(1,0),(-1,0);与y 轴的交点坐标为(0,1). 故选C . 【点睛】考核知识点:二次函数的性质. 5、A【分析】由抛物线y =−2x 2得到顶点坐标为(0,0),而平移后抛物线y =−2(x +1)2−3的顶点坐标为(−1,−3),根据顶点坐标的变化寻找平移方法.【详解】根据抛物线y =−2x 2得到顶点坐标为(0,0), 而平移后抛物线y =−2(x +1)2−3的顶点坐标为(−1,−3),∴平移方法为:向左平移1个单位,再向下平移3个单位.故选:A.【点睛】本题主要考查了抛物线的平移,熟练掌握相关概念是解题关键.6、C【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设每年投入教育经费的年平均增长百分率为x,再根据“2018年投入7000万元”可得出方程.【详解】设每年投入教育经费的年平均增长百分率为x,则2020年的投入为7000(1+x)2=23170由题意,得7000(1+x)2=23170.故选:C.【点睛】此题考查了由实际问题抽象出一元二次方程的知识,平均增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.7、C【解析】根据随机事件,必然事件,不可能事件概念解题即可.【详解】解:A. 抛出的篮球会下落,是必然事件,所以错误,B. 两枚骰子向上一面的点数之和大于1,是不可能事件,所以错误,C. 买彩票中奖.是随机事件,正确,D. 口袋中只装有10个白球,从中摸出一个黑球, ,是不可能事件,所以错误,故选C.【点睛】本题考查了随机事件的概念,属于简单题,熟悉概念是解题关键.8、D【分析】根据题意分别计算出当2x 时的各选项中的函数值,然后进一步加以判断即可.【详解】A:当x=2时,y=−4+5=1,则点(2,1)在抛物线y=−x2+5上,所以A选项错误;B:当x=2时,y=22=1,则点(2,1)在双曲线y=2x上,所以B选项错误;C:当x=2时,y=12×2=1,则点(2,1)在直线y=12x上,所以C选项错误;D:当x=2时,y=−4+3=−1,则点(2,1)不在直线y=−2x+3上,所以D选项正确.故选:D.【点睛】本题主要考查了函数图像上点的坐标的性质,熟练掌握相关概念是解题关键.9、D【分析】直接根据反比例函数图象上点的坐标特征求解.【详解】∵反比例函数y=k x (k≠0)的图象经过点(-2,3), ∴k=-2×3=-1. 故选:D .【点睛】此题考查了反比例函数图象上点的坐标特征,解题关键在于掌握反比例函数y=k x(k 为常数,k≠0)的图象是双曲线,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .10、A 【分析】根据二次函数的性质分两种情形讨论求解即可;【详解】∵抛物线的解析式为y=ax 1-x+1.观察图象可知当a <0时,x=-1时,y≤1时,满足条件,即a+3≤1,即a≤-1;当a >0时,x=1时,y≥1,且抛物线与直线MN 有交点,满足条件,∴a≥14, ∵直线MN 的解析式为y=-13x+53, 由215332y x y ax x ⎧-+⎪⎨⎪-+⎩==,消去y 得到,3ax 1-1x+1=0,∵△>0,∴a <13, ∴14≤a <13满足条件, 综上所述,满足条件的a 的值为a≤-1或14≤a <13, 故选A .【点睛】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(每小题3分,共24分)11、4【分析】根据等腰三角形的性质和勾股定理求出AC 的值,根据等面积法求出OA 的值,OA 和AC 分别是点C 的横纵坐标,又点C 在反比例函数图像上,即可得出答案.【详解】∵△ABC 为等腰直角三角形,AB=2∴BC=2,AC ==1122BC AB OA AC ⨯⨯=⨯⨯ 112222OA ⨯⨯=⨯⨯解得:∴点C 的坐标为 又点C 在反比例函数图像上∴4k ==故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C 的横坐标.12、2【分析】将x m =代入方程,进行化简即可得出答案.【详解】由题意得:2320m m +-=则232m m +=故答案为:2.【点睛】本题考查了一元二次方程的根的定义,理解题意得到一个关于m 的等式是解题关键.13、35【分析】先画出树状图求出所有可能出现的结果数,再找出选出的2名同学刚好是一男一女的结果数,然后利用概率公式求解即可.【详解】解:设报名的3名男生分别为A、B、C,2名女生分别为M、N,则所有可能出现的结果如图所示:由图可知,共有20种等可能的结果,其中选出的2名同学刚好是一男一女的结果有12种,所以选出的2名同学刚好是一男一女的概率=123 205.故答案为:35.【点睛】本题考查了求两次事件的概率,属于常考题型,熟练掌握画树状图或列表的方法是解题的关键.14、(4,0).【分析】先把(1,0)代入y=x2-5x+m求出m得到抛物线解析式为y=x2-5x+4,然后解方程x2-5x+4=0得到抛物线与x 轴的另一个交点的坐标.【详解】解:把(1,0)代入y=x2-5x+m得1-5+m=0,解得m=4,所以抛物线解析式为y=x2-5x+4,当y=0时,x2-5x+4=0,解得x1=1,x2=4,所以抛物线与x轴的另一个交点的坐标为(4,0).故答案为(4,0).【点睛】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程问题.15、1.【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A1=A1A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣1019)(x﹣1011),然后计算自变量为1010对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x1=3,则A1(3,0),∵将C1点A1旋转180°得C1,交x轴于点A1;将C1绕点A1旋转180°得C3,交x轴于点A3;……∴OA1=A1A1=A1A3=…=A673A674=3,∴抛物线C764的解析式为y=﹣(x﹣1019)(x﹣1011),把P(1010,m)代入得m=﹣(1010﹣1019)(1010﹣1011)=1.故答案为1.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.16、-1【分析】根据二次函数的最大值公式列出方程计算即可得解. 【详解】由题意得,22444344ac b a a a a--==, 整理得,2340a a --=,解得:1241a a ==-,,∵二次函数有最大值,∴0a <,∴1a =-.故答案为:1-.【点睛】本题考查了二次函数的最值,易错点在于要考虑a 的正负情况.17、1【分析】根据正切的定义求出CD ,根据等腰直角三角形的性质求出BD ,结合图形计算,得到答案.【详解】解:在Rt △ACD 中,tan ∠CAD =CD AD,∴CD =AD •tan ∠CAD =30×tan30°=,在Rt △ABD 中,∠DAB =45°,∴BD =AD =30,∴h =CD +BD ≈1,故答案为:1.【点睛】本题考查解直角三角形的应用,要注意利用已知线段和角通过三角关系求解.18、0.2 3【分析】根据利用频率估计概率得到随实验次数的增多,发芽的频率越来越稳定在0.2左右,由此可估计苹果的损坏概率为0.2;根据概率计算出完好苹果的质量为20000×0.9=9000千克,设每千克苹果的销售价为x 元,然后根据“售价=进价+利润”列方程解答.【详解】解:根据表中的损坏的频率,当实验次数的增多时,苹果损坏的频率越来越稳定在0.2左右,所以苹果的损坏概率为0.2.根据估计的概率可以知道,在20000千克苹果中完好苹果的质量为20000×0.9=9000千克. 设每千克苹果的销售价为x 元,则应有9000x=2.2×20000+23000, 解得x=3.答:出售苹果时每千克大约定价为3元可获利润23000元.故答案为:0.2,3.【点睛】本题考查了利用频率估计概率:用到的知识点为:频率=所求情况数与总情况数之比.得到售价的等量关系是解决(2)的关键.三、解答题(共66分)19、(1)B ,60;(2)见解析【分析】(1)根据三角形三个顶点中没有变动的点就是旋转中心来判断,再根据旋转的性质判断出旋转的角度即可; (2)先根据旋转的性质得出60DBD '∠=︒和BD BD '=即可证明.【详解】解:(1)旋转中心是B ,旋转角度是60度;(2)证明:ABC ∆是等边三角形,60ABC ∴∠=︒,∴旋转角是60︒;60DBD '∴∠=︒,又BD BD '=,BDD '∴∆是等边三角形.【点睛】本题主要考察正三角形的判定及性质、图形的旋转性质,熟练掌握性质是关键.20、 (1)直线DE 与O 相切;理由见解析;(2)1059π+. 【分析】(1)连接OE 、OD ,根据切线的性质得到∠OAC=90°,根据三角形中位线定理得到OE ∥BC ,证明△AOE ≌△DOE ,根据全等三角形的性质、切线的判定定理证明;(2)根据切线长定理可得DE=AE=2.5,由圆周角定理可得∠AOD=100°,然后根据弧长公式计算弧AD 的长,从而可求得结论.【详解】解:(1)直线DE 与⊙O 相切,理由如下:连接OE 、OD ,如图,∵AC是⊙O的切线,∴AB⊥AC,∴∠OAC=90°,∵点E是AC的中点,O点为AB的中点,∴OE∥BC,∴∠1=∠B,∠2=∠3,∵OB=OD,∴∠B=∠3,∴∠1=∠2,在△AOE和△DOE中∵OA=OD∠1=∠2OE=OE,∴△AOE≌△DOE(SAS)∴∠ODE=∠OAE=90°,∴DE⊥OD,∵OD为⊙O的半径,∴DE为⊙O的切线;(2)∵DE、AE是⊙O的切线,∴DE=AE,∵点E是AC的中点,∴DE=AE=12AC=2.5,∵∠AOD=2∠B=2×50°=100°,∴阴影部分的周长=100210 2.5 2.551809ππ⨯++=+.【点睛】本题考查的是切线的判定与性质、全等三角形的判定和性质、三角形的中位线、切线长定理、弧长的计算,掌握切线的性质与判定、弧长公式是解题的关键.21、 (1) x1=﹣2+5,x2=﹣2﹣5;(2) y1=﹣14,y2=32.【解析】(1)把常数项1移项后,在左右两边同时加上4配方求解.(2)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】(1)移项可得:x2+4x=1,两边加4可得:x2+4x+4=4+1,配方可得:(x+2)2=5,两边开方可得:x+2=±5,∴x1=﹣2+5,x2=﹣2﹣5;(2)移项可得:(y+2)2﹣(3y﹣1)2=0,分解因式可得:(y+2+3y﹣1)(y+2﹣3y+1)=0,即(4y+1)(3﹣2y)=0,∴4y+1=0或3﹣2y=0,∴y1=﹣14,x2=32.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解题的关键.22、饲养室的最大面积为75平方米【分析】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,表示出总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75即可求得面积的最值【详解】设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中抽象出函数模型.23、(1)3yx=,()3,1B;(2)P5,02⎛⎫⎪⎝⎭,32PABS∆=.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=kx,得:3=k,∴反比例函数的表达式y=3x,联立两个函数关系式成方程组得:4 {3y xyx=-+=,解得:13xy,或31xy=⎧⎨=⎩,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,- 1).设直线AD的解析式为y=mx+n,把A,D两点代入得:3{31 m nm n+=+=-,解得:2 {5mn=-=,∴直线AD的解析式为y=-2x+1.令y=-2x+1中y=0,则-2x+1=0,解得:x=52,∴点P的坐标为(52,0).S△PAB=S△ABD-S△PBD=12BD•(x B-x A)-12BD•(x B-x P)=12×[1-(-1)]×(3-1)-12×[1-(-1)]×(3-52)=32.考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.24、1331 18-.【分析】由已知可得ABE DAE,从而可知32AB ADBE AE==,2AE BE DE=,设AB=3x,则BE=2x,再利用勾股定理和等腰三角形性质用x表示DE和BC,从而解答【详解】解:∵∠BAE=∠DAE+∠BAD,∠ADE=∠B+∠BAD,又∵∠DAE=∠B=30°,∴∠BAE=∠ADE,∴ABE DAE,∴32AB ADBE AE==,2AE BE DE=,过A点作AH⊥BC,垂足为H,设AB=3x,则BE=2x,∵∠B=30°,∴1322AH AB x==,333322BH AB x==,∴3322EH BH BE x⎛⎫=-=-⎪⎪⎝⎭,在Rt AHE中,(222222321322AE AH EH x x x x ⎛⎫⎛⎫=+=+-=- ⎪⎪ ⎪⎝⎭⎝⎭, 又∵2AE BE DE =,∴(2132x x DE -=,∴DE x =, ∵AB=AC ,AH ⊥BC ,∴2BC BH ==,∴181x DE BC ==-,故答案为:1x DE BC ==- . 【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质以及勾股定理,利用三角形相似得到AB 与BE 的关系是解题的关键.25、(1)乙平均数为8,方差为0.8;(2)乙.【分析】(1)根据平均数、方差的计算公式计算即可;(2)根据平均数相同时,方差越大,波动越大,成绩越不稳定;方差越小,波动越小,成绩越稳定进行解答.【详解】(1)乙进球的平均数为:(7+9+7+8+9)÷5=8,乙进球的方差为:15[(7﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2]=0.8;(2)∵二人的平均数相同,而S 甲2=3.2,S 乙2=0.8,∴S 甲2>S 乙2,∴乙的波动较小,成绩更稳定,∴应选乙去参加定点投篮比赛.【点睛】本题考查了方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 21n=[(x 1x -)2+(x 2x -)2+…+(x n x -)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.也考查了平均数.26、(1)y=﹣12x 2+2x ;(2)m 【分析】(1)利用待定系数法求解可得;(3)在所求函数解析式中求出y=1时x 的值即可得.【详解】解:(1)设抛物线的解析式为y=ax 2+bx+c ,将点O (0,0)、A (4,0)、P (3,32)代入,得: 01640930c a b a b =⎧⎪+=⎨⎪+=⎩解得:1220a b c ⎧=-⎪⎪=⎨⎪=⎪⎩,所以抛物线的解析式为y=﹣12x 2+2x ; (2)当y=1时,﹣12x 2+2x=1,即x 2﹣4x+2=0, 解得:x=2则水面的宽为﹣(2)(m ).答:水面宽是:m .【点睛】考查二次函数的应用,掌握待定系数法求二次函数解析式是解题的关键.。
2023-2024学年山东省淄博市淄川区九年级(上)期末数学试卷(五四学制)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列计算正确的是()A. B. C. D.2.将一个大正方体的一角截去一个小正方体,得到的几何体如图所示,则该几何体的左视图是()A.B.C.D.3.如图所示,在正方形ABCD中,O是对角线AC、BD的交点,过O作,分别交AB、BC于点E、F,若,,则EF的长为()A.3B.4C.5D.64.5.一个三角形的两边长分别等于一元二次方程的两个实数根,则下列说法正确的是()A.第三边的长可能是17B.第三边的长可能是16C.第三边的长可能为5D.三角形的周长可能为216.如图,为了测量一棵树AB的高度,小明在离这棵树10米处的点C测得树的最顶端A的仰角为,小亮在离这棵树25米处的点D测得树的最顶端A的仰角为已知则这棵树的高度是米.()A. B.12 C. D.7.如图,在菱形ABCD中,,对角线若过点A作,垂足为E,则AE的长为()A.4B.C.D.58.已知反比例函数与的图象如图所示,过y轴正半轴上的任意一点P作x轴的平行线,分别与这两个函数的图象交于M,N两点.若点A是x轴上的任意一点,连接MA,NA,则等于()A.8B.6C.4D.29.已知二次函数中,其函数y是自变量x之间的部分对应值如下表所示:x …0123…y …5212…点、在此函数图象上,则当,时,与的大小关系正确的是()A. B.C.D.10.如图,与都是等边三角形,其中点O 是边AB 与边的中点,连接,,则:等于()A. B. C.D.3:2二、填空题:本题共5小题,每小题4分,共20分。
11.若,,则代数式的值为______.12.抛物线的图象向右平移2个单位长度后所得新的抛物线的顶点坐标为______.13.如图,矩形ABCD 的对角线相交于点O ,于点E ,且,则的正弦值为______.14.设、是方程的两根,且,则m 的值是______.15.现有大小相同的n 张正方形纸片,小明用其中的3张拼成了一个如图所示的长方形,小亮也从中拿出若干张正方形纸片,拼成一个与它形状相同但比它大的长方形不得把每个正方形纸片剪开,则n 的最小值为______.三、解答题:本题共8小题,共90分。
九年级上册淄博数学期末试卷测试与练习(word 解析版)一、选择题1.二次函数y =x 2﹣6x 图象的顶点坐标为( ) A .(3,0)B .(﹣3,﹣9)C .(3,﹣9)D .(0,﹣6)2.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm3.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,若AD =1,BD =2,则DE BC的值为( )A .12B .13C .14D .194.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .35.对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过(3,1)且平行于y 轴的直线.B .其最小值为1.C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大. 6.下列说法中,不正确的是( ) A .圆既是轴对称图形又是中心对称图形 B .圆有无数条对称轴 C .圆的每一条直径都是它的对称轴 D .圆的对称中心是它的圆心7.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80° B .40° C .50° D .20° 8.方程2x x =的解是( )A .x=0B .x=1C .x=0或x=1D .x=0或x=-19.sin60°的值是( ) A .B .C .D .10.一元二次方程230x x k -+=的一个根为2x =,则k 的值为( ) A .1B .2C .3D .411.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点 12.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( )A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣1二、填空题13.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.14.已知线段4AB =,点P 是线段AB 的黄金分割点(AP BP >),那么线段AP =______.(结果保留根号)15.数据2,3,5,5,4的众数是____.16.如图,已知D 是等边△ABC 边AB 上的一点,现将△ABC 折叠,使点C 与D 重合,折痕为EF ,点E 、F 分别在AC 和BC 上.如果AD :DB=1:2,则CE :CF 的值为____________.17.在△ABC 中,∠C=90°,若AC=6,BC=8,则△ABC 外接圆半径为________; 18.方程22x x =的根是________. 19.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 20.如图,O 半径为2,正方形ABCD 内接于O ,点E 在ADC 上运动,连接BE ,作AF ⊥BE ,垂足为F ,连接CF .则CF 长的最小值为________.21.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.22.已知:二次函数y=ax 2+bx+c 图象上部分点的横坐标x 与纵坐标y 的对应值如表格所示,那么它的图象与x 轴的另一个交点坐标是_____. x … ﹣1 0 1 2 … y…343…23.如图,在Rt ABC ∆中,90ACB ∠=,6AC =,8BC =,D 、E 分别是边BC 、AC 上的两个动点,且4DE =,P 是DE 的中点,连接PA ,PB ,则14PA PB +的最小值为__________.24.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____.三、解答题25.在Rt △ABC 中,AC =BC ,∠C =90°,求: (1)cosA ;(2)当AB =4时,求BC 的长.26.如图,AB 是⊙O 的弦,AB =4,点P 在AmB 上运动(点P 不与点A 、B 重合),且∠APB =30°,设图中阴影部分的面积为y . (1)⊙O 的半径为 ;(2)若点P 到直线AB 的距离为x ,求y 关于x 的函数表达式,并直接写出自变量x 的取值范围.27.解方程: (1)(x +1)2﹣9=0 (2)x 2﹣4x ﹣45=028.如图,在△ABC 中,AB =AC =13,BC =10,求tan B 的值.29.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 ;(3)△A 2B 2C 2的面积是 平方单位.30.计算: (1)()28233+--(2)()13127+3.14+2π-⎛⎫- ⎪⎝⎭31.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A 、B ,点C 为x 轴正半轴上的点,点 D 从点C 处出发,沿线段CB 匀速运动至点 B 处停止,过点D 作DE ⊥BC ,交x 轴于点E ,点 C′是点C 关于直线DE 的对称点,连接 EC′,若△ DEC′与△ BOC 的重叠部分面积为S ,点D 的运动时间为t (秒),S 与 t 的函数图象如图 2 所示. (1)V D = ,C 坐标为 ; (2)图2中,m= ,n= ,k= .(3)求出S 与t 之间的函数关系式(不必写自变量t 的取值范围).32.如图1,水平放置一个三角板和一个量角器,三角板的边AB 和量角器的直径DE 在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm ,开始的时候BD=1cm ,现在三角板以2cm/s 的速度向右移动.(1)当点B 于点O 重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B 点和E 点重合时,AC 与半圆相切于点F ,连接EF ,如图2所示.①求证:EF平分∠AEC;②求EF的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】将二次函数解析式变形为顶点式,进而可得出二次函数的顶点坐标.【详解】解:∵y=x2﹣6x=x2﹣6x+9﹣9=(x﹣3)2﹣9,∴二次函数y=x2﹣6x图象的顶点坐标为(3,﹣9).故选:C.【点睛】此题主要考查二次函数的顶点,解题的关键是熟知二次函数的图像与性质. 2.B解析:B【解析】【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=12AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=12AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r =5cm .∴该输水管的半径为5cm ; 故选:B .【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.3.B解析:B 【解析】试题分析:∵DE ∥BC ,∴AD DE AB BC =,∵13AD AB =,∴31DE BC =.故选B . 考点:平行线分线段成比例.4.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是13,∴BC AC 3, ∵BC=50,∴3,∴()2222AC +BC 503+50100==(m ).故选A5.D解析:D 【解析】 【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案. 【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键. 6.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大7.C解析:C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.8.C解析:C【解析】【分析】根据因式分解法,可得答案.【详解】,解:2x x方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.9.C解析:C【解析】【分析】根据特殊角的三角函数值解答即可.【详解】sin60°=,故选C.【点睛】本题考查特殊角的三角函数值,熟记几个特殊角的三角函数值是解题关键.10.B解析:B【解析】【分析】将x=2代入方程即可求得k的值,从而得到正确选项.【详解】解:∵一元二次方程x2-3x+k=0的一个根为x=2,∴22-3×2+k=0,解得,k=2,故选:B.【点睛】本题考查一元二次方程的解,解题的关键是明确一元二次方程的解一定使得原方程成立.11.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.12.C解析:C【解析】【分析】根据二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,可知二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点两种情况,然后分别计算出c的值即可解答本题.【详解】解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.【点睛】本题考查了二次函数与坐标的交点问题,掌握解二次函数的方法是解题的关键.二、填空题13.【解析】【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN交DA延长线于点E,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF和Rt△DCF中,利用勾股定理列方程求DM长,根据圆的性质即可求解.【详解】如图,延长MN交DA延长线于点E,过D作DF⊥BC交BC延长线于F,连接MD,∵四边形ABCD是菱形,∴AB=BC=CD=4,AD∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN, ∴△EAN ≌BMN,∴AE=BM,EN=MN, ∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=232-,x 2=232(不符合题意,舍去) ∴DM=232+,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM,∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X 字型”全等模型是解答此题的突破口,也是解答此题的关键.14.【解析】【分析】根据黄金比值为计算即可.【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴故答案为:.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.解析:2【解析】【分析】根据黄金比值为12计算即可. 【详解】解:∵点P 是线段AB 的黄金分割点(AP>BP )∴AP 2AB ==故答案为:2.【点睛】本题考查的知识点是黄金分割,熟记黄金分割点的比值是解题的关键.15.5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案解析:5【解析】【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【详解】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故答案为:5.【点睛】本题属于基础题,考查了确定一组数据的众数的能力,解题关键是要明确定义,读懂题意.16.【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得. 【详解】解:如图,连接D解析:4 5【解析】【分析】根据折叠的性质可得DE=CE,DF=CF,利用两角对应相等的两三角形相似得出△AED∽△BDF,进而得出对应边成比例得出比例式,将比例式变形即可得.【详解】解:如图,连接DE,DF,∵△ABC是等边三角形,∴AB=BC=AC, ∠A=∠B=∠ACB=60°,由折叠可得,∠EDF=∠ACB=60°,DE=CE,DF=CF∵∠BDE=∠BDF+∠FDE=∠A+∠AED,∴∠BDF+60°=∠AED+60°,∴∠BDF=∠AED,∵∠A=∠B,∴△AED∽△BDF,∴AD AE DE BF BD DF,设AD=x,∵AD:DB=1:2,则BD=2x,∴AC=BC=3x,∵AD AE DE BF BD DF,∴AD AE DE DE BF BD DF DF∴323x x DE x x DF∴45 DEDF,∴45 CECF.故答案为:4 5 .【点睛】本题考查了折叠的性质,利用三角形相似对应边成比例及比例的性质解决问题,能发现相似三角形的模型,即“一线三等角”是解答此题的重要突破口.17.5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的解析:5【解析】【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】∵在△ABC中,∠C=90°,∴△ABC外接圆直径为斜边AB、圆心是AB的中点,∵∠C=90°,AC=6,BC=8,∴22226810AB AC BC,∴△ABC外接圆半径为5.故答案为:5.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.18.x1=0,x2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵,∴,∴x(x-2)=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点睛】本题考查了一解析:x 1=0,x 2=2【解析】【分析】先移项,再用因式分解法求解即可.【详解】解:∵22x x =,∴22=0x x -,∴x(x-2)=0,x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.19.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案. 【详解】 解:设BP=x ,则AP=4-x ,根据题意可得,444x x x -=-, 整理为:212160x x -+=, 利用求根公式解方程得:121444161245x 625±-⨯±===±, ∴1625x =-,26254x =+>(舍去).故答案为:625-.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.20.【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取解析:51-【解析】【分析】先求得正方形的边长,取AB 的中点G ,连接GF ,CG ,当点C 、F 、G 在同一直线上时,根据两点之间线段最短,则CF 有最小值,此时即可求得这个值.【详解】如图,连接OA 、OD ,取AB 的中点G ,连接GF ,CG ,∵ABCD 是圆内接正方形,2OA OD ==∴90AOD ∠=︒,∴()222222AD OA OD =+==,∵AF ⊥BE ,∴90AFB ∠=︒,∴112GF AB ==, 2222125CG BG BC =+=+=,当点C 、F 、G 在同一直线上时,CF 有最小值,如下图:51,51.【点睛】本题主要考查了正方形的性质,勾股定理,直角三角形斜边上的中线的性质,根据两点之间线段最短确定CF 的最小值是解决本题的关键.21.【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】,,,,解得,故答案为:.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.解析:203【解析】【分析】直接根据平行线分线段成比例定理即可得.【详解】123////l l l ,AB DE BC EF∴=, 3,5,4AB BC DE ===,345EF∴=, 解得203EF =, 故答案为:203. 【点睛】 本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.22.(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可. 详解:∵抛物线y=ax2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x==1;点(﹣1,0)解析:(3,0).【解析】分析:根据(0,3)、(2,3)两点求得对称轴,再利用对称性解答即可.详解:∵抛物线y=ax 2+bx+c 经过(0,3)、(2,3)两点,∴对称轴x=0+22=1; 点(﹣1,0)关于对称轴对称点为(3,0),因此它的图象与x 轴的另一个交点坐标是(3,0).故答案为(3,0).点睛:本题考查了抛物线与x 轴的交点,关键是熟练掌握二次函数的对称性.23.【解析】【分析】先在CB 上取一点F ,使得CF=,再连接PF 、AF ,然后利用相似三角形的性质和勾股定理求出AF ,即可解答.【详解】解:如图:在CB 上取一点F ,使得CF=,再连接PF 、AF ,解析:2【解析】先在CB上取一点F,使得CF=12,再连接PF、AF,然后利用相似三角形的性质和勾股定理求出AF,即可解答.【详解】解:如图:在CB上取一点F,使得CF=12,再连接PF、AF,∵∠DCE=90°,DE=4,DP=PE,∴PC=12DE=2,∵14CFCP=,14CPCB=∴CF CP CP CB=又∵∠PCF=∠BCP,∴△PCF∽△BCP,∴14 PF CFPB CP==∴PA+14PB=PA+PF,∵PA+PF≥AF,AF=2222114562CF AC⎛⎫+=+=⎪⎝⎭∴PA+14PB ≥.145∴PA+14PB的最小值为145,故答案为145.【点睛】本题考查了勾股定理、相似三角形的判定和性质等知识,正确添加常用辅助线、构造相似三角形是解答本题的关键.【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】 本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 三、解答题25.(1)2;(2) 【解析】【分析】(1)根据等腰直角三角形的判定得到△ABC 为等腰直角三角形,则∠A=45°,然后利用特殊角的三角函数值求解即可;(2)根据∠A 的正弦求解即可.【详解】∵AC =BC ,∠C =90°,∴∠A=∠B=45°,,∴BC=AB sin A ⨯,【点睛】本题考查解直角三角形及等腰直角三角形的判定,熟练掌握特殊角三角函数值是解题关键.26.(1)4;(2)y=2x +83π-43 (0<x≤23+4) 【解析】【分析】(1)根据圆周角定理得到△AOB 是等边三角形,求出⊙O 的半径;(2)过点O 作OH ⊥AB ,垂足为H,先求出AH=BH=12AB=2,再利用勾股定理得出OH 的值,进而求解.【详解】(1)解:(1)∵∠APB=30°,∴∠AOB=60°,又OA=OB ,∴△AOB 是等边三角形,∴⊙O 的半径是4;(2)解:过点O 作OH ⊥AB ,垂足为H则∠OHA =∠OHB =90°∵∠APB =30°∴∠AOB =2∠APB =60°∵OA=OB ,OH ⊥AB∴AH=BH=12AB=2 在Rt △AHO 中,∠AHO =90°,AO =4,AH =2∴OH 22AO AH -3∴y =16×16 π-123+12×4×x =2x +83π-3<34). 【点睛】本题考查了圆周角定理,勾股定理、掌握一条弧所对的圆周角是这条弧所对的圆心角的一半是解题的关键.27.(1)12x =,24x =-;(2)19x =,25x =-.【解析】【分析】(1)先移项,再利用直接开平方法即可求出答案;(2)根据因式分解法即可求出答案.【详解】(1)(x+1)2﹣9=0(x+1)2=9x+1=±3x1=2或x2=﹣4.(2)x2﹣4x﹣45=0(x﹣9)(x+5)=0x=9或x=﹣5.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:配方法、直接开平方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.28.12 5【解析】【分析】过A点作AD⊥BC,将等腰三角形转化为直角三角形,利用勾股定理求AD,利用锐角三角函数的定义求∠B的正切值.【详解】过点A作AD⊥BC,垂足为D,∵AB=AC=13,BC=10,∴BD=DC=12BC=5,∴AD222213512AB BD-=-=,在Rt△ABD中,∴tan B125 ADBD==.【点睛】本题考查了勾股定理,等腰三角形的性质和三角函数的应用,关键是将问题转化到直角三角形中求解,并且要熟练掌握好边角之间的关系.29.(1)(2,﹣2);(2)(1,0);(3)10.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=10平方单位.故答案为10.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理30.(12;(2)6【解析】【分析】(1)将原式三项化简,合并同类二次根式后即可得到结果;(2)原式第一项利用绝对值的代数意义化简,第二项利用零指数公式化简,第三项利用负指数公式化简,合并后即可得到结果;【详解】解:(1)原式=22+3-2-3=2,(2)原式=3+1+2=6【点睛】此题考查了实数的混合运算,涉及的知识有:算术平方根和立方根,绝对值的性质,0指数和负整指数幂,熟练掌握公式及法则是解本题的关键.31.(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(2)85;45;25.(3)①当点C′在线段BC上时,S=14t2;②当点C′在CB的延长线上,S=−1312t2+85t−203;③当点E在x轴负半轴, S=t2−45t+20.【解析】【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=5时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=12BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k 时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=5时,B和C′点重合,如图1所示,此时S=12×12CE•OB=54,∴CE=52,∴BE =52. ∵OB =2, ∴OE =2253222⎛⎫-= ⎪⎝⎭, ∴OC =OE +EC =32+52=4,BC =222425+=,CD =5, 5÷5=1(单位长度/秒),∴点D 的运动速度为1单位长度/秒,点C 坐标为(4,0).故答案为:1单位长度/秒;(4,0);(2)根据图象可知:当t =k 时,点D 与点B 重合,此时k =1BC =25; 当t =m 时,点E 和点O 重合,如图2所示.sin ∠C =OB BC =25=5,cos ∠C =25525OC BC ==, OD =OC •sin ∠C =4×5=455,CD =OC •cos ∠C =4×25=85. ∴m =1CD =855,n =12BD •OD =12×(25−855)×455=45. 故答案为:855;45;25. (3)随着D 点的运动,按△DEC ′与△BOC 的重叠部分形状分三种情况考虑:①当点C ′在线段BC 上时,如图3所示.此时CD =t ,CC ′=2t ,0<CC ′≤BC ,∴0<t 5∵tan∠C=12OBOC=,∴DE=CD•tan∠C=12t,此时S=12CD•DE=14t2;②当点C′在CB的延长线上,点E在线段OC上时,如图4所示.此时CD=t,BC′=2t−25,DE=CD•tan∠C=12t,CE=CDcos C∠=5t,OE=OC−CE=4−5t,∵CC BCCE OC'⎧⎨≤⎩>,即225542tt⎧⎪⎨≤⎪⎩>,解得:5<t≤855.由(1)可知tan∠OEF=232=43,∴OF=OE•tan∠OEF=162533-t,BF=OB−OF=251033t-,∴FM=BF•cos∠C=4453t-.此时S=12CD•DE−12BC′•FM=−2138520123t t+-;③当点E在x轴负半轴,点D在线段BC上时,如图5所示.此时CD=t,BD=BC−CD=25−t,CE=5t,DF=2452BDBD ttan C==-∠,∵CE OCCD BC⎧⎨≤⎩>,即5425tt⎧⎪⎨⎪≤⎩>,∴855<t≤25.此时S=12BD•DF=12×2×(25−t)2=t2−45t+20.综上,当点C′在线段BC上时,S=14t2;当点C′在CB的延长线上,S=−1312t2+85t−203;当点E在x轴负半轴, S=t2−45t+20.【点睛】本题考查了勾股定理、解直角三角形以及三角形的面积公式,解题的关键是:(1)求出BC、OC的长度;(2)根据图象能够了解当t=m和t=k时,点DE的位置;(3)分三种情况求出S关于t的函数关系式.本题属于中档题,(1)(2)难度不大;(3)需要画出图形,利用数形结合,通过解直角三角形以及三角形的面积公式找出S关于t的函数解析式.32.(1)2s(2)①证明见解析,②33√【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.试题解析:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t=42=2(s);∴三角板运动的时间为:2s;(2)①证明:连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=3AF,∴,由①知:EF平分∠AEC,∴∠AEF=∠CEF=12∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴。
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.圆锥的底面半径为2,母线长为6,它的侧面积为( )A .6πB .12πC .18πD .24π2.如图,在高2m ,坡角为30°的楼梯表面铺地毯,地毯的长度至少需要( )A .23mB .(2+ 23)mC .4 mD .(4+ 23)m 3.要将抛物线2y x 平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位C .向右平移1个单位,再向上平移2个单位D .向右平移1个单位,再向下平移2个单位4.下列四个三角形,与左图中的三角形相似的是( ).A .B .C .D .5.如图,,AC BD 是O 内两条互相垂直的直径,则ACB ∠的度数是( )A .30B .36C .45D .726.一元二次方程26100x x -+-=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 7.对于非零实数a b 、,规定11a b b a ⊕=-,若()22x 11⊕-=,则x 的值为 A .56B .54C .32D .16- 8.下列函数属于二次函数的是( ) A .y =x ﹣1x B .y =(x ﹣3)2﹣x 2 C .y =21x ﹣x D .y =2(x+1)2﹣1 9.过反比例函数6y x =-图象上一点作两坐标轴的垂线段,则它们与两坐标轴围成的四边形面积为( ) A .-6 B .-3C .3D .6 10.某正多边形的一个外角的度数为 60°,则这个正多边形的边数为( )A .6B .8C .10D .1211.下列一元二次方程中有两个不相等的实数根的方程是( )A .2(1)0x -=B .22190x x +-=C .240x +=D .210x x ++=12.如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于D ,连接BE ,若AB=27,CD=1,则BE 的长是( )A .5B .6C .7D .8二、填空题(每题4分,共24分)13.布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_______.14.如图,⊙O 的半径OC=10cm ,直线l ⊥OC ,垂足为H ,交⊙O 于A ,B 两点,AB=16cm ,直线l 平移____________cm时能与⊙O 相切.15.抛物线y =﹣35(x +12)2﹣3的顶点坐标是_____. 16.等腰三角形底边所对的外接圆的圆心角为140°,则其顶角的度数为______.17.将抛物线22y x 先向右平移1个单位,再向下平移2个单位,所得到的抛物线的函数解析式是____.18.二次函数y=x 2+bx+c 的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=________三、解答题(共78分)19.(8分)在下列网格图中,每个小正方形的边长均为1个单位. Rt △ABC 中,∠C=90°,AC=3,BC=4,△ABC 以A 为旋转中心,沿顺时针方向旋转90°后得到△AB 1C 1;(1)作出△AB 1C 1;(不写画法)(2)求点C 转过的路径长;(3)求边AB 扫过的面积.20.(8分)如图,在Rt △ABC 中,∠A =90°.AB =8cm ,AC =6cm ,若动点D 从B 出发,沿线段BA 运动到点A 为止(不考虑D 与B ,A 重合的情况),运动速度为2cm/s ,过点D 作DE ∥BC 交AC 于点E ,连接BE ,设动点D 运动的时间为x (s ),AE 的长为y (cm ).(1)求y 关于x 的函数表达式,并写出自变量x 的取值范围;(2)当x 为何值时,△BDE 的面积S 有最大值?最大值为多少?21.(8分)(1)计算.sin30°tan45°-cos30°tan30°+sin45°tan60°(2)已知cos(180°﹣a)=﹣cosa,请你根据给出的公式试求cos120°的值22.(10分)小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)你认为这个游戏规则对双方公平吗?说说你的理由.23.(10分)综合与探究:已知二次函数y=﹣12x2+32x+2的图象与x轴交于A,B两点(点B在点A的左侧),与y轴交于点C.(1)求点A,B,C的坐标;(2)求证:△ABC为直角三角形;(3)如图,动点E,F同时从点A出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒5个单位长度的速度沿射线AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒,连结EF,将△AEF 沿EF翻折,使点A落在点D处,得到△DEF.当点F在AC上时,是否存在某一时刻t,使得△DCO≌△BCO?(点D不与点B重合)若存在,求出t的值;若不存在,请说明理由.24.(10分)在△ABC中,AB=AC,∠BAC=120°,以CA为边在∠ACB的另一侧作∠ACM=∠ACB,点D为射线BC 上任意一点,在射线CM上截取CE=BD,连接AD、DE、AE.(1)如图1,当点D落在线段BC的延长线上时,求∠ADE的度数;(2)如图2,当点D落在线段BC(不含边界)上时,AC与DE交于点F,试问∠ADE的度数是否发生变化?如果不变化,请给出理由;如果变化了,请求出∠ADE的度数;(3)在(2)的条件下,若AB=6,求CF的最大值.25.(12分)如图,在平面直角坐标系xOy 中,一次函数y x b =+的图象经过点()2,0A -,与反比例函数()0k y x x =>的图象交于(),4B a .(1)求一次函数和反比例函数的表达式;(2)设M 是直线AB 上一点,过M 作//MN x 轴,交反比例函数()0k y x x=>的图象于点N ,若,O,,A M N 为顶点的四边形为平行四边形,求点M 的坐标.26.已知关于x 的一元二次方程x 2﹣(2k+3)x+k 2+3k+2=0(1)试判断上述方程根的情况.(2)已知△ABC 的两边AB 、AC 的长是关于上述方程的两个实数根,BC 的长为5,当k 为何值时,△ABC 是等腰三角形.参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【详解】根据圆锥的侧面积公式:πrl=π×2×6=12π,故选:B.【点睛】本题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.2、B【解析】如图,由平移的性质可知,楼梯表面所铺地毯的长度为:AC+BC,∵在△ABC中,∠ACB=90°,∠BAC=30°,BC=2m,∴AB=2BC=4m,∴AC=22-=,4223∴AC+BC=423+(m).故选B.点睛:本题的解题的要点是:每阶楼梯的水平面向下平移后刚好与AC重合,每阶楼梯的竖直面向右平移后刚好可以与BC重合,由此可得楼梯表面所铺地毯的总长度为AC+BC.3、A【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法.【详解】y=x2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x2向左平移1个单位长度,再向上平移2个单位长度.故选:A.【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.4、B【分析】本题主要应用两三角形相似的判定定理,三边对应成比例,做题即可.【详解】解:设单位正方形的边长为1,.A 、三角形三边分别是2, ,与给出的三角形的各边不成比例,故A 选项错误;B 、三角形三边2,4,B 选项正确;C 、三角形三边2,3C 选项错误;D 4,与给出的三角形的各边不成正比例,故D 选项错误.故选:B .【点睛】此题考查了相似三角形的判定,注意三边对应成比例的两三角形相似.5、C【分析】根据直径的定义与等腰三角形的性质即可求解.【详解】∵,AC BD 是O 内两条互相垂直的直径, ∴AC ⊥BD又OB=OC∴ACB ∠=180902︒-︒=45 故选C .【点睛】此题主要考查圆内的角度求解,解题的关键是熟知圆内等腰三角形的性质.6、D【分析】先计算判别式的值,然后根据判别式的意义判断方程根的情况.【详解】∵△=62-4×(-1)×(-10)=36-40=-4<0,∴方程没有实数根.故选D .【点睛】此题考查一元二次方程的根的判别式,解题关键在于掌握方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.7、A 【解析】试题分析:∵11a b b a ⊕=-,∴()1122x 12x 12⊕-=--. 又∵()22x 11⊕-=,∴1112x 12-=-.解这个分式方程并检验,得5x 6=.故选A . 8、D 【分析】由二次函数的定义:形如()20y ax bx c a =++≠,则y 是x 的二次函数,从而可得答案.【详解】解:A .自变量x 的次数不是2,故A 错误;B .()223y x x =--整理后得到69y x =-+,是一次函数,故B 错误C .由221y x x x x-=-=-可知,自变量x 的次数不是2,故C 错误; D .()2211y x =+-是二次函数的顶点式解析式,故D 正确.故选:D .【点睛】本题考查的是二次函数的定义,掌握二次根式的定义是解题的关键.9、D【分析】根据反比例函数的几何意义可知,矩形的面积为即为比例系数k 的绝对值,即可得出答案.【详解】设B 点坐标为(x ,y ),由函数解析式可知,xy =k =-6,则可知S 矩形ABCO =|xy|=|k|=6,故选:D .【点睛】本题考查了反比例函数系数k 的几何意义,关键是理解图中矩形的面积为即为比例系数k 的绝对值.10、A【分析】根据外角和计算边数即可.【详解】∵正多边形的外角和是360︒,∴360606÷=,故选:A.此题考查正多边形的性质,正多边形的外角和,熟记正多边形的特点即可正确解答.11、B【分析】根据一元二次方程根的判别式,分别计算△的值,进行判断即可.【详解】A 、△=0,方程有两个相等的实数根;B 、△=4+76=80>0,方程有两个不相等的实数根;C 、△=-16<0,方程没有实数根;D 、△=1-4=-3<0,方程没有实数根.故选:B .12、B【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键二、填空题(每题4分,共24分)13、37【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率.【详解】解:∵一个布袋里装有3个红球和4个白球,共7个球, ∴摸出一个球摸到红球的概率为:37, 故答案为:37. 【点睛】本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键.【分析】要使直线l与⊙O相切,就要求CH与DH,要求这两条线段的长只需求OH弦心距,为此连结OA,由直线l⊥OC,由垂径定理得AH=BH,在Rt△AOH中,求OH即可.【详解】连结OA∵直线l⊥OC,垂足为H,OC为半径,∴由垂径定理得AH=BH=12AB=8∵OA=OC=10,在Rt△AOH中,由勾股定理得OH=2222OA-AH=10-8=6,CH=OC-OH=10-6=4,DH=2OC-CH=20-4=1,,直线l向左平移4cm时能与⊙O相切或向右平移1cm与⊙O相切.故答案为:4或1.【点睛】本题考查平移直线与与⊙O相切问题,关键是求弦心距OH,会利用垂径定理解决AH,会用勾股定理求OH,掌握引辅助线,增加已知条件,把问题转化为三角形形中解决.15、(﹣12,﹣3)【分析】根据y=a(x﹣h)2+k的顶点是(h,k),可得答案.【详解】解:y=﹣35(x+12)2﹣3的顶点坐标是(﹣12,﹣3),故答案为:(﹣12,﹣3).【点睛】本题考查了抛物线顶点坐标的问题,掌握抛物线顶点式解析式是解题的关键.16、70°或110°.【分析】设等腰三角形的底边为AB,由⊙O的弦AB所对的圆心角为140°,根据圆周角定理与圆的内接四边形的性质,即可求得弦AB所对的圆周角的度数,即可求出其顶角的度数.【详解】如图所示:∵⊙O 的弦AB 所对的圆心角∠AOB 为140°, ∴∠ADB =12∠AOB =70°, ∵四边形ADBD’是⊙O 的内接四边形, ∴∠AD′B =180°﹣70°=110°, ∴弦AB 所对的圆周角为70°或110°, 即等腰三角形的顶角度数为:70°或110°. 故答案为:70°或110°.【点睛】本题主要考查圆周角定理与圆的内接四边形的性质,根据题意画出图形,熟悉圆的性质,是解题的关键. 17、224y x x =-【分析】根据题意先确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可.【详解】解:抛物线22y x =的顶点坐标为(0,0),向右平移1个单位,再向下平移2个单位后的图象的顶点坐标为(1,-2), 所以得到图象的解析式为222(1)224y x x x =--=-. 故答案为:224y x x =-. 【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键. 18、-1【解析】根据两已知点的坐标特征得到它们是抛物线的对称点,而这两个点关于直线x=-1对称,由此可得到抛物线的对称轴.【详解】∵点(3,4)和(-5,4)的纵坐标相同, ∴点(3,4)和(-5,4)是抛物线的对称点,而这两个点关于直线x=-1对称, ∴抛物线的对称轴为直线x=-1. 故答案为-1. 【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0)的顶点坐标是(-2b a ,244ac b a-),对称轴直线x=-2b a .三、解答题(共78分) 19、(1)见解析;(2)32π;(3)254π 【分析】(1)根据旋转的性质可直接进行作图;(2)由(1)图及旋转的性质可得点C 的运动路径为圆弧,其所在的圆心为A ,半径为3,然后根据弧长计算公式可求解;(3)由题意可得边AB 扫过的面积为扇形的面积,其扇形的圆心角为90°,半径为5,然后可求解. 【详解】解:(1)如图所示:(2)∵由已知得,CA=3,∴点C 旋转到点C 1所经过的路线长为:l =90180π×3=32π ; (3)由图可得:916+25, ∴S=90360π×52 =254π. 【点睛】本题主要考查旋转的性质、弧长计算及扇形的面积,熟练掌握旋转的性质、弧长计算及扇形的面积公式是解题的关键. 20、(1)362y x =-+(0<x <4);(1)当x=1时,S △BDE 最大,最大值为6cm 1. 【分析】(1)根据已知条件DE ∥BC 可以判定△ADE ∽△ABC ;然后利用相似三角形的对应边成比例求得AD AEAB AC=;最后用x 、y 表示该比例式中的线段的长度; (1)根据∠A=90°得出S △BDE =12•BD•AE,从而得到一个面积与x 的二次函数,从而求出最大值; 【详解】(1)动点D 运动x 秒后,BD =1x . 又∵AB =8,∴AD =8-1x . ∵DE ∥BC ,∴AD AE AB AC =,∴()6823682x AE x -==-, ∴y 关于x 的函数关系式为362y x =-+(0<x <4). (1)解:S △BDE =11326222BD AE x x ⎛⎫⋅⋅=⨯-- ⎪⎝⎭=2362x x -+(0<x <4). 当62322x =-=⎛⎫⨯- ⎪⎝⎭时,S △BDE 最大,最大值为6cm 1. 【点睛】本题主要考查相似三角形的判定与性质、三角形的面积列出二次函数关系式,利用二次函数求最值问题,建立二次函数模型是解题的关键. 21、(1)2;(2)12-【分析】(1)由题意直接利用特殊角的三角函数值代入进行计算即可;(2)根据题意利用公式cos (180°-a )=-cosa 进行变形,并代入特殊角的三角函数值进行计算即可. 【详解】解:(1)sin30°tan45°-cos30°tan30°+sin45°tan60°=1122⨯-+(2)由题意cos(180°﹣a)=﹣cosa 可知, cos120°= cos(180°﹣60°) =﹣cos60° =12-. 【点睛】本题考查实数的混合运算,解题的关键是记住特殊角的三角函数值进行代入求值即可.22、(1)13;(2)这个游戏规则对双方是不公平的. 【分析】(1)首先根据题意列表,然后根据表求得所有等可能的结果与两数和为6的情况,再利用概率公式求解即可; (2)分别求出和为奇数、和为偶数的概率,即可得出游戏的公平性. 【详解】(1)列表如下:由表可知,总共有9种结果,其中和为6的有3种, 则这两数和为6的概率39=13; (2)这个游戏规则对双方不公平. 理由:因为P (和为奇数)=49,P (和为偶数)=59,而49≠59, 所以这个游戏规则对双方是不公平的. 【点睛】此题考查了列表法求概率.注意树状图与列表法可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)点A 的坐标为(4,0),点B 的坐标为(﹣1,0),点C 的坐标为(0,1);(1)证明见解析;(3)t =34. 【分析】(1)利用x=0和y=0解方程即可求出A 、B 、C 三点坐标; (1)先计算△ABC 的三边长,根据勾股定理的逆定理可得结论;(3)先证明△AEF ∽△ACB ,得∠AEF=∠ACB=90°,确定△AEF 沿EF 翻折后,点A 落在x 轴上点D 处,根据△DCO ≌△BCO 时,BO=OD ,列方程4-4t=1,可得结论. 【详解】(1)解:当y =0时,﹣21322x x +1=0, 解得:x 1=1,x 1=4,∴点A 的坐标为(4,0),点B 的坐标为(﹣1,0), 当x =0时,y =1, ∴点C 的坐标为(0,1);(1)证明:∵A (4,0),B (﹣1,0),C (0,1),∴OA =4,OB =1,OC =1.∴AB =5,AC ==BC =∴AC 1+BC 1=15=AB 1, ∴△ABC 为直角三角形;(3)解:由(1)可知△ABC 为直角三角形.且∠ACB =90°,∵AE =1t ,AF ,∴AF AB AE AC ==, 又∵∠EAF =∠CAB , ∴△AEF ∽△ACB , ∴∠AEF =∠ACB =90°,∴△AEF 沿EF 翻折后,点A 落在x 轴上点 D 处, 由翻折知,DE =AE , ∴AD =1AE =4t ,当△DCO ≌△BCO 时,BO =OD , ∵OD =4﹣4t ,BO =1, ∴4﹣4t =1,t =34, 即:当t =34秒时,△DCO ≌△BCO . 【点睛】本题考查二次函数的性质、抛物线与x 轴的交点、翻折的性质、三角形相似和全等的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 24、(1)∠ADE=30°;(2)∠ADE=30°,理由见解析;(3)92【分析】(1)利用SAS 定理证明△ABD ≌△ACE ,根据全等三角形的性质得到AD =AE ,∠CAE =∠BAD ,根据等腰三角形的性质、三角形内角和定理计算即可证明; (2)同(1)的证明方法相同;(3)证明△ADF ∽△ACD ,根据相似三角形的性质得到26AD AF =,求出AD 的最小值,得到AF 的最小值,求出CF的最大值.【详解】解:(1)∠ADE=30°.理由如下:∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∵∠ACM=∠ACB,∴∠ACM=∠ABC,在△ABD和△ACE中,∵AB ACABC ACE BD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE,∴AD=AE,∠CAE=∠BAD,∴∠DAE=∠BAC=120°,∴∠ADE=30°;(2)(1)中的结论成立,证明:∵∠BAC=120°,AB=AC,∴∠B=∠ACB=30°.∵∠ACM=∠ACB,∴∠B=∠ACM=30°.在△ABD和△ACE中,∵AB ACABC ACE BD CE=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∴∠CAE+∠DAC=∠BAD+∠DAC=∠BAC=120°.即∠DAE=120°,∵AD=AE,∴∠ADE=∠AED=30°;(3)∵AB=AC,AB=6,∴AC=6,∵∠ADE=∠ACB=30°且∠DAF=∠CAD,∴△ADF∽△ACD,∴AD AFAC AD=, ∴AD 2=AF•AC , ∴AD 2=6AF ,∴AF=26AD ,∴当AD 最短时,AF 最短、CF 最长,易得当AD ⊥BC 时,AF 最短、CF 最长,此时AD=12AB=3, ∴AF 最短=26AD =96=32, ∴CF 最长=AC -AF 最短=6-32=92. 【点睛】本题属于三角形综合题,考查了等腰三角形的性质,全等三角形的判定和性质以及相似三角形的判定与性质等知识,解题的关键是正确寻找全等三角形、相似三角形解决问题,属于中考常考题型.25、(1)2y x =+.()80y x x=>;(2)M 的坐标为(2,或()2. 【解析】分析:(1)根据一次函数y=x+b 的图象经过点A (-2,1),可以求得b 的值,从而可以解答本题; (2)根据平行四边形的性质和题意,可以求得点M 的坐标,注意点M 的横坐标大于1. 详解:(1)一次函数的图象经过点()2,0A -,20b ∴-+=,2b ∴=,2y x ∴=+.一次函数与反比例函数()0ky x x=>交于(),4B a . 24a ∴+=,2a ∴=,()2,4B ∴,()80y x x∴=>.(2)设()2,M m m -,8,N m m ⎛⎫⎪⎝⎭. 当//MN AO 且MN AO =时,以A ,O ,M ,N 为顶点的四边形为平行四边形.即:()822m m--=且0m >,解得:m =2m =(负值已舍),M ∴的坐标为(2,或()2.点睛:本题考查反比例函数与一次函数的交点问题,解答本题的关键是明确题意,利用数形结合的思想解答.26、(1)方程有两个不相等的实数根;(2)3或1.【分析】(1)利用一元二次方程根的判别式判断即可;(2)用k表示出方程的两个根,分AB=BC和AC=BC两种情况,分别求出k值即可.【详解】(1)∵方程x2﹣(2k+3)x+k2+3k+2=0,∴△=b2﹣1ac=(2k+3)2﹣1(k2+3k+2)=1k2+12k+9﹣1k2﹣12k﹣8=1>0,∴方程有两个不相等的实数根;(2)x2﹣(2k+3)x+k2+3k+2=0,x1=k+1,x2=k+2,当AB=k+1,AC=k+2,BC=5,由(1)知A B≠AC,故有两种情况:(i)当AC=BC=5时,k+2=5,即k=3;(ii)当AB=BC=5时,k+1=5,即k=1.故当k为3或1时,△ABC是等腰三角形.【点睛】本题考查了一元二次方程的根的判别式与根的关系,△>0时,方程有两个不相等的实数根;△=0时,方程有两个相等的实数根;△<0时,方程没有实数根.熟练掌握一元二次方程的根的判别式与根的关系是解题关键.。
一、选择题1. 已知等差数列{an}的首项为a1,公差为d,则第10项an+10=()A. a1 + 9dB. a1 + 10dC. a1 + 11dD. a1 + 12d答案:C解析:由等差数列的性质可知,第n项an = a1 + (n - 1)d,所以第10项an+10 = a1 + (10 - 1)d = a1 + 9d。
2. 若一个等比数列的前三项分别为2,6,18,则该数列的公比为()A. 2B. 3C. 6D. 9答案:B解析:由等比数列的性质可知,公比q = 第2项 / 第1项 = 6 / 2 = 3。
3. 在直角坐标系中,点A(2,3),B(-1,-2),C(4,5)构成的三角形ABC的面积是()A. 5B. 10C. 15D. 20答案:C解析:由两点间距离公式可得,AB的长度为√[(2 - (-1))^2 + (3 - (-2))^2] = √(3^2 + 5^2) = √34。
同理,BC的长度为√(5^2 + 7^2) = √74。
根据海伦公式,三角形ABC的面积S = √[p(p - AB)(p - BC)(p - CA)],其中p为半周长,p = (AB + BC + CA) / 2。
将AB和BC的长度代入,得到S = √[7(7 - √34)(7 - √74)(7 + √34 + √74)] ≈ 15。
4. 若一个正方形的对角线长度为10,则该正方形的面积为()A. 25B. 50C. 100D. 200答案:C解析:由正方形的性质可知,对角线长度等于边长的√2倍。
所以正方形的边长为10 / √2 = 5√2。
正方形的面积S = 边长^2 = (5√2)^2 = 50。
5. 若一个等差数列的前三项分别为1,3,5,则该数列的第10项是()A. 27B. 29C. 31D. 33答案:D解析:由等差数列的性质可知,第n项an = a1 + (n - 1)d,所以第10项an = 1 + (10 - 1) 2 = 1 + 18 = 19。
九年级上册淄博数学期末试卷测试与练习(word 解析版)一、选择题1.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:32.已知34a b=(0a ≠,0b ≠),下列变形错误的是( ) A .34a b = B .34a b =C .43b a = D .43a b =3.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据: 组 别 1 2 3 4 5 6 7 分 值90959088909285这组数据的中位数和众数分别是 A .88,90B .90,90C .88,95D .90,954.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .455.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-26.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,07.如图,点A 、B 、C 是⊙O 上的三点,∠BAC = 40°,则∠OBC 的度数是( ) A .80°B .40°C .50°D .20°8.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .569.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°10.如图,在□ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 、AF 分别交BD 于点G 、H ,则图中阴影部分图形的面积与□ABCD 的面积之比为( )A .7 : 12B .7 : 24C .13 : 36D .13 : 7211.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④ 12.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是A .相离B .相切C .相交D .无法判断二、填空题13.若方程2410x x -+=的两根12,x x ,则122(1)x x x 的值为__________.14.把边长分别为1和2的两个正方形按如图所示的方式放置,则图中阴影部分的面积是_____.15.如图,在边长为1的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 、CD 相交于点O ,则tan ∠AOD=________.16.某校五个绿化小组一天的植树的棵数如下:9,10,12,x ,8.已知这组数据的平均数是10,那么这组数据的方差是_____. 17.在平面直角坐标系中,抛物线2yx 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.18.点P 在线段AB 上,且BP APAP AB=.设4AB cm =,则BP =__________cm . 19.如图,在由边长为1的小正方形组成的网格中.点 A ,B ,C ,D 都在这些小正方形的格点上,AB 、CD 相交于点E ,则sin ∠AEC 的值为_____.20.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____. 21.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.22.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.23.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.24.如图,在△ABC 中,AC :BC :AB =3:4:5,⊙O 沿着△ABC 的内部边缘滚动一圈,若⊙O 的半径为1,且圆心O 运动的路径长为18,则△ABC 的周长为_____.三、解答题25.如图,平行四边形ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将ABE ∆沿直线AE 翻折至AFE ∆的位置,AF 与CD 交于点G .(1)求证:CG BF CD CF ⋅=⋅; (2)若3AB =8AD =,求DG 的长.26.某果园有100棵橙子树,平均每棵结600个橙子.现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就要减少.根据经验估计,每增种1棵树,平均每棵树就少结5个橙子.设果园增种x 棵橙子树,果园橙子的总产量为y 个.(1)求y 与x 之间的关系式;(2)增种多少棵橙子树,可以使橙子的总产量在60 420个以上?27.已知函数y =ax 2+bx +c (a ≠0,a 、b 、c 为常数)的图像经过点A (-1,0)、B (0,2).(1)b = (用含有a 的代数式表示),c = ;(2)点O 是坐标原点,点C 是该函数图像的顶点,若△AOC 的面积为1,则a = ; (3)若x >1时,y <5.结合图像,直接写出a 的取值范围.28.如图,有一路灯杆AB (底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3m ,沿BD 方向到达点F 处再测得自己的影长FG =4m .如果小华的身高为1.5m ,求路灯杆AB 的高度.29.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀.(1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的a,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y=ax2+bx中的b,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y轴右侧的概率.30.已知二次函数y=-x2+bx+c(b,c为常数)的图象经过点(2,3),(3,0).(1)则b=,c=;(2)该二次函数图象与y轴的交点坐标为,顶点坐标为;(3)在所给坐标系中画出该二次函数的图象;(4)根据图象,当-3<x<2时,y的取值范围是.31.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.32.如图,在平面直角坐标系中,⊙O的半径为1,点A在x轴的正半轴上,B为⊙O上一点,过点A、B的直线与y轴交于点C,且OA2=AB•AC.(1)求证:直线AB是⊙O的切线;(2)若AB3AB对应的函数表达式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 2.B解析:B【解析】【分析】根据两内项之积等于两外项之积对各项分析判断即可得解. 【详解】 解:由34a b,得出,3b=4a, A.由等式性质可得:3b=4a ,正确; B.由等式性质可得:4a=3b ,错误; C. 由等式性质可得:3b=4a ,正确; D. 由等式性质可得:4a=3b ,正确. 故答案为:B. 【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.3.B解析:B 【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,90,90,90,92,95,∴中位数是按从小到大排列后第4个数为:90.众数是在一组数据中,出现次数最多的数据,这组数据中90出现三次,出现的次数最多,故这组数据的众数为90. 故选B .4.B解析:B 【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是25. 故选B. 考点:概率.5.C解析:C 【解析】 【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m 值的范围. 【详解】解:抛物线的对称轴为直线221m xm∵10a=-<,抛物线开口向下,∴当x m<时,y的值随x值的增大而增大,∵当2x<-时,y的值随x值的增大而增大,∴2m≥-,故选:C.【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.6.C解析:C【解析】外心在BC的垂直平分线上,则外心纵坐标为-1.故选C.7.C解析:C【解析】∵∠BOC=2∠BAC,∠BAC=40°∴∠BOC=80°,∵OB=OC,∴∠OBC=∠OCB=(180°-80°)÷2=50°故选C.8.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个,∴卡片上的数为无理数的概率是21 =63.故选B.【点睛】本题考查了无理数的定义及概率的计算. 9.C解析:C【解析】【分析】设∠A 、∠C 分别为x 、2x ,然后根据圆的内接四边形的性质列出方程即可求出结论. 【详解】解:设∠A 、∠C 分别为x 、2x , ∵四边形ABCD 是圆内接四边形, ∴x +2x =180°,解得,x =60°,即∠A =60°, 故选:C . 【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.10.B解析:B 【解析】 【分析】根据已知条件想办法证明BG=GH=DH ,即可解决问题; 【详解】解:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD ∥BC ,AB=CD ,AD=BC , ∵DF=CF ,BE=CE , ∴12DH DF HB AB ==,12BG BE DG AD ==, ∴13DH BG BD BD ==, ∴BG=GH=DH ,∴S △ABG =S △AGH =S △ADH , ∴S 平行四边形ABCD =6 S △AGH , ∴S △AGH :ABCD S 平行四边形=1:6, ∵E 、F 分别是边BC 、CD 的中点, ∴12EF BD =, ∴14EFC BCDD S S =, ∴18EFCABCDS S =四边形, ∴1176824AGHEFCABCDSSS +=+=四边形=7∶24, 故选B. 【点睛】本题考查了平行四边形的性质、平行线分线段成比例定理、等底同高的三角形面积性质,题目的综合性很强,难度中等.11.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA∴==,∠=︒,90ACQ∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BADAFP ADB90∠=∠,∴∆∆∽,APF ABD∴AP AF=,AB AD∴⋅=⋅,AP AD AF AB∠=∠=︒,AFC ACB∠=∠,90CAF BAC∽,∴∆∆ACF ABC可得2=,AC AF AB∠=∠,ACQ ACB∠=∠,CAQ ABC∽,可得2CAQ CBA∴∆∆=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题13.5【解析】【分析】根据根与系数的关系求出,代入即可求解.【详解】∵是方程的两根∴=-=4,==1∴===4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是解析:5【解析】【分析】根据根与系数的关系求出12x x +,12x x ⋅代入即可求解.【详解】∵12,x x 是方程2410x x -+=的两根∴12x x +=-b a =4,12x x ⋅=c a=1 ∴122(1)x x x =1122x x x x ++=1212x x x x ++=4+1=5,故答案为:5.【点睛】此题主要考查根与系数的关系,解题的关键是熟知12x x +=-b a ,12x x ⋅=c a的运用. 14.【解析】【分析】由正方形的性质易证△ABC∽△FEC,可设BC=x ,只需求出BC 即可求出图中阴影部分的面积.【详解】如图所示:设BC =x ,则CE =1﹣x ,∵AB∥E F ,∴△ABC∽△ 解析:16【解析】【分析】由正方形的性质易证△ABC ∽△FEC ,可设BC=x ,只需求出BC 即可求出图中阴影部分的面积.【详解】如图所示:设BC=x,则CE=1﹣x,∵AB∥EF,∴△ABC∽△FEC∴ABEF=BCCE,∴12=x1x解得x=13,∴阴影部分面积为:S△ABC=12×13×1=16,故答案为:16.【点睛】本题主要考查正方形的性质及三角形的相似,本题要充分利用正方形的特殊性质.利用比例的性质,直角三角形的性质等知识点的理解即可解答.15.2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求解析:2【解析】【分析】首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.【详解】如图,连接BE,∵四边形BCEK是正方形,∴KF=CF=12CK,BF=12BE,CK=BE,BE⊥CK,∴BF=CF,根据题意得:AC∥BK,∴△ACO∽△BKO,∴KO:CO=BK:AC=1:3,∴KO:KF=1:2,∴KO=OF=12CF=12BF,在Rt△PBF中,tan∠BOF=BFOF=2,∵∠AOD=∠BOF,∴tan∠AOD=2.故答案为2【点睛】此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.16.2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],计算方差即可.【详解】∵组数据的平均数是10,∴(9+10+12+x+8解析:2【解析】【分析】首先根据平均数确定x的值,再利用方差公式S2=1n[(x1﹣x)2+(x2﹣x)2+…+(x n﹣x)2],计算方差即可.【详解】∵组数据的平均数是10,∴15(9+10+12+x+8)=10, 解得:x =11, ∴S 2=15[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(8﹣10)2], =15×(1+0+4+1+4), =2.故答案为:2.【点睛】本题考查了方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1﹣x )2+(x 2﹣x )2+…+(x n ﹣x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.【解析】【分析】根据二次函数性质可得出点的坐标,求得直线为,联立方程求得的坐标,即可求得的坐标,同理求得的坐标,即可求得的坐标,根据坐标的变化找出变化规律,即可找出点的坐标.【详解】解:∵解析:2(1010,1010)-【解析】【分析】根据二次函数性质可得出点1A 的坐标,求得直线12A A 为2y x =+,联立方程求得2A 的坐标,即可求得3A 的坐标,同理求得4A 的坐标,即可求得5A 的坐标,根据坐标的变化找出变化规律,即可找出点2019A 的坐标.【详解】解:∵A 点坐标为()1,1,∴直线OA 为y x =,()11,1A -,∵12A A OA ∕∕,∴直线12A A 为2y x =+,解22y x y x =+⎧⎨=⎩得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩, ∴()22,4A ,∴()32,4A -,∵34A A OA ∕∕,∴直线34A A 为6y x =+,解26y x y x =+⎧⎨=⎩得24x y =-⎧⎨=⎩或39x y =⎧⎨=⎩, ∴()43,9A ,∴()53,9A -…,∴()220191010,1010A -,故答案为()21010,1010-. 【点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.18.【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x ,根据题意可得,,整理为:,利用求根公式解方程得:,∴,(舍去).解析:(6-【解析】【分析】根据题意,将问题转化为解一元二次方程的求解问题即可得出答案.【详解】解:设BP=x ,则AP=4-x , 根据题意可得,444x x x -=-, 整理为:212160x x -+=,利用求根公式解方程得:x 6===±,∴16x =-264x =+>(舍去).故答案为:625-.【点睛】本题考查的知识点是由实际问题抽化出来的一元二次方程问题,将问题转化为一元二次方程求解问题,熟记一元二次方程的求根公式是解此题的关键.19.【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求解析:25【解析】【分析】通过作垂线构造直角三角形,由网格的特点可得Rt△ABD是等腰直角三角形,进而可得Rt△ACF是等腰直角三角形,求出CF,再根据△ACE∽△BDE的相似比为1:3,根据勾股定理求出CD的长,从而求出CE,最后根据锐角三角函数的意义求出结果即可.【详解】过点C作CF⊥AE,垂足为F,在Rt△ACD中,CD=221310+=,由网格可知,Rt△ABD是等腰直角三角形,因此Rt△ACF是等腰直角三角形,∴CF=AC•sin45°=22,由AC∥BD可得△ACE∽△BDE,∴13 CE ACDE BD==,∴CE=14CD=10,在Rt△ECF中,sin∠AEC=225210CFCE=⨯=,故答案为:25.【点睛】考查锐角三角函数的意义、直角三角形的边角关系,作垂线构造直角三角形是解决问题常用的方法,借助网格,利用网格中隐含的边角关系是解决问题的关键.20.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.21.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 22.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.23.y=0.5(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.24.30【解析】【分析】如图,首先利用勾股定理判定△ABC是直角三角形,由题意得圆心O所能达到的区域是△DEG,且与△ABC三边相切,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ解析:30【解析】【分析】如图,首先利用勾股定理判定△ABC 是直角三角形,由题意得圆心O 所能达到的区域是△DEG ,且与△ABC 三边相切,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BM ,DG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,继而则有矩形DEPG 、矩形EQNF 、矩形DFMH ,从而可知DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN ,∠PEF =90°,根据题意可知四边形CPEQ 是边长为1的正方形,根据相似三角形的判定可得△DEF ∽△ACB ,根据相似三角形的性质可知:DE ∶EF ∶FD =AC ∶CB ∶BA =3∶4∶5,进而根据圆心O 运动的路径长列出方程,求解算出DE 、EF 、FD 的长,根据矩形的性质可得:GP 、QN 、MH 的长,根据切线长定理可设:AG =AH =x ,BN =BM =y ,根据线段的和差表示出AC 、BC 、AB 的长,进而根据AC ∶CB ∶BA =3∶4∶5列出比例式,继而求出x 、y 的值,进而即可求解△ABC 的周长.【详解】∵AC ∶CB ∶BA =3∶4∶5,设AC =3a ,CB =4a ,BA =5a (a >0)∴()()()222222=345AC CB a a a BA ++==∴△ABC 是直角三角形,设⊙O 沿着△ABC 的内部边缘滚动一圈,如图所示,连接DE 、EF 、DF ,设切点分别为G 、H 、P 、Q 、M 、N ,连接DH 、DG 、EP 、EQ 、FM 、FN ,根据切线性质可得:AG =AH ,PC =CQ ,BN =BMDG 、EP 分别垂直于AC ,EQ 、FN 分别垂直于BC ,FM 、DH 分别垂直于AB ,∴DG ∥EP ,EQ ∥FN ,FM ∥DH ,∵⊙O 的半径为1∴DG =DH =PE =QE =FN =FM =1,则有矩形DEPG 、矩形EQNF 、矩形DFMH ,∴DE =GP ,EF =QN ,DF =HM ,DE ∥GP ,DF ∥HM ,EF ∥QN,∠PEF =90°又∵∠CPE =∠CQE =90°, PE =QE =1∴四边形CPEQ 是正方形,∴PC =PE =EQ =CQ =1,∵⊙O 的半径为1,且圆心O 运动的路径长为18,∴DE +EF +DF =18,∵DE∥AC,DF∥AB,EF∥BC,∴∠DEF=∠ACB,∠DFE=∠ABC,∴△DEF∽△ABC,∴DE:EF:DF=AC:BC:AB=3:4:5,设DE=3k(k>0),则EF=4k,DF=5k,∵DE+EF+DF=18,∴3k+4k+5k=18,解得k=32,∴DE=3k=92,EF=4k=6,DF=5k=152,根据切线长定理,设AG=AH=x,BN=BM=y,则AC=AG+GP+CP=x+92+1=x+5.5,BC=CQ+QN+BN=1+6+y=y+7,AB=AH+HM+BM=x+152+y=x+y+7.5,∵AC:BC:AB=3:4:5,∴(x+5.5):(y+7):(x+y+7.5)=3:4:5,解得x=2,y=3,∴AC=7.5,BC=10,AB=12.5,∴AC+BC+AB=30.所以△ABC的周长为30.故答案为30.【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点.三、解答题25.(1)见解析;(2【解析】【分析】(1)根据平行四边形的性质得AB∥CD,AB=CD,通过两角对应相等证明△FCG∽△FBA,利用对应边成比例列比例式,进行等量代换后化等积式即可;(2)根据直角三角形30°角所对的直角边等于斜边的一半及勾股定理,求出BE的长,再由折叠性质求出BF长,结合(1)的结论代入数据求解.【详解】解(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC∴∠GCF=∠B, ∠CGF=∠BAF,∴△FCG∽△FBA,∴CG CF AB BF= ,∴CG CF CD BF∴CG BF CD CF⋅=⋅.(2)∵AE BC⊥,∴∠AEB=90°,∵∠B=30°, AB=∴AE=123 2AB ,由勾股定理得,BE=6,由折叠可得,BF=2BE=12,∵AD=BC=8,∴CF=4∵CG BF CD CF⋅=⋅,∴124CG=,∴ ,∴.【点睛】本题考查平行四边形的性质和相似三角形的判定与性质,平行四边形的性质即为相似三角形判定的条件,利用相似三角形的对应边成比例是解答问题的关键.26.(1)y=600-5x(0≤x<120);(2)7到13棵【解析】【分析】(1)根据增种1棵树,平均每棵树就会少结5个橙子列式即可;(2)根据题意列出函数解析式,然后根据函数关系式y=-5x2+100x+60000=60420,结合一元二次方程解法得出即可.【详解】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600-5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600-5x)(100+x)=-5x2+100x+60000当y=-5x2+100x+60000=60420时,整理得出:x2-20x+84=0,解得:x1=14,x2=6,∵抛物线对称轴为直线x=1002(5)-⨯-=10,∴增种7到13棵橙子树时,可以使果园橙子的总产量在60420个以上.【点睛】此题主要考查了二次函数的应用,准确分析题意,列出y与x之间的二次函数关系式是解题关键.27.(1)a+2;2;(2)-2或6±3)8a≤--【解析】【分析】(1)将点B的坐标代入解析式,求得c的值;将点A代入解析式,从而求得b;;(2)由题意可得AO=1,设C点坐标为(x,y),然后利用三角形的面积求出点C的纵坐标,然后代入顶点坐标公式求得a的值;(3)结合图像,若x>1时,y<5,则顶点纵坐标大于等于5,根据顶点纵坐标公式列不等式求解即可.【详解】解:(1)将B(0,2)代入解析式得:c=2将A(-1,0)代入解析式得: a×(-1)2+b×(-1)+c=0∴a-b+2=0∴b=a+2故答案为:a+2;2(2)由题意可知:AO=1设C点坐标为(x,y)则111 2y⨯⨯=解得:2y=±当y=2时,242 4ac ba-=由(1)可知,b=a+2;c=2∴242(2)24a aa⨯-+=解得:a=-2当y=-2时,242 4ac ba-=-由(1)可知,b=a+2;c=2∴242(2)24a a a⨯-+=-解得:6a =±∴a 的值为-2或6±(3)若x >1时,y <5,又因为图像过点A (-1,0)、B (0,2)∴图像开口向下,即a <0则该图像顶点纵坐标大于等于5 ∴2454ac b a-≥ 即242(2)54a a a⨯-+≥解得:8a ≤--或8a ≥-+∴a 的取值范围为8a ≤--【点睛】本题考查二次函数的性质,掌握顶点坐标公式及数形结合思想解题是本题的解题关键.28.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG , ∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7, ∴3437DB BD =++, ∴BD =9,BF =9+3=12, ∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.29.(1)12;(2)23.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a、b异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12,故答案为:1 2(2)画树状图为:共有12种等可能的结果数,其中a、b异号有8种结果,∴这个二次函数的图象的对称轴在y轴右侧的概率为812=23.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比,熟练掌握a、b异号时,对称轴在y轴右侧是解题关键.30.(1)b=2,c=3;(2)(0,3),(1,4)(3)见解析;(4)-12<y≤4【解析】【分析】(1)将点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 即可;(2)由(1)可得解析式,将二次函数的解析式华为顶点式即可;(3)根据二次函数的定点、对称轴及所过的点画出图象即可;(4)直接由图象可得出y 的取值范围.【详解】(1)解:把点(2,3),(3,0)的坐标直接代入y =-x 2+bx +c 得3=-4+2b+c 0=-9+3b+c ⎧⎨⎩,解得23b c =⎧⎨=⎩ , 故答案为:b=2,c=3;(2)解:令x=0,c=3, 二次函数图像与y 轴的交点坐标为则(0,3),二次函数解析式为y=y =-x 2+2x +3=-(x-1)²+4,则顶点坐标为(1,4).(3)解:如图所示…(4)解:根据图像,当-3<x <2时,y 的取值范围是:-12<y ≤4.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x 轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的图象与性质.31.(1)①y =-10x +700;②当该商品的售价是50元/件时,月销售利润最大,最大利润是4000元.(2)2.【解析】【分析】(1)①将点(40,300)、(45,250)代入一次函数表达式:y=kx+b 即可求解; ②设该商品的售价是x 元,则月销售利润w= y (x -30),求解即可;(2)根据进价变动后每件的利润变为[x-(m+30)]元,用其乘以月销售量,得到关于x 的二次函数,求得对称轴,判断对称轴大于50,由开口向下的二次函数的性质可知,当x=40时w 取得最大值2400,解关于m 的方程即可.【详解】(1)①解:设y =kx +b (k ,b 为常数,k ≠0)。
第一学期期末质量检测初四数学试题本试题共包含三道大道24个小题,满分120分,检测时间120分钟.一、选择题(本题共12小题,在每小题所给的四个选项中,只有一个是正确的,请把正确的选项填在下面的表中,每小题3分,满分36分,错选、不选或选出的答案超过一个,均记0分.)1.抛物线22y x x m =-++(是常数)的顶点在 A.第一象限B.第二象限C.第三象限D.第四象限2.把一个正六棱柱如图摆放,光线由上向下照射此六棱柱时的正投影是第2题 A. B C. D. 3.某几何体的左视图如下图所示,则该几何体不可能是第3题 A. B C. D.4.点A(-3,y 1),B(-2,y 2),C(3,y 3)都在反比例函数4y x=的图象上,则 A.123y y y <<B.321y y y <<C.312y y y <<D.213y y y <<5.为了方便行人推车过某天桥,市政府在10m 高的天桥一侧修建了40m 长的斜道(如图所示),我们可以借助科学计算器求这条斜道倾斜角的度数.具体按键顺序是B.C. D.6.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字-1,0,1,2.若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字都是正数的概率是 A.18B.16C.14D.127.红红和娜娜按下图所示的规则玩“锤子、剪刀、布”游戏,游戏规则:若一人出“剪刀”,另一人出“布”,则出“剪刀”者胜;若一人出“锤子”,另一人出“剪刀”,则出“锤子”者胜;若一人出“布”,另一人出“锤子”,则出“布”者胜,若两人出相同的手势,则两人平局. 下列说法中错误的是A.红红不是胜就是输,所以红红胜的概率为12B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为13D.娜娜胜的概率和两人出相同手势的概率一样8.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则正比例函数()y b c x =+与反比例函数a b cy x-+=在同一坐标系中的大致图象是第8题 A. B. C. D. 9.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD,∠BAD=20°,则下列说法中正确的是 A.AD=2OB B.CE=EO C.∠OCE=40°D. ∠BOC=2∠BAD10.如图,半圆的直径BC 边与等腰直角三角形ABC 的一条直角边完全重合,若BC=4,则图中阴影部分的面积是 A.2+2πB.2+πC.4+πD.2+4π第10题 第11题 第12题11.一次函数(0)y kx b k =+≠的图象经过A(-1,-4),B(2,2)两点,如图,点P 为反比例函数kb y x=图象上的一个动点,O 为坐标原点,过点P 作x 轴的垂线,垂足为C ,则△PCO 的面积为 A.2B.4C.8D.不确定12.如图,AB 是⊙O 的直径,C 、D 、E 在⊙O 上,若∠AED=20°,则∠BCD 的度数是 A.100° B.110° C.115° D.120°二、填空题(每小题4分,共20分)13.抛物线22(3)4y x =-+的项点坐标是_________.14.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为__________. 15.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的频率为__________.16.如图,已知在△ABC 中,AB=AC ,以AB 为直径作半圆O.交BC 于点D ,若∠BAD=40°,则AD 的度数是__________度.第14题第16题第17题17.如图,在△ABC 中,AC ⊥BC ,∠ABC=30°,点D 是CB 延长线上的一点,且BD=BA ,则 tan ∠DAC 的值为__________.三、解答题(第18,19,20,21,22,23每题9分,第24题10分,满分64分)A 袋中装有编号为1,2,3的三个小球,B 袋中装有编号为4,5,6的三们小球,两袋中的所有小球的编号外都相同,从两个袋子中分别随机摸出一个小球,若B 袋摸出的小球的编号与A 袋摸出小球的编号之差为偶数。
则小华胜,否则小军胜,这个游戏对双方公平吗?请说明理由.19.如图,C 地在A 地的正东方向,因有大山阻隔. 由A 地到C 地需要绕行B 地. 已知B 位于A 地北偏东67°方向,距离A 地520km ,C 地位于B 地南偏东30°方向.若打通穿山隧道,建成两地直达高铁,求A 地到C地之间高铁线路的长(用进一法,结果保留整数)(参考数据:125sin 67cos67tan 67 1.731313︒≈︒≈︒≈≈,,)第19题20.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,点P 在CA 的延长线上,∠CAD=45°. (1)若AB=4,求CD 的长. (2)若BC AD =,AD=AP.求证:PD 是⊙O 的切线.第20题21.某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?22.随着新农村的建设和旧城的改造,我们的家园越来越美丽.小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高2米的喷水管,它喷出的抛物线形水柱与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米.(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度是多少?第22题23.已知AB 是⊙O 的直径,AT 是⊙O 的切线,∠ABT=50°,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D.图①图②第23题 (1)如图①,求∠T 和∠CDB 的大小; (2)如图②,当BE=BC ,求∠CDO 的大小.24.如图,抛物线21144y x x c =++与x 轴的负半轴交于点A ,与y 轴交于点B ,连接AB ,点1562C ⎛⎫ ⎪⎝⎭,在抛物线上,直线AC 与y 轴交于点D. (1)求c 的值及直线AC 的函数表达式;(2)点P 在x 轴正半轴上,点Q 在y 轴正半轴上,连接PQ 与直线AC 交于点M ,连结MO 并延长交AB 于点N ,若M 为PQ 的中点. ①求证:△APM ∽△AON ;②设点M 的横坐标为m ,求AN 的长(用含m 的代数式表示).第24题上学期期末质量检测 初四数学试题参考答案友情提示:解题方法只要正确,可参照得分.一、选择题(本题共12小题,在每小题所给的四个选项中,只有一个是正确的,请把正确的选项填在下面的表中,每小题3分,满分36分,错选、不选或选出的答案超过一个,均记0分.)13.(3,4) 14.48+1316.140 17.2三、解答题(第18,19,20,21,22,23每题9分,第24题10分,满分64分) 18.解:列表如下:………………3分共有9种等可能结果,其中B 袋中数字减去A 袋中数字为偶数有4种等可能结果()49P =小军胜 ……………………5分 则小军胜的概率为45199-= ……………………8分 ∵4599≠, ∴不公平 ……………………9分19.解:如图,作BD ⊥AC 于点D ,……………1分 在Rt △ABD 中,∠ABD=67°12sin 6713AD AB ︒=≈ 5cos 6713BD AB ︒=≈ ………………3分∴125480(km)200(km)1313AD AB BD AB ====, ……………………5分 在Rt △BCD 中,∠CBD=30°tan 303CD BD ︒==,∴116(km)3CD BD =≈ ……………………7分 ∴596(km)AC CD DA =+≈ ……………………9分 答:AC 之间的距离为596km.20.解:(1)连接OC ,OD , ……………………1分 ∵∠COD=2∠CAD ,∠CAD=45°∴∠COD=90° ……………………2分 ∵AB=4 ∴122OC AB == ……………………3分 ∴CD 的长90π2π180⨯⨯== ……………………4分(2)∵BC AD =∴∠BOC=∠AOD ,…………5分 ∵∠COD=90°,∴∠AOD=180452COD︒-∠=︒∵OA=OD ,∴∠ODA=∠OAD , ……………………6分 ∵∠AOD+∠ODA+∠OAD=180° ∴∠ODA=18067.52AOD︒-∠=︒,∵AD=AP , ∴∠ADP=∠APD …………………7分 ∵∠CAD=∠ADP+∠APD , ∠CAD=45°, ∴∠ADP=12∠CAD=22.5°, ∴∠ODP=∠ODA+∠ADP=90°………………8分 又∵OD 是半径,∴PD 是⊙O 的切线………………8分 21.解:(1)由表中数据得:xy=6000. ∴6000y x=, ∴y 是x 的反比例函数, 所求函数关系式为6000y x=………………4分 (2)由题意得:(x -120)y=3000,………………5分把6000y x =代入得(x -120) ·6000x=3000,………………6分 解得:x=240,………………7分经检验,x=240是原方程的概;………………8分答:若商场计划每天的销售利润为3000元,则其单价应定为240元.………………9分22.解:(1)如图,以水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.由题意可设抛物线的函数解析式为y=a(x -1)2+k(0≤x ≤3) ………………1分 抛物线过点(0,2)和(3,0),代入抛物线解析式得:402a k a k +=⎧⎨+=⎩………………2分 解得:2383a k ⎧=-⎪⎪⎨⎪=⎪⎩………………3分所以,抛物线的解析式为:228(1)(03)33y x x =--+≤≤………………4分 化为一般形式为:2242(03)33y x x x =-++≤≤ (2)由(1)知抛物线 的解析式为228(1)(03)33y x x =--+≤≤ 当x=1时,83y =……………8分 所以抛物线水柱的最大高度为8m 3……………9分 23.解:(1)如图,连接AC ,……………1分 ∵AB 是⊙O 的直径,AD 是⊙O 的切线, ∴AT ⊥AB ,即∠TAB=90°……………2分 ∵∠ABT=50°,∴∠T=90°-∠ABT=40°……………3分 由AB 是⊙O 的直径,得∠ACB=90°, ∴∠CAB=90°-∠ABC=40°……………4分 ∴∠CDB=∠CAB=40°;……………5分 (2)如图,连接AD ……………6分 在△BCE 中,BE =BC ,∠EBC=50°,第22题图①∴∠BCE =∠BEC=65°,∴∠BAD=∠BCD=65°……………7分 ∵OA=OD∴∠ODA=∠OAD=65°……………8分 ∵∠ADC=∠ABC=50°∴∠CDO=∠ODA -∠ADC=15°……………9分 24.解:(1)把点1562C ⎛⎫ ⎪⎝⎭,代入21144y x x c =++ 解得:c=-3……………1分 ∴211344y x x =+-. 当y=0时,2113044x x +-= 解得:1243x x =-=, ……………2分 ∴A(-4,0)设直线AC 的表达式为y=kx+b(k ≠0)把A(-4,0),1562C ⎛⎫⎪⎝⎭,代入得401562k b k b -+=⎧⎪⎨+=⎪⎩解得:34k =,3b = ∴直线AC 的表达式为334y x =+ ……………2分 (2)①在Rt △AOB 中,3tan 4OB OAB OA ∠== 在Rt △AOD 中,3tan 4OD OAD OA ∠== ∴∠OAB=∠OAD∵在Rt △POQ 中,M 为PQ 的中点 ∴OM=MP∴∠MOP=∠MPO ……………4分 ∵∠MOP=∠AON∴∠APM=∠AON ……………5分 ∴△APM ∽△AON ……………6分②如图,过点M 作ME ⊥x 轴于点E ……………7分 ∵OM=MP ∴OE=EP∵点M 的横坐标为m ∴AE=m+4,AP=2m+4…………8分∵3tan4OAD∠=∴4cos cos5EAM OAD∠=∠=∴55(4)44mAM AE+==…………9分∵△APM∽△AON ∴AM AP AN AO=∴52024AM AO mANAP m⋅+==+…………10分。