江苏省南京市溧水区第三高级中学高二数学午练(1-2)
- 格式:doc
- 大小:105.50 KB
- 文档页数:3
江苏省南京市溧水县第三中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若复数(i是虚数单位),则()A. B. C. D.参考答案:B.,故选B.2. 在四边形中,∥,,将沿折起,使平面平面,构成三棱锥,则在三棱锥中,下列命题正确的是()A.平面平面 B.平面平面C.平面平面 D.平面平面参考答案:D略3. 已知等差数列的前项和为,且满足,则数列的公差是()A. B.1 C.2 D.3参考答案:C4. 如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,O是底面ABCD的中心,E、F分别是CC1、AD 的中点,那么异面直线OE和FD1所成的角的余弦值等于()A.B.C.D.参考答案:B【考点】异面直线及其所成的角.【分析】先通过平移将两条异面直线平移到同一个起点,得到的锐角或直角就是异面直线所成的角,在三角形中再利用余弦定理求出此角即可.【解答】解:取BC的中点G.连接GC1∥FD1,再取GC的中点H,连接HE、OH,则∠OEH为异面直线所成的角.在△OEH中,OE=,HE=,OH=.由余弦定理,可得cos∠OEH=.故选B.5. 设为两个不同的平面,m,n为两条不同的直线,且,下列说法正确的是 ( )(A) (B).(C) (D)参考答案:B6. 已知直线y=kx+b经过一、二、三象限,则有()A.k<0,b<0 B.k<0,b>0 C.k>0,b>0 D.k>0,b<0参考答案:C【考点】确定直线位置的几何要素.【分析】根据直线对应图象经过的象限,确定直线斜率和截距的取值范围即可.【解答】解:∵直线y=kx+b经过一、二、三象限,∴直线y=kx+b的斜率k>0,∴f(0)=b>0,故选:C.7. 已知焦点在x轴上的椭圆过点A(﹣3,0),且离心率e=,则椭圆的标准方程是()A. =1 B. =1C. =1 D. =1参考答案:D【考点】椭圆的简单性质.【专题】方程思想;分析法;圆锥曲线的定义、性质与方程.【分析】设椭圆的方程为+=1(a>b>0),由题意可得a=3,由离心率公式和a,b,c的关系,可得b,进而得到椭圆方程.【解答】解:设椭圆的方程为+=1(a>b>0),由题意可得a=3,e==,可得c=,b===2,则椭圆方程为+=1.故选:D.【点评】本题考查椭圆的方程的求法,注意运用椭圆的性质及离心率公式和a,b,c的关系,考查运算能力,属于基础题.8. 从台甲型和台乙型电视机中任意取出台,其中至少有甲型与乙型电视机各台,则不同的取法共有()A.种 B.种 C.种 D.种参考答案:C略9. 已知函数(其中为大于1的常数),则()A. B. C. D.参考答案:D10. 已知双曲线C:的左、右焦点分别为F1,F2,O为坐标原点,倾斜角为的直线过右焦点F2且与双曲线的左支交于M点,若,则双曲线的离心率为()A.B.C.D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 命题:,如果,则或的否命题是 . 参考答案:,如果,则且12. 若椭圆两焦点为F 1(﹣4,0),F 2(4,0)点P 在椭圆上,且△PF 1F 2的面积的最大值为12,则此椭圆的方程是 .参考答案:考点: 椭圆的标准方程;椭圆的简单性质. 专题: 计算题.分析: 先设P 点坐标为(x ,y ),表示出△PF 1F 2的面积,要使三角形面积最大,只需|y|取最大,因为P 点在椭圆上,所以当P 在y 轴上,此时|y|最大,故可求.解答: 解:设P 点坐标为(x ,y ),则,显然当|y|取最大时,三角形面积最大.因为P 点在椭圆上,所以当P 在y 轴上,此时|y|最大,所以P 点的坐标为(0,±3),所以b=3.∵a 2=b 2+c 2,所以a=5∴椭圆方程为.故答案为点评: 本题的考点是椭圆的标准方程,主要考查待定系数法求椭圆的方程,关键是利用△PF 1F 2的面积取最大值时,只需|y|取最大13. 已知, (为两两互相垂直的单位向量),那么= .参考答案:–65 略14. 8名世界网球顶级选手在上海大师赛上分成两组,每组各4人,分别进行单循环赛,每组决出前两名,再由每组的第一名与另一组的第二名进行淘汰赛,获胜者角逐冠、亚军,败者角逐第3、4名,大师赛共有________场比赛.(请用数字作答) 参考答案: 16;15. 如图所示,正方形OABC 的边长为1,则对角线OB 与函数y=x 3围成的阴影部分的面积为.参考答案:考点:定积分在求面积中的应用.专题:导数的综合应用.分析:首先由图形利用定积分表示阴影部分的面积,然后计算定积分.解答: 解:依题意可知,阴影部分面积为S==()|=;故答案为:.点评:本题考查了利用定积分求曲边梯形的面积;关键是利用定积分正确表示面积.16. 某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X=0)=,则随机变量X 的数学期望E (X )= .参考答案:【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】根据该毕业生得到面试的机会为0时的概率,做出得到乙、丙公司面试的概率,根据题意得到X的可能取值,结合变量对应的事件写出概率和做出期望.【解答】解:由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,∵P(X=0)=,∴,∴p=,P(X=1)=+=P(X=2)==,P(X=3)=1﹣=,∴E(X)==,故答案为:17. 若变量满足约束条件,则目标函数的最小值是________。
江苏省南京市溧水区第二高级中学、第三高级中学等三校联考2024届数学高一下期末质量检测模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知圆O 1:x 2+y 2=1与圆O 2:(x ﹣3)2+(x+4)2=16,则圆O 1与圆O 2的位置关系为( ) A .外切B .内切C .相交D .相离2.下列说法中正确的是( ) A .棱柱的侧面可以是三角形 B .正方体和长方体都是特殊的四棱柱 C .所有的几何体的表面都能展成平面图形 D .棱柱的各条棱都相等 3.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是( ) A .B .C .D .4.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13B 2C 3D .235.为了得到函数2sin 23y x π⎛⎫=+ ⎪⎝⎭的图像,可以将函数2sin 2y x =的图像( ) A .向右平移3π个长度单位 B .向左平移3π个长度单位 C .向右平移6π个长度单位 D .向左平移6π个长度单位 6.一支由学生组成的校乐团有男同学48人,女同学36人,若用分层抽样的方法从该乐团的全体同学中抽取21人参加某项活动,则抽取到的男同学人数为( ) A .10B .11C .12D .137.圆()2224x y -+=的圆心坐标和半径分别为( ) A .()0,2,2B .()2,0,2C .(2,04),-D .()2,0,48.直线1l ,2l ,3l 的斜率分别为1k ,2k ,3k ,如图所示,则( )A .321k k k <<B .231k k k <<C .123k k k <<D .213k k k <<9.已知偶函数()f x 在区间[)0,+∞上单调递增,则满足(lg )(1)f x f <的x 的取值范围是( ) A .1,1010⎛⎫⎪⎝⎭B .[1,10)C .(0,10)D . 10,(10,)10⎛⎫⋃+∞ ⎪⎝⎭10.不等式220x x --≤的解集是( ) A .[]1,2-B .[]1,1-C .[]2,1-D .[]22-,二、填空题:本大题共6小题,每小题5分,共30分。
江苏省溧水县第三高级中学2007-2008学年度高二数学第一学期第二次月考试卷满分:160分 时间:120分钟一、填空题(14小题⨯5=70分)把答案写在答题卷上的相应位置 1、命题“01,2>++∈∀x x R x ”的否定是 ▲ .2、曲线y=x 3-1在点(1,0)处的切线方程为 ▲ .3、已知△ABC 的两顶点为(2,0),(2,0)B C -,它的周长为10,则顶点A 轨迹方程为▲ .4、双曲线2216436x y -=左支上的点P 到左准线的距离是10,那么P 到其右焦点的距离是▲ . 5、若椭圆22211x y m +=+的离心率为2,则它的长半轴长为 ▲ . 6、曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为 ▲ .7、函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有 ▲ 个极小值点.8、若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 ▲ .9、函数32()31f x x x =-+是减函数的区间为 ▲ .10、若x ax x f +=3)(恰有三个单调区间,则a 的取值范围为 ▲ .11、物体的运动方程是s=-31t 3+2t 2-5,则物体在t=3时的瞬时速度为 ▲ .12、已知函数==∙=+ab x y x a y b a 则,的导数为 62/ ▲ .13、设12,F F 是双曲线116922=-y x 的两个焦点,点P 在双曲线上,且01260F PF ∠=, 则△12F PF 的面积为 ▲ .14、已知 {}()(){}032:;4:>--<-=x x x q a x x A p ,且非p 是非q 的充分不必要条件,则a 的取值范围为 ▲ .二、解答题(6题,共90分)解答应写出文字说明、证明过程或推演步骤15、(本小题满分15分)已知椭圆的中心在原点,焦点在x 轴上,一条准线的方程为254x =-,焦点到相应准线的距离为94. (1)求该椭圆的标准方程;(2)写出该椭圆的长轴长,短轴长,离心率,焦点坐标和顶点坐标; (3)求以已知椭圆的焦点为顶点,而以椭圆的顶点为焦点的双曲线方程.16、(本题满分12分)在边长为60cm 的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?17、(本题满分15分)已知p :方程012=++mx x 有两个不相等的负实根;q :方程01)2(2=+-+x m x 无实根,若q p 或为真,q p 且为假,求m 取值范围.18、(本题满分16分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值(1) 求a 、b 的值与函数f (x )的单调区间(2) 若对x ∈[-1,2],不等式f (x )< c 2恒成立,求c 的取值范围。
溧水区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知f (x )=,则f (2016)等于( )A .﹣1B .0C .1D .22. 已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D .3. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,) C .(2.+∞) D .(1,2)4. 设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤25. 命题“设a 、b 、c ∈R ,若ac 2>bc 2则a >b ”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ) A .0 B .1C .2D .36. 已知a=21.2,b=(﹣)﹣0.8,c=2log 52,则a ,b ,c 的大小关系为( ) A .c <b <a B .c <a <b C .b <a <c D .b <c <a7. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位 8. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .29. 在二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,则n 的值为( ) A .12 B .8C .6D .410.设集合3|01x A x x -⎧⎫=<⎨⎬+⎩⎭,集合(){}2|220B x x a x a =+++>,若 A B ⊆,则的取值范围( )A .1a ≥B .12a ≤≤ C.a 2≥ D .12a ≤<11.若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直12.已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D .+二、填空题13.在△ABC 中,已知=2,b=2a ,那么cosB 的值是 .14.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 . 15.81()x x-的展开式中,常数项为___________.(用数字作答) 【命题意图】本题考查用二项式定理求指定项,基础题.16.设曲线y=x n+1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lgx n ,则a 1+a 2+…+a 99的值为 .17.已知函数y=f (x )的图象是折线段ABC ,其中A (0,0)、、C (1,0),函数y=xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为 .18.下列说法中,正确的是 .(填序号)①若集合A={x|kx 2+4x+4=0}中只有一个元素,则k=1;②在同一平面直角坐标系中,y=2x 与y=2﹣x 的图象关于y 轴对称; ③y=()﹣x是增函数;④定义在R 上的奇函数f (x )有f (x )•f (﹣x )≤0.三、解答题19.根据下列条件求方程.(1)若抛物线y 2=2px 的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.20.(本小题满分10分)已知曲线C 的极坐标方程为2sin cos 10ρθρθ+=,将曲线1cos :sin x C y θθ=⎧⎨=⎩,(α为参数),经过伸缩变换32x xy y '=⎧⎨'=⎩后得到曲线2C .(1)求曲线2C 的参数方程;(2)若点M 的在曲线2C 上运动,试求出M 到曲线C 的距离的最小值.21.(本题满分12分)已知数列}{n a 的前n 项和为n S ,且332-=n n a S ,(+∈N n ). (1)求数列}{n a 的通项公式; (2)记nn a n b 14+=,n T 是数列}{n b 的前n 项和,求n T . 【命题意图】本题考查利用递推关系求通项公式、用错位相减法求数列的前n 项和.重点突出对运算及化归能力的考查,属于中档难度.22.某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组[50,60),第二组[60,70),…,第五组[90,100].如图所示是按上述分组方法得到的频率分布直方图.(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩合格的人数;(Ⅱ)从测试成绩在[50,60)∪[90,100]内的所有学生中随机抽取两名同学,设其测试成绩分别为m、n,求事件“|m﹣n|>10”概率.23.已知斜率为2的直线l被圆x2+y2+14y+24=0所截得的弦长为,求直线l的方程.24.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是⊙O的切线.(2)若,求的值.溧水区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵f(x)=,∴f(2016)=f(2011)=f(2006)=…=f(1)=f(﹣4)=log24=2,故选:D.【点评】本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.2.【答案】B【解析】解:f(x)=2x,则f'(x)=2x ln2,故选:B.【点评】本题考查了导数运算法则,属于基础题.3.【答案】C【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.4.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.5.【答案】C【解析】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.6.【答案】A【解析】解:∵b=(﹣)﹣0.8=20.8<21.2=a,且b>1,又c=2log52=log54<1,∴c <b <a . 故选:A .7. 【答案】C 【解析】试题分析:()2222log 2log 2log 1log g x x x x ==+=+,故向上平移个单位. 考点:图象平移.8. 【答案】B【解析】解:∵圆C :x 2+y 2﹣4x ﹣2y+1=0,即(x ﹣2)2+(y ﹣1)2=4,表示以C (2,1)为圆心、半径等于2的圆.由题意可得,直线l :x+ay ﹣1=0经过圆C 的圆心(2,1), 故有2+a ﹣1=0,∴a=﹣1,点A (﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B .【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.9. 【答案】B【解析】解:展开式通项公式为T r+1=•(﹣1)r •x 3n ﹣4r ,则∵二项式(x 3﹣)n (n ∈N *)的展开式中,常数项为28,∴,∴n=8,r=6. 故选:B .【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.10.【答案】A 【解析】考点:集合的包含关系的判断与应用.【方法点晴】本题主要考查了集合的包含关系的判定与应用,其中解答中涉及到分式不等式的求解,一元二次不等式的解法,集合的子集的相关的运算等知识点的综合考查,着重考查了转化与化归思想、分类讨论思想的应用,以及学生的推理与运算能力,属于中档试题,本题的解答中正确求解每个不等式的解集是解答的关键. 11.【答案】B【解析】解:∵=(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥,因此l⊥α.故选:B.12.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B (2,2),A (4,0),则三角形OAB 的面积S=×=4,直线y=x 的倾斜角为,则∠AOB=,即扇形的面积为,则P (x ,y )构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.二、填空题13.【答案】 .【解析】解:∵ =2,由正弦定理可得:,即c=2a .b=2a ,∴==.∴cosB=.故答案为:.【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题.14.【答案】(0,1)【解析】考点:本题考查函数的单调性与导数的关系 15.【答案】70【解析】81()x x -的展开式通项为8821881()(1)r rr r r r r T C x C x x--+=-=-,所以当4r =时,常数项为448(1)70C -=.16.【答案】 ﹣2 .【解析】解:∵曲线y=x n+1(n ∈N *),∴y ′=(n+1)x n,∴f ′(1)=n+1,∴曲线y=xn+1(n ∈N *)在(1,1)处的切线方程为y ﹣1=(n+1)(x ﹣1),该切线与x 轴的交点的横坐标为x n =,∵a n =lgx n ,∴a n =lgn ﹣lg (n+1), ∴a 1+a 2+…+a 99=(lg1﹣lg2)+(lg2﹣lg3)+(lg3﹣lg4)+(lg4﹣lg5)+(lg5﹣lg6)+…+(lg99﹣lg100) =lg1﹣lg100=﹣2. 故答案为:﹣2.17.【答案】 .【解析】解:依题意,当0≤x ≤时,f (x )=2x ,当<x ≤1时,f (x )=﹣2x+2∴f (x )=∴y=xf (x )=y=xf(x)(0≤x≤1)的图象与x轴围成的图形的面积为S=+=x3+(﹣+x2)=+=故答案为:18.【答案】②④【解析】解:①若集合A={x|kx2+4x+4=0}中只有一个元素,则k=1或k=0,故错误;②在同一平面直角坐标系中,y=2x与y=2﹣x的图象关于y轴对称,故正确;③y=()﹣x是减函数,故错误;④定义在R上的奇函数f(x)有f(x)•f(﹣x)≤0,故正确.故答案为:②④【点评】本题以命题的真假判断与应用为载体,考查了集合,指数函数的,奇函数的图象和性质,难度中档.三、解答题19.【答案】【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,可得p=4,可得抛物线y2=8x的准线方程为x=﹣2.(2)椭圆+=1的焦点为(﹣4,0)和(4,0),可设双曲线的方程为﹣=1(a,b>0),由题意可得c=4,即a2+b2=16,又e==2,解得a=2,b=2,则双曲线的标准方程为﹣=1.【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.20.【答案】(1)3cos 2sin x y θθ=⎧⎨=⎩(为参数);(2【解析】试题解析: (1)将曲线1cos :sin x C y αα=⎧⎨=⎩(α为参数),化为221x y +=,由伸缩变换32x x y y '=⎧⎨'=⎩化为1312x x y y ⎧'=⎪⎪⎨⎪'=⎪⎩,代入圆的方程211132x y ⎛⎫⎛⎫''+= ⎪ ⎪⎝⎭⎝⎭,得到()()222:194x y C ''+=,可得参数方程为3cos 2sin x y αα=⎧⎨=⎩;考点:坐标系与参数方程. 21.【答案】【解析】(1)当1=n 时,323321111=⇒=-=a a a S ;………………1分 当2≥n 时,332,33211-=-=--n n n n a S a S ,∴当2≥n 时,n n n n n a a a S S 2)(32211=-=---,整理得13-=n n a a .………………3分 ∴数列}{n a 是以3为首项,公比为3的等比数列.∴数列}{n a 的通项公式为nn a 3=.………………5分22.【答案】【解析】解:(I )由直方图知,成绩在[60,80)内的人数为:50×10×(0.18+0.040)=29. 所以该班在这次数学测试中成绩合格的有29人.(II )由直方图知,成绩在[50,60)内的人数为:50×10×0.004=2, 设成绩为x 、y成绩在[90,100]的人数为50×10×0.006=3,设成绩为a 、b 、c , 若m ,n ∈[50,60)时,只有xy 一种情况, 若m ,n ∈[90,100]时,有ab ,bc ,ac 三种情况,m n[5060[90100]事件“|m﹣n|>10”所包含的基本事件个数有6种∴.【点评】在频率分布直方图中,每一个小矩形都是等宽的,即等于组距,高是,所以有:×组距=频率;即可把所求范围内的频率求出,进而求该范围的人数.23.【答案】【解析】解:将圆的方程写成标准形式,得x2+(y+7)2=25,所以,圆心坐标是(0,﹣7),半径长r=5.…因为直线l被圆所截得的弦长是,所以,弦心距为,即圆心到所求直线l的距离为.…因为直线l的斜率为2,所以可设所求直线l的方程为y=2x+b,即2x﹣y+b=0.所以圆心到直线l的距离为,…因此,解得b=﹣2,或b=﹣12.…所以,所求直线l的方程为y=2x﹣2,或y=2x﹣12.即2x﹣y﹣2=0,或2x﹣y﹣12=0.…【点评】本题主要考查直线方程,考查直线与圆的位置关系,在相交时半径的平方等于圆心到直线的距离平方与弦长一半的平方的和的灵活运用.24.【答案】【解析】(I)证明:连接OD,可得∠ODA=∠OAD=∠DAC∴OD∥AE又AE⊥DE∴DE⊥OD,又OD为半径∴DE是的⊙O切线(II)解:过D作DH⊥AB于H,则有∠DOH=∠CAB设OD=5x,则AB=10x,OH=2x,∴AH=7x由△AED≌△AHD可得AE=AH=7x又由△AEF∽△DOF可得∴【点评】本题考查平面几何中三角形的相似和全等,辅助线的做法,是解题关键,本题是难题.。
溧水区第三中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1.已知数列{a n}中,a1=1,a n+1=a n+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是()A.n≤8?B.n≤9?C.n≤10?D.n≤11?2.“a>0”是“方程y2=ax表示的曲线为抛物线”的()条件.A.充分不必要B.必要不充分C.充要D.既不充分也不必要3.函数f(x)=3x+x的零点所在的一个区间是()A.(﹣3,﹣2) B.(﹣2,﹣1) C.(﹣1,0)D.(0,1)4.下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m表示.若甲队的平均得分不低于乙队的平均得分,那么m的可能取值集合为()A. B. C. D.5.如图所示,程序执行后的输出结果为()A .﹣1B .0C .1D .26. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=7. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A.B .﹣2t C.D .48. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 9. 袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .恰有一个白球;一个白球一个黑球D .至少有一个白球;红、黑球各一个10.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( )A .33%B .49%C .62%D .88% 11.若函数y=a x ﹣(b+1)(a >0,a ≠1)的图象在第一、三、四象限,则有( ) A .a >1且b <1 B .a >1且b >0 C .0<a <1且b >0 D .0<a <1且b <012.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高 杂质低 旧设备 37 121 新设备22202根据以上数据,则( ) A .含杂质的高低与设备改造有关 B .含杂质的高低与设备改造无关 C .设备是否改造决定含杂质的高低D .以上答案都不对二、填空题13.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= . 14.经过A (﹣3,1),且平行于y 轴的直线方程为 .15.在等差数列{}n a 中,17a =,公差为d ,前项和为n S ,当且仅当8n =时n S 取得最大值,则d 的取值范围为__________.16.已知x 是400和1600的等差中项,则x= .17.已知圆O :x 2+y 2=1和双曲线C :﹣=1(a >0,b >0).若对双曲线C 上任意一点A (点A 在圆O外),均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD ,则﹣= .18.(若集合A ⊊{2,3,7},且A 中至多有1个奇数,则这样的集合共有 个.三、解答题19.(1)计算:(﹣)0+lne ﹣+8+log 62+log 63;(2)已知向量=(sin θ,cos θ),=(﹣2,1),满足∥,其中θ∈(,π),求cos θ的值.20.如图,点A 是以线段BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,点G 是AD 的中点,连接CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P . (1)求证:BF=EF ;(2)求证:PA 是圆O 的切线.21.【南师附中2017届高三模拟二】已知函数()()323131,02f x x a x ax a =+--+>. (1)试讨论()()0f x x ≥的单调性;(2)证明:对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤; (3)设(1)中的p 的最大值为()g a ,求()g a 得最大值.22.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值;(2)求的值;(3)解不等式f (x )<f (x+2).23.如图所示,在正方体ABCD ﹣A 1B 1C 1D 1中,E 、F 分别是棱DD 1、C 1D 1的中点. (Ⅰ)证明:平面ADC 1B 1⊥平面A 1BE ; (Ⅱ)证明:B 1F ∥平面A 1BE ;(Ⅲ)若正方体棱长为1,求四面体A 1﹣B 1BE 的体积.24.已知斜率为1的直线l经过抛物线y2=2px(p>0)的焦点F,且与抛物线相交于A,B两点,|AB|=4.(I)求p的值;(II)若经过点D(﹣2,﹣1),斜率为k的直线m与抛物线有两个不同的公共点,求k的取值范围.溧水区第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2n=2,满足条件,执行循环体,S=1+1+2=4n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n≤9,故选B.【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.2.【答案】A【解析】解:若方程y2=ax表示的曲线为抛物线,则a≠0.∴“a>0”是“方程y2=ax表示的曲线为抛物线”的充分不必要条件.故选A.【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础.3.【答案】C【解析】解:由函数f(x)=3x+x可知函数f(x)在R上单调递增,又f(﹣1)=﹣1<0,f(0)=30+0=1>0,∴f(﹣1)f(0)<0,可知:函数f(x)的零点所在的区间是(﹣1,0).故选:C.【点评】本题考查了函数零点判定定理、函数的单调性,属于基础题.4.【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以m可以取:0,1,2.故答案为:C5.【答案】B【解析】解:执行程序框图,可得 n=5,s=0满足条件s <15,s=5,n=4 满足条件s <15,s=9,n=3 满足条件s <15,s=12,n=2 满足条件s <15,s=14,n=1 满足条件s <15,s=15,n=0 不满足条件s <15,退出循环,输出n 的值为0.故选:B .【点评】本题主要考查了程序框图和算法,正确判断退出循环时n 的值是解题的关键,属于基础题.6. 【答案】D【解析】解析:本题考查抛物线的焦半径公式的应用与“中点弦”问题的解法.设1122(,)(,)M x y N x y 、,那么12||||210MF NF x x +=++=,128x x +=,∴线段MN 的中点坐标为(4,2).由2114y x =,2224y x =两式相减得121212()()4()y y y y x x +-=-,而1222y y +=,∴12121y y x x -=-,∴直线MN 的方程为24y x -=-,即20x y --=,选D . 7. 【答案】C【解析】解:双曲线4x 2+ty 2﹣4t=0可化为:∴∴双曲线4x 2+ty 2﹣4t=0的虚轴长等于故选C .8. 【答案】A.【解析】9.【答案】D【解析】解:从3个红球,2个白球,1个黑球中任取2个球的取法有:2个红球,2个白球,1红1黑,1红1白,1黑1白共5类情况,所以至少有一个白球,至多有一个白球不互斥;至少有一个白球,至少有一个红球不互斥;至少有一个白球,没有白球互斥且对立;至少有一个白球,红球黑球各一个包括1红1白,1黑1白两类情况,为互斥而不对立事件,故选:D【点评】本题考查了互斥事件和对立事件,是基础的概念题.10.【答案】B【解析】11.【答案】B【解析】解:∵函数y=a x﹣(b+1)(a>0,a≠1)的图象在第一、三、四象限,∴根据图象的性质可得:a>1,a0﹣b﹣1<0,即a>1,b>0,故选:B12.【答案】A【解析】独立性检验的应用.【专题】计算题;概率与统计.【分析】根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.【解答】解:由已知数据得到如下2×2列联表杂质高杂质低合计旧设备37 121 158新设备22 202 224合计59 323 382由公式κ2=≈13.11,由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.【点评】本题考查独立性检验,考查写出列联表,这是一个基础题.二、填空题13.【答案】10.【解析】解:由z=3﹣i,得z•=.故答案为:10.【点评】本题考查公式,考查了复数模的求法,是基础题.14.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.15.【答案】871-<<-d 【解析】试题分析:当且仅当8=n 时,等差数列}{n a 的前项和n S 取得最大值,则0,098<>a a ,即077>+d ,087<+d ,解得:871-<<-d .故本题正确答案为871-<<-d . 考点:数列与不等式综合.16.【答案】 1000 .【解析】解:∵x 是400和1600的等差中项,∴x==1000.故答案为:1000.17.【答案】 1 .【解析】解:若对双曲线C 上任意一点A (点A 在圆O 外), 均存在与圆O 外切且顶点都在双曲线C 上的菱形ABCD , 可通过特殊点,取A (﹣1,t ),则B (﹣1,﹣t ),C (1,﹣t ),D (1,t ), 由直线和圆相切的条件可得,t=1.将A (﹣1,1)代入双曲线方程,可得﹣=1.故答案为:1.【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题.18.【答案】 6【解析】解:集合A 为{2,3,7}的真子集有7个,奇数3、7都包含的有{3,7},则符合条件的有7﹣1=6个.故答案为:6【点评】本题考查集合的子集问题,属基础知识的考查.三、解答题19.【答案】【解析】(本小题满分12分)解析:(1)原式=1+1﹣5+2+1=0;…(6分)(2)∵向量=(sinθ,cosθ),=(﹣2,1),满足∥,∴sinθ=﹣2cosθ,①…(9分)又sin2θ+cos2θ+=1,②由①②解得cos2θ=,…(11分)∵θ∈(,π),∴cosθ=﹣.…(12分)【点评】本题考查对数运算法则以及三角函数的化简求值,向量共线的应用,考查计算能力.20.【答案】【解析】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.【点评】本题求证直线是圆的切线,着重考查了直角三角形的性质、相似三角形的判定与性质和圆的切线判定定理等知识,属于中档题.21.【答案】(1)证明过程如解析;(2)对于正数a ,存在正数p ,使得当[]0,x p ∈时,有()11f x -≤≤;(3)()g a 【解析】【试题分析】(1)先对函数()()323131,02f x x a x ax a =+--+>进行求导,再对导函数的值的 符号进行分析,进而做出判断;(2)先求出函数值()01,f =()3213122f a a a =--+=()()211212a a -+-,进而分()1f a ≥-和()1f a <-两种情形进行 分析讨论,推断出存在()0,p a ∈使得()10f p +=,从而证得当[]0,x p ∈时,有()11f x -≤≤成立;(3) 借助(2)的结论()f x :在[)0,+∞上有最小值为()f a ,然后分011a a ≤,两种情形探求()g a 的解析表达式和最大值。
溧水区第三高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 459和357的最大公约数( )A .3B .9C .17D .51 2. 圆心在直线2x +y =0上,且经过点(-1,-1)与(2,2)的圆,与x 轴交于M ,N 两点,则|MN |=( ) A .4 2 B .4 5 C .2 2 D .2 53. 函数 y=x 2﹣4x+1,x ∈[2,5]的值域是( )A .[1,6]B .[﹣3,1]C .[﹣3,6]D .[﹣3,+∞)4. △ABC 的外接圆圆心为O ,半径为2,++=,且||=||,在方向上的投影为( )A .﹣3B .﹣C .D .35. 若,[]0,1b ∈,则不等式221a b +≤成立的概率为( ) A .16π B .12π C .8π D .4π6. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( )A .﹣12B .﹣10C .﹣8D .﹣67. 观察下列各式:a+b=1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28B .76C .123D .1998. 已知全集U=R ,集合A={1,2,3,4,5},B={x ∈R|x ≥3},图中阴影部分所表示的集合为( )A .{1}B .{1,2}C .{1,2,3}D .{0,1,2}9. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1 B .2C .3D .410.已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列C .公比为a 的等比数列D .公比为的等比数列11.方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线12.设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定二、填空题13.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).14.已知圆C 的方程为22230x y y +--=,过点()1,2P -的直线与圆C 交于,A B 两点,若使AB 最小则直线的方程是 .15.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .16.正六棱台的两底面边长分别为1cm ,2cm ,高是1cm ,它的侧面积为 .17.设函数 则______;若,,则的大小关系是______.18.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .三、解答题19.已知等差数列{a n },等比数列{b n }满足:a 1=b 1=1,a 2=b 2,2a 3﹣b 3=1.(Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)记c n =a n b n ,求数列{c n }的前n 项和S n .20.已知cos(+θ)=﹣,<θ<,求的值.21.某市出租车的计价标准是4km以内10元(含4km),超过4km且不超过18km的部分1.5元/km,超出18km的部分2元/km.(1)如果不计等待时间的费用,建立车费y元与行车里程x km的函数关系式;(2)如果某人乘车行驶了30km,他要付多少车费?22.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?23.现有5名男生和3名女生.(1)若3名女生必须相邻排在一起,则这8人站成一排,共有多少种不同的排法?(2)若从中选5人,且要求女生只有2名,站成一排,共有多少种不同的排法?24. 定圆22:(16,M x y +=动圆N 过点0)F 且与圆M 相切,记圆心N 的轨迹为.E (Ⅰ)求轨迹E 的方程;(Ⅱ)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC BC =,当ABC ∆的面积最小时,求直线AB 的方程.溧水区第三高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题1. 【答案】D【解析】解:∵459÷357=1…102, 357÷102=3…51, 102÷51=2,∴459和357的最大公约数是51, 故选:D .【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法.本题也可以验证得到结果.2. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0). 由题意得⎩⎪⎨⎪⎧2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r2,解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9, 令y =0得,x =-1±5,∴|MN |=|(-1+5)-(-1-5)|=25,选D. 3. 【答案】C【解析】解:y=x 2﹣4x+1=(x ﹣2)2﹣3 ∴当x=2时,函数取最小值﹣3 当x=5时,函数取最大值6 ∴函数 y=x 2﹣4x+1,x ∈[2,5]的值域是[﹣3,6]故选C【点评】本题考查了二次函数最值的求法,即配方法,解题时要分清函数开口方向,辨别对称轴与区间的位置关系,仔细作答4. 【答案】C【解析】解:由题意,++=,得到,又||=||=||,△OAB是等边三角形,所以四边形OCAB是边长为2的菱形,所以在方向上的投影为ACcos30°=2×=;故选C.【点评】本题考查了向量的投影;解得本题的关键是由题意,画出图形,明确四边形OBAC的形状,利用向量解答.5.【答案】D【解析】考点:几何概型.6.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f′(x)的最小值为﹣9+1=﹣8.故选C.【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.7.【答案】C【解析】解:观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第十项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…,第十项为123,即a10+b10=123,.故选C.8.【答案】B【解析】解:图中阴影部分表示的集合中的元素是在集合A中,但不在集合B中.由韦恩图可知阴影部分表示的集合为(C U B)∩A,又A={1,2,3,4,5},B={x∈R|x≥3},∵C U B={x|x<3},∴(C U B)∩A={1,2}.则图中阴影部分表示的集合是:{1,2}.故选B.【点评】本小题主要考查Venn图表达集合的关系及运算、Venn图的应用等基础知识,考查数形结合思想.属于基础题.9.【答案】C【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),所以3﹣2=4﹣a,所以a=3,故选:C.【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.10.【答案】A【解析】解:∵,∴a n=S(n)﹣s(n﹣1)==∴a n﹣a n﹣1==a∴数列{a n}是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用11.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.12.【答案】B【解析】解:∵f(1988)=asin(1988π+α)+bcos(1998π+β)+4=asinα+bcosβ+4=3,∴asinα+bcosβ=﹣1,故f(2008)=asin(2008π+α)+bcos(2008π+β)+4=asinα+bcosβ+4=﹣1+4=3,故选:B.【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.二、填空题13.【答案】180【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r可知r=2,所以系数为C102×4=180,故答案为:180.【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.14.【答案】30x y -+= 【解析】试题分析:由圆C 的方程为22230x y y +--=,表示圆心在(0,1)C ,半径为的圆,点()1,2P -到圆心的距()1,2P -在圆内,所以当AB CP ⊥时,AB 最小,此时11,1CP k k =-=,由点斜式方程可得,直线的方程为21y x -=+,即30x y -+=.考点:直线与圆的位置关系的应用. 15.【答案】4π 【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式111sin ,,(),2224abc ab C ah a b c r R++.16.【答案】cm 2 .【解析】解:如图所示,是正六棱台的一部分, 侧面ABB 1A 1为等腰梯形,OO 1为高且OO 1=1cm ,AB=1cm ,A 1B 1=2cm .取AB 和A 1B 1的中点C ,C 1,连接OC ,CC 1,O 1C 1, 则C 1C 为正六棱台的斜高,且四边形OO 1C 1C 为直角梯形.根据正六棱台的性质得OC=,O1C 1==,∴CC 1==.又知上、下底面周长分别为c=6AB=6cm ,c ′=6A 1B 1=12cm .∴正六棱台的侧面积:S=.==(cm2).故答案为:cm2.【点评】本题考查正六棱台的侧面积的求法,是中档,解题时要认真审题,注意空间思维能力的培养.17.【答案】,【解析】【知识点】函数图象分段函数,抽象函数与复合函数【试题解析】,因为,所以又若,结合图像知:所以:。
溧水区第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .2.+(a ﹣4)0有意义,则a 的取值范围是( )A .a ≥2B .2≤a <4或a >4C .a ≠2D .a ≠43. 若椭圆和圆为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是( )A .B .C .D .4. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力. 5. 定义在(0,+∞)上的函数f (x )满足:<0,且f (2)=4,则不等式f (x )﹣>0的解集为( ) A .(2,+∞)B .(0,2)C .(0,4)D .(4,+∞)6. 若定义在R 上的函数f (x )满足f (0)=﹣1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .B .C .D .7. 如图所示,程序执行后的输出结果为( )A.﹣1 B.0 C.1 D.28.已知α是△ABC的一个内角,tanα=,则cos(α+)等于()A. B.C.D.9.已知命题“p:∃x>0,lnx<x”,则¬p为()A.∃x≤0,lnx≥x B.∀x>0,lnx≥x C.∃x≤0,lnx<x D.∀x>0,lnx<x10.若关于x的方程x3﹣x2﹣x+a=0(a∈R)有三个实根x1,x2,x3,且满足x1<x2<x3,则a的取值范围为()A.a>B.﹣<a<1 C.a<﹣1 D.a>﹣111.设S n为等比数列{a n}的前n项和,若a1=1,公比q=2,S k+2﹣S k=48,则k等于()A.7 B.6 C.5 D.412.若1sin()34πα-=,则cos(2)3πα+=A、78-B、14-C、14D、78二、填空题13.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于.14.计算sin43°cos13°﹣cos43°sin13°的值为.15.设数列{a n}的前n项和为S n,已知数列{S n}是首项和公比都是3的等比数列,则{a n}的通项公式a n=.16.已知奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f(1﹣m)+f(1﹣2m)<0的实数m的取值范围是.17.已知△ABC中,内角A,B,C的对边分别为a,b,c,asinA=bsinB+(c﹣b)sinC,且bc=4,则△ABC 的面积为.18.如果直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行.那么a等于.三、解答题19.在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E为BB1中点.(Ⅰ)证明:AC⊥D1E;(Ⅱ)求DE与平面AD1E所成角的正弦值;(Ⅲ)在棱AD上是否存在一点P,使得BP∥平面AD1E?若存在,求DP的长;若不存在,说明理由.20.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.21.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.22.已知等差数列的公差,,.(Ⅰ)求数列的通项公式;(Ⅱ)设,记数列前n项的乘积为,求的最大值.23.(本小题满分12分)某校高二奥赛班N名学生的物理测评成绩(满分120分)分布直方图如下,已知分数在100-110的学生数有21人.(1)求总人数N和分数在110-115分的人数;(2)现准备从分数在110-115的名学生(女生占13)中任选3人,求其中恰好含有一名女生的概率; (3)为了分析某个学生的学习状态,对其下一阶段的学生提供指导性建议,对他前7次考试的数学成绩 (满分150分),物理成绩y 进行分析,下面是该生7次考试的成绩.已知该生的物理成绩y 与数学成绩是线性相关的,若该生的数学成绩达到130分,请你估计他的物理 成绩大约是多少?附:对于一组数据11(,)u v ,22(,)u v ……(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分 别为:^121()()()niii nii u u v v u u β==--=-∑∑,^^a v u β=-.24.在三棱锥S ﹣ABC 中,SA ⊥平面ABC ,AB ⊥AC .(Ⅰ)求证:AB⊥SC;(Ⅱ)设D,F分别是AC,SA的中点,点G是△ABD的重心,求证:FG∥平面SBC;(Ⅲ)若SA=AB=2,AC=4,求二面角A﹣FD﹣G的余弦值.溧水区第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:∵g(x)=﹣f(2﹣x),∴y=f(x)﹣g(x)=f(x)﹣+f(2﹣x),由f(x)﹣+f(2﹣x)=0,得f(x)+f(2﹣x)=,设h(x)=f(x)+f(2﹣x),若x≤0,则﹣x≥0,2﹣x≥2,则h(x)=f(x)+f(2﹣x)=2+x+x2,若0≤x≤2,则﹣2≤﹣x≤0,0≤2﹣x≤2,则h(x)=f(x)+f(2﹣x)=2﹣x+2﹣|2﹣x|=2﹣x+2﹣2+x=2,若x>2,﹣x<﹣2,2﹣x<0,则h(x)=f(x)+f(2﹣x)=(x﹣2)2+2﹣|2﹣x|=x2﹣5x+8.作出函数h(x)的图象如图:当x≤0时,h(x)=2+x+x2=(x+)2+≥,当x>2时,h(x)=x2﹣5x+8=(x﹣)2+≥,故当=时,h(x)=,有两个交点,当=2时,h(x)=,有无数个交点,由图象知要使函数y=f(x)﹣g(x)恰有4个零点,即h(x)=恰有4个根,则满足<<2,解得:b∈(,4),故选:D.【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键.2.【答案】B【解析】解:∵+(a﹣4)0有意义,∴,解得2≤a<4或a>4.故选:B.3.【答案】A【解析】解:∵椭圆和圆为椭圆的半焦距)的中心都在原点,且它们有四个交点,∴圆的半径,由,得2c>b,再平方,4c2>b2,在椭圆中,a2=b2+c2<5c2,∴;由,得b+2c<2a,再平方,b2+4c2+4bc<4a2,∴3c2+4bc<3a2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴.综上所述,.故选A.4.【答案】D5.【答案】B【解析】解:定义在(0,+∞)上的函数f(x)满足:<0.∵f(2)=4,则2f(2)=8,f(x)﹣>0化简得,当x<2时,⇒成立.故得x<2,∵定义在(0,+∞)上.∴不等式f(x)﹣>0的解集为(0,2).故选B.【点评】本题考查了构造已知条件求解不等式,从已知条件入手,找个关系求解.属于中档题.6.【答案】C【解析】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.7.【答案】B【解析】解:执行程序框图,可得n=5,s=0满足条件s<15,s=5,n=4满足条件s<15,s=9,n=3满足条件s<15,s=12,n=2满足条件s<15,s=14,n=1满足条件s<15,s=15,n=0不满足条件s<15,退出循环,输出n的值为0.故选:B.【点评】本题主要考查了程序框图和算法,正确判断退出循环时n的值是解题的关键,属于基础题.8.【答案】B【解析】解:由于α是△ABC的一个内角,tanα=,则=,又sin2α+cos2α=1,解得sinα=,cosα=(负值舍去).则cos(α+)=cos cosα﹣sin sinα=×(﹣)=.故选B.【点评】本题考查三角函数的求值,考查同角的平方关系和商数关系,考查两角和的余弦公式,考查运算能力,属于基础题.9.【答案】B【解析】解:因为特称命题的否定是全称命题,所以,命题“p:∃x>0,lnx<x”,则¬p为∀x>0,lnx≥x.故选:B.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,基本知识的考查.10.【答案】B【解析】解:由x 3﹣x 2﹣x+a=0得﹣a=x 3﹣x 2﹣x , 设f (x )=x 3﹣x 2﹣x ,则函数的导数f ′(x )=3x 2﹣2x ﹣1,由f ′(x )>0得x >1或x <﹣,此时函数单调递增,由f ′(x )<0得﹣<x <1,此时函数单调递减, 即函数在x=1时,取得极小值f (1)=1﹣1﹣1=﹣1,在x=﹣时,函数取得极大值f (﹣)=(﹣)3﹣(﹣)2﹣(﹣)=,要使方程x 3﹣x 2﹣x+a=0(a ∈R )有三个实根x 1,x 2,x 3,则﹣1<﹣a <,即﹣<a <1,故选:B .【点评】本题主要考查导数的应用,构造函数,求函数的导数,利用导数求出函数的极值是解决本题的关键.11.【答案】D【解析】解:由题意,S k+2﹣S k =,即3×2k =48,2k=16,∴k=4. 故选:D .【点评】本题考查等比数列的通项公式,考查了等比数列的前n 项和,是基础题.12.【答案】A【解析】 选A ,解析:2227cos[(2)]cos(2)[12sin ()]3338πππαπαα--=--=---=-二、填空题13.【答案】.【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.14.【答案】.【解析】解:sin43°cos13°﹣cos43°sin13°=sin(43°﹣13°)=sin30°=,故答案为.15.【答案】.【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.16.【答案】[﹣,].【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),即,即,得﹣≤m≤,故答案为:[﹣,]【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.17.【答案】.【解析】解:∵asinA=bsinB+(c﹣b)sinC,∴由正弦定理得a2=b2+c2﹣bc,即:b2+c2﹣a2=bc,∴由余弦定理可得b2=a2+c2﹣2accosB,∴cosA===,A=60°.可得:sinA=,∵bc=4,∴S△ABC=bcsinA==.故答案为:【点评】本题主要考查了解三角形问题.考查了对正弦定理和余弦定理的灵活运用,考查了三角形面积公式的应用,属于中档题.18.【答案】.【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,∴3aa=1(1﹣2a),解得a=﹣1或a=,经检验当a=﹣1时,两直线重合,应舍去故答案为:.【点评】本题考查直线的一般式方程和平行关系,属基础题.三、解答题19.【答案】【解析】(Ⅰ)证明:连接BD∵ABCD﹣A1B1C1D1是长方体,∴D1D⊥平面ABCD,又AC⊂平面ABCD,∴D1D⊥AC…1分在长方形ABCD中,AB=BC,∴BD⊥AC…2分又BD∩D1D=D,∴AC⊥平面BB1D1D,…3分而D1E⊂平面BB1D1D,∴AC⊥D1E…4分(Ⅱ)解:如图建立空间直角坐标系Dxyz,则A(1,0,0),D1(0,0,2),E(1,1,1),B(1,1,0),∴…5分设平面AD1E的法向量为,则,即令z=1,则…7分∴…8分∴DE与平面AD1E所成角的正弦值为…9分(Ⅲ)解:假设在棱AD上存在一点P,使得BP∥平面AD1E.设P的坐标为(t,0,0)(0≤t≤1),则∵BP∥平面AD1E∴,即,∴2(t﹣1)+1=0,解得,…12分∴在棱AD上存在一点P,使得BP∥平面AD1E,此时DP的长.…13分.20.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为21.【答案】【解析】(1)∵ρsin2θ=4cosθ,∴ρ2sin2θ=4ρcosθ,…∵ρcosθ=x,ρsinθ=y,∴曲线C的直角坐标方程为y2=4x …(2)∵直线l过点P(2,﹣1),且倾斜角为45°.∴l的参数方程为(t为参数).…代入y2=4x 得t2﹣6t﹣14=0…设点A,B对应的参数分别t1,t2∴t1t2=﹣14…∴|PA|•|PB|=14.…22.【答案】【解析】【知识点】等差数列【试题解析】(Ⅰ)由题意,得解得或(舍).所以.(Ⅱ)由(Ⅰ),得.所以.所以只需求出的最大值.由(Ⅰ),得.因为,所以当,或时,取到最大值.所以的最大值为.23.【答案】(1)60N =,6n =;(2)815P =;(3)115. 【解析】试题解析:(1)分数在100-110内的学生的频率为1(0.040.03)50.35P =+⨯=,所以该班总人数为21600.35N ==, 分数在110-115内的学生的频率为21(0.010.040.050.040.030.01)50.1P =-+++++⨯=,分数在110-115内的人数600.16n =⨯=.(2)由题意分数在110-115内有6名学生,其中女生有2名,设男生为1234,,,A A A A ,女生为12,B B ,从6名学生中选出3人的基本事件为:12(,)A A ,13(,)A A ,14(,)A A ,11(,)A B ,12(,)A B ,23(,)AA ,24(,)A A ,21(,)AB ,22(,)A B ,34(,)A A ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,12(,)B B 共15个.其中恰 好含有一名女生的基本事件为11(,)A B ,12(,)A B ,22(,)A B ,21(,)A B ,31(,)A B ,32(,)A B ,41(,)A B ,42(,)A B ,共8个,所以所求的概率为815P =. (3)12171788121001007x --+-++=+=;69844161001007y --+-+++=+=;由于与y 之间具有线性相关关系,根据回归系数公式得到^4970.5994b ==,^1000.510050a =-⨯=,∴线性回归方程为0.550y x =+,∴当130x =时,115y =.1考点:1.古典概型;2.频率分布直方图;3.线性回归方程.【易错点睛】本题主要考查古典概型,频率分布直方图,线性回归方程,数据处理和计算能力.求线性回归方程,关键在于正确求出系数 ,ab ,一定要将题目中所给数据与公式中的,,a bc 相对应,再进一步求解.在求解过程中,由于 ,ab 的计算量大,计算时应仔细谨慎,分层进行,避免因计算而产生错误,特别是回归直线方程中一次项系数为,b常数项为这与一次函数的习惯表示不同. 24.【答案】【解析】(Ⅰ)证明:∵SA ⊥平面ABC ,AB ⊂平面ABC , ∴SA ⊥AB ,又AB ⊥AC ,SA ∩AC=A , ∴AB ⊥平面SAC ,又AS ⊂平面SAC ,∴AB ⊥SC .(Ⅱ)证明:取BD 中点H ,AB 中点M , 连结AH ,DM ,GF ,FM , ∵D ,F 分别是AC ,SA 的中点, 点G 是△ABD 的重心,∴AH 过点G ,DM 过点G ,且AG=2GH , 由三角形中位线定理得FD ∥SC ,FM ∥SB , ∵FM ∩FD=F ,∴平面FMD ∥平面SBC , ∵FG ⊂平面FMD ,∴FG ∥平面SBC .(Ⅲ)解:以A 为原点,AB 为x 轴,AC 为y 轴,AS 为z 轴,建立空间直角坐标系, ∵SA=AB=2,AC=4,∴B (2,0,0),D (0,2,0),H (1,1,0),A (0,0,0),G (,,0),F (0,0,1),=(0,2,﹣1),=(),设平面FDG 的法向量=(x ,y ,z ),则,取y=1,得=(2,1,2),又平面AFD 的法向量=(1,0,0),cos <,>==.∴二面角A ﹣FD ﹣G 的余弦值为.【点评】本题考查异面直线垂直的证明,考查线面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.。
2024届江苏省南京市溧水区三校数学高一第二学期期末监测试题考生须知: 1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本大题共10小题,每小题5分,共50分。
在每个小题给出的四个选项中,恰有一项是符合题目要求的 1.4sin()3π-的值等于( ) A .12 B .-12C .32D .-322.要得到函数的图象,只要将函数的图象( )A .向左平行移动个单位B .向右平行移动个单位C .向右平行移动个单位D .向左平行移动个单位3.右图中,小方格是边长为1的正方形,图中粗线画出的是某几何体的三视图,则该几何体的体积为( )A .182B .16C .1112D .2234.已知数列{}n a 的前n 项为和n S ,且24n n S a =-,则63S S =( ) A .5 B .132C .172D .95.已知向量(1,1),(2,),a b x ==若a b +与42b a -平行,则实数x 的值是( ) A .-2B .0C .1D .26.函数()sin()4f x x π=-的图像的一条对称轴是( )A .4x π=B .2x π=C .4πx =-D .2x π=-7.已知正实数x y 、满足224x y +=,则21x y +的最大值为( )A .2B .52C .3D .948.已知1e ,2e 是两个单位向量,且夹角为23π,则12e te -与12te e -数量积的最小值为( ) A .32B .32-C .12D .12-9.下列两个变量之间的关系不是函数关系的是( ) A .出租车车费与出租车行驶的里程 B .商品房销售总价与商品房建筑面积 C .铁块的体积与铁块的质量 D .人的身高与体重10.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-二、填空题:本大题共6小题,每小题5分,共30分。
江苏省南京市溧水区其次高级中学、第三高级中学等三校联考2025届高三数学上学期期中试题留意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为160分,考试时间为120分钟.2.答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 参考公式:锥体的体积公式:V =13Sh ,其中S 为锥体的底面积,h 为锥体的高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.已知集合A ={1,2,3,4},B ={x |x 2-4x <0},则A ∩B = ▲ . 2.若复数z 满意z i =1-3i ,其中i 为虚数单位,则z = ▲ .3.某校有老师300人,男学生1500人,女学生1200人,现用分层抽样的方法从全校师生中抽取2004.执行如图算法框图,若输入a =4,b =12,则输出a 5.在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b2=1(a >渐近线方程为y =±3x6.任取x ∈{-2,2,4},y ∈{-1,1,2}与b =(x ,y )平行的概率为 ▲ .7.已知f (x )是定义在R 上的奇函数,且当x ≥0时f (x )=x +a ,a 为实数, 则f (-4)的值是 ▲ .8.已知数列{a n }是等比数列,且a 1a 3a 5=8,a 7=8,则a 1的值是 ▲ .9.已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使得平面DAC ⊥平面BAC , 则三棱锥D -ABC 的体积是 ▲ .10.在平面直角坐标系xOy 中,过点P (-1,0)的直线l 与圆C :x 2+y 2-2x =0交于A ,B 两点,若CA ⊥CB ,则直线l 的斜率是 ▲ .11.已知α∈(0,π2),且P (4,3)是α-π6终边上一点,则cos α的值是 ▲ .12.实数x ,y 满意条件xy +1=4x +y 且x >1,则(x +1)(y +2)的最小值是 ▲ . 13.已知AB 是半径为3的圆M 的直径,点C 是圆周上除A ,B 外一点,若点P 满意PC →=2CM →,则PA →·PB →的值是 ▲ .14.已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3,-1<x ≤0,x ,0<x ≤1,且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知3b cos C =c sin B . (1)求角C 的大小;(2)若c =27,a +b =10,求△ABC 的面积.16.(本小题满分14分)如图,在直三棱柱ABC -A 1B 1C 1中,AC ⊥BC ,A 1B 与AB 1交于点D ,A 1C 与AC 1交于点E . 求证:(1)DE ∥平面B 1BCC 1; (2)平面A 1BC ⊥平面A 1ACC 1.ED B 1A1C1CA17.(本小题满分14分)在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,且短轴长为2.(1)求椭圆的方程;(2)设椭圆的上、下顶点分别为A ,B ,点C ,D 是椭圆上关于y 轴对称的两个不同的点,直线AC ,BD 交x 轴分别于点M ,N ,求证:OM →·ON →为定值.18.(本小题满分16分)如图1,一艺术拱门由两部分组成,下部为矩形ABCD .AB ,AD 的长分别为23m 和4m , 上部是圆心为O 的劣弧CD ,∠COD =2π3.图1 图2 图3 图4 (1)求图1中拱门最高点到地面的距离;(2)现欲以B 点为支点将拱门放倒,放倒过程中矩形ABCD 所在的平面始终与地面垂直,如图2、图3、图4所示.设BC 与地面水平线l 所成的角为θ.记拱门上的点到地面的最大距离为h ,试用θ的函数表示h ,并求出h 的最大值.y xO NMDC BA19.(本小题满分16分)等差数列{a n }公差大于零,且a 2+a 3=52,a 22+a 32=134,记{a n }的前n 项和为S n ,等比数列{b n }各项均为正数,公比为q ,记{b n }的前n 项和为T n . (1)求S n ;(2)若q 为正整数,且存在正整数k ,使得T k ,T 3k ∈{S 2,S 5,S 6},求数列{b n }的通项公式; (3)若将S n 中的整数项按从小到大的依次排列构成数列{c n },求{c n }的一个通项公式.20.(本小题满分16分)已知函数f (x )=x 2-(a +2)x +2,g (x )=ln x ,a ∈R .(1)若曲线y =g (x )在x =1处的切线恰与曲线y =f (x )相切,求a 的值; (2)不等式f (x )≥xg (x )对一切正实数x 恒成立,求a 的取值范围;(3)已知a <2,若函数h (x )=f (x )+ag (x )+2a 在(0,2)上有且只有一个零点,求a 的取值范围.2024-2025学年度第一学期高三期中考试数学附加题留意事项:1.附加题供选修物理的考生运用. 2.本试卷共40分,考试时间30分钟.3.答题前,考生务必将自己的姓名、学校、班级、学号写在答题纸的密封线内.试题的答案写在答题纸...上对应题目的答案空格内.考试结束后,交回答题纸. 21.【选做题】在A 、B 、C 三小题中只能选做2题,每小题10分,共计20分.请在答.卷纸指...定区域内....作答.解答应写出文字说明、证明过程或演算步骤. A .选修4—2:矩阵与变换 已知x ,y ∈R ,矩阵A =⎣⎢⎡⎦⎥⎤x 1y 0有一个属于特征值-2的特征向量α=⎣⎢⎡⎦⎥⎤1-1,(1)求矩阵A ;(2)若矩阵B =⎣⎢⎡⎦⎥⎤1 20 6,求A -1B .B .选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,P 为曲线C 1:⎩⎨⎧x =cos θ,y =3sin θ,(θ为参数)上的动点,Q 为曲线C 2:⎩⎪⎨⎪⎧x =4- 22t ,y =4+2 2t ,(t 为参数)上的动点,求线段PQ 的最小值.C .选修4—5:不等式选讲设a ,b ,c 为正实数,求证:a b +c +b c +a +ca +b ≥32.APFE CBD【必做题】第22题、第23题,每题10分,共计20分.请在答.卷卡指定区域内.......作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为正方形,AP =AB =1,F ,E分别是PB ,PC 中点.(1)求DE 与平面PAB 所成角的正弦;(2)求平面ADEF 与平面PDE 所成锐二面角的值.23.(本小题满分10分)2024年6月,第十六届欧洲杯足球赛将在12个国家的13座城市实行.某体育网站组织球迷对德国、西班牙、法国、葡萄牙四支热门球队进行竞猜,每位球迷可从四支球队中选出一支球队,现有三人参加竞猜.(1)若三人中每个人可以选择任何一支球队,且选择每个球队都是等可能的,求四支球队中恰好有两支球队有人选择的概率;(2)若三人中有一名女球迷,假设女球迷选择德国队的概率为13,男球迷选择德国队的概率为25,记X 为三人中选择德国队的人数,求X 的分布列和数学期望.南京市建邺高级中学、溧水其次高级中学期中考试高三数学参考答案 2024.11一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1.{2,3} 2.-3+i 3.80 4.12 5.2 6.13 7.-2 8.1 9.24510.±77 11.43-310 12.27 13.72 14.(-94,-2]∪(0,12] 二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.解:(1)因为cos sin C c B =,由正弦定理可得:cos sin sin B C CB = 所以tanC =4分 又因为()0,C π∈…………5分 所以3C π=…………6分(2)因为2222cos c a b ab C =+-2()3a b ab =+-…………8分所以 24ab =…………10分所以 1sin 2ABCSab C ==14分 16.证明:(1)直三棱柱ABC -A 1B 1C 1中, 1AA //1BB ,所以四边形11ABB A 是平行四边形,且11A B AB DE =所以D 为1A B 中点,…………2分 同理E 为1A C 中点, 所以//DE BC …………4分又因为DE ⊄平面11B BCC ,BC ⊂平面11B BCC , 所以//DE 11B BCC …………6分ED B 1A 1C 1CBA(2)直三棱柱ABC -A 1B 1C 1中,1C C ⊥平面ABC , 因为BC ⊂平面ABC ,所以1C C BC ⊥, 因为AC BC ⊥,1ACC C C =, 1AC C C ⊂、平面11A ACC所以BC ⊥平面11A ACC …………12分 又因为BC ⊂平面1A BC所以平面1A BC ⊥平面11A ACC …………14分17.解:(1)c a =,22b =…………2分解得:1a b c ===所以椭圆方程为:2212x y +=…………4分 (2)设00(,)D x y ,00(,)C x y - 则AC l :0011y y x x -=+-…………6分 所以00(,0)1x M y -…………8分 同理00(,0)1x N y +…………10分 所以20201x OM ON y ⋅=-又因为220012x y +=,22002200212x x OM ON x y ⋅===---…………14分18.解:(1)如图,过O 作与地面垂直的直线交AB ,CD 于点1O ,2O ,交劣弧CD 于点E , 1O E 的长即为拱门最高点到地面的距离. 在2Rt O OC ∆中,23O OC π∠=,23CO =,所以21OO =,圆的半径2R OC ==. 所以11225O E R O O OO =+-=.…………4分 答:拱门最高点到地面的距离为5m .(2)在拱门放倒过程中,过点O 作与地面垂直的直线与“拱门外框上沿”相交于点P . 当点P 在劣弧CD 上时,拱门上的点到地面的最大距离h 等于圆O 的半径长与圆心O 到地面距离之和;当点P 在线段AD 上时,拱门上的点到地面的最大距离h 等于点D 到地面的距离.连接OB由(1)知,在1Rt OO B ∆中,221123OB OO O B =+=…………6分. 以B 为坐标原点,水平直线l 为x 轴,建立如图所示的坐标系. ①当点P 在劣弧CD 上时,62ππθ<≤.由6OBx πθ∠=+,23OB =,由三角函数定义,得23cos ,23sin 66O ππθθ⎛⎫⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭则223sin()6h πθ=++. …………8分所以当62ππθ+=,即3πθ=时,h 取得最大值223+. …………10分②当点P 在线段AD 上时,06πθ≤≤.连接BD ,设CBD ϕ∠=,在Rt BCD ∆中,2227DB BC CD =+=则2321sin 727ϕ==,427cos 727ϕ==. 由DBx θϕ∠=+,得(27cos(),27sin())D θϕθϕ++.所以 27sin()4sin 23cos h θϕθθ=+=+. …………13分 又当06πθ<<时,4cos 23sin 4cos23sin3066h ππθ'=->-=>.所以4sin 23cos h θθ=+在0,6π⎡⎤⎢⎥⎣⎦上递增.所以当6πθ=时,h 取得最大值5. 因为,所以h 的最大值为.…………15分综上,艺术拱门在放倒的过程中,拱门上的点到地面距离的最大值为()m 。
两条直线的位置关系(1) 梁兰芹【考点及要求】1。
两直线的平行与垂直,点到直线的距离公式及简单应用,平行线间的距离;2。
体会数形结合的思想。
【基础训练】1、过点(1,3)-,平行于直线230x y -+=的直线方程为 过点(1,3)-,垂直于直线230x y -+=的直线方程为2、若直线01=+-y ax 和直线012=-+by x 垂直,则b a ,满足____________________。
3、直线1:(3)453l m x y m ++=-与直线2:2(5)8l x m y ++=,当m =___________时,1l ∥2l ; 当m =___________时,21l l⊥; 当m ___________时,1l 与2l 相交; 4、若动点P 直线240x y +-=上,O 为坐标原点,则OP 的最小值5、与直线3460x y +-=平行且距离为4的直线的方程为【知识梳理】【典型例题】例1 已知平行于直线2510+-=的直线L与坐标轴围成三角形的x y面积为5,求直线L的方程。
练习已知平行于直线3410++=的直线L,在坐标轴上的截距之x y和为7,求直线L的方程。
例2、已知两点(0,2),(2,0),--+=(k为常数).若点M,N M N-直线:220L kx y k到直线的距离相等,求直线L的方程。
练习:若过点(1,2)M和点N(4,-1)到直线L P作一直线L,使点(2,3)的距离相等,求直线L的方程.【课堂小结】评课记录课题:两条直线的位置关系授课人:梁兰芹班级:三(8)优点:1、教学重点归纳总结到位,及时捕获相关信息,教学目标设定科学,助学案有效。
2、学生充分预习,教师以讲练结合的方式较好,关注学生,及时反馈,以学生为主体。
3、教学过程清晰、流畅,重点突出,教学富有激情,语言抑扬顿挫,目标达成率高。
4、教学设计合理,条理清晰,分析到位,板书漂亮,课堂气氛较好,教学效果较好。
溧水第三高级中学高二午练1 2015.9.6
时间:30分钟 姓名:
1已知点P 1(0,0),P 2(1,1),P 3(
13
,0),则在3x+2y-1≥0表示的平面区域内的点是
2在平面直角坐标系中,若点(-2,t )在直线x-2y+4=0的上方,则t 的取值范围是
3已知点(-1,2)和(3,-3)在直线03=-+a y x 的同侧,则a 取值范围
4在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,
则t 的取值范围是___________
5已知实数x ,y 满足⎩⎪⎨⎪⎧ x -y +5≥0,x ≤3,
x +y ≥0,
的整数解共有______个
6(选做)设f (x )=x 2
+ax+b,若1≤f (-1)≤2,2≤f (1)≤4,点(a,b )构成的平面区域的面积是
溧水第三高级中学高二午练2 2015.9.6
时间:30分钟 姓名:
1直线b kx y +=把平面分成两个区域:b kx y +>表示直线的_________ 区域;b kx y +<表示直线的 区域.
2对于0>++C By Ax (或0<)表示的区域:
当0>B 时,0>++C By Ax 表示直线0=++C By Ax 的 区域; 当0>B 时,0<++C By Ax 表示直线0=++C By Ax 的 区域.
3已知两个点A(-3,-1)和B(4,-6)分布在直线-3x+2y+a=0的两侧,则a 的范围为
4若变量x ,y 满足⎩⎪⎨⎪⎧ x +y ≤6,x -3y ≤-2,
x ≥1,
则x ,y 表示的平面区域的面积为________.
5(选做)若不等式组⎩⎪⎨⎪⎧ x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a
表示的平面区域是一个三角形,则a 的取值范围是
______。