测量平差基础课件
- 格式:ppt
- 大小:1.21 MB
- 文档页数:85
§1—1观测误差当对某量进行重复观测时,就会发现,这些观测值之间往往存在一些差异。
例如,对同一段距离重复丈量若干次,量得的长度通常是互有差异。
另一种情况是,如果已经知道某几个量之间应该满足某一理论关系,但当对这几个量进行观测后,也会发现实际观测结果往往不能满足应有的理论关系。
例如,从几何上知道一平面三角形三内角之和应等于180。
,但如果对这三个内角进行观测,则三内角观测值之和常常不等于180。
,而有差异。
在同一量的各观测值之间,或在各观测值与其理论上的应有值之间存在差异的现象,在测量工作中是普遍存在的。
为什么会产生这种差异呢?不难理解,这是由于观测值中包含有观测误差的缘故。
观测误差的产生,原因很多,概括起来有以下三方面:1.测量仪器测量工作通常是利用测量仪器进行的。
由于每一种仪器只具有一定限度的精密度,因而使观测值的精密度受到了一定的限制,例如,在用只刻有厘米分划的普通水准尺进行水准测量时,就难以保证在估读厘米以下的尾数时完全正确无误;同时,仪器本身也有一定的误差,例如,水准仪的视准轴不平行于水准轴,水准尺的分划误差等等。
因此,使用这样的水准仪和水准尺进行观测,就会使水准测量的结果产生误差。
同样,经纬仪、测距仪等的仪器误差也使三角测量、导线测量的结果产生误差。
2.观测者由于观测者的感觉器官的鉴别能力有一定的局限性,所以在仪器的安置、照准、读数等方面都会产生误差。
同时,观测者的工作态度和技术水平,也是对观测成果质量有直接影响的重要因素。
3.外界条件观测时所处的外界条件,如温度、湿度、风力、大气折光等因素都会对观测结果直接产生影响;同时,随着温度的高低,湿度的大小,风力的强弱以及大气折光的不同,它们对观测结果的影响也随之不同,因而在这样的客观环境下进行观测,就必然使观测的结果产生误差。
上述测量仪器、观测者、外界条件三方面的因素是引起误差的主要来源。
因此,我们把这三方面的因素综合起来称为观测条件。
➢绪论➢测量平差理论➢4种基本平差方法➢讨论点位精度➢统计假设检验的知识➢近代平差概论✧绪论§1-1观测误差测量数据(观测数据)是指用一定的仪器、工具、传感器或其他手段获取的反映地球与其它实体的空间分布有关信息的数据,包含信息和干扰(误差)两部分。
一、误差来源观测值中包含有观测误差,其来源主要有以下三个方面:1. 测量仪器;2. 观测者;3. 外界条件。
二、观测误差分类1. 偶然误差定义,例如估读小数;2. 系统误差定义,例如用具有某一尺长误差的钢尺量距;系统误差与偶然误差在观测过程中总是同时产生的。
3. 粗差定义,例如观测时大数读错。
误差分布与精度指标§2-1 正态分布概率论中的正态分布是误差理论与测量平差基础中随机变量的基本分布。
一、一维正态分布§2-2偶然误差的规律性2. 直方图由表2-1、表2-2可以得到直方图2-1和图2-2(注意纵、横坐标各表示什么?),直方图形象地表示了误差分布情况。
3. 误差分布曲线(误差的概率分布曲线)在一定的观测条件下得到一组独立的误差,对应着一种确定的误差分布。
当观测值个数的情况下,频率稳定,误差区间间隔无限缩小,图2-1和图2-2中各长方条顶边所形成的折线将分别变成如图2-3所示的两条光滑的曲线,称为误差分布曲线,随着n增大,以正态分布为其极限。
因此,在以后的讨论中,都是以正态分布作为描述偶然误差分布的数学模型。
4. 偶然误差的特性第三章协方差传播律及权在测量实际工作中,往往会遇到某些量的大小并不是直接测定的,而是由观测值通过一定的函数关系间接计算出来的,显然,这些量是观测值的函数。
例如,在一个三角形中同精度观测了3个内角L1,L2和L3,其闭合差w和各角度的平差值分别又如图3—1中用侧方交会求交会点的坐标等。
现在提出这样一个问题:观测值函数的精度如何评定?其中误差与观测值的中误差存在怎样的关系?如何从后者得到前者?这是本章所要讨论的重要内容,阐述这种关系的公式称为协方差传播律。
第五章 测量误差及测量平差§5.1 测量误差概述一、测量误差的概念某量的各测量值相互之间或观测值与理论值之间的往往存在着某些差异,说明观测中存在误差。
观测值与真值之差称为测量误差,也叫真误差。
X l i i -=∆ (i =1、2、……、n ) X 为真值。
二、研究测量误差的目的分析测量误差的产生原因、性质和积累规律;正确地处理测量成果,求出最可靠值;评定测量结果的精度;为选择合理的测量方法提供理论依据。
三、测量误差产生的原因1.测量仪器因素2.观测者的因素3.外界条件的因素测量观测条件——测量仪器、观测人员和外界条件这三方面的因素综合起来称为测量观测条件。
等精度观测——测量观测条件相同的各次观测称为等精度观测。
非等精度观测——测量观测条件不相同的各次观测称为非等精度观测。
四、测量误差的分类1.系统误差在相同的观测条件下对某量作一系列观测,如果误差的大小、符号表现出系统性,或按一定的规律变化,或保持不变,这种误差称为系统误差。
其特点:具有累积性,但可以采用适当的观测方法或加改正数来消除或减弱其影响。
2.偶然误差在相同的观测条件下对某量作一系列观测,如果误差的大小和符号不定,表面上没有规律性,但实际上服从于一定的统计规律性,这种误差称为偶然误差。
偶然误差单个的出现上没有规律性,不能采用适当的观测方法或加改正数来消除或减弱其影响。
因此,观测结果中偶然误差占据了主要地位,是偶然误差影响了观测结果的精确性。
五、减少测量误差的措施对系统误差,通常采用适当的观测方法或加改正数来消除或减弱其影响。
对偶然误差,通常采用多余观测来减少误差,提高观测成果的质量。
§5.2 偶然误差的特性一、精度的含义1.准确度准确度是指在对某一个量的多次观测中,观测值对该量真值的偏离程度。
2.精密度精密度是指在对某一个量的多次观测中,各观测值之间的离散程度。
3.精度精度也就是精确度,是评价观测成果优劣的准确度与精密度的总称,表示测量结果中系统误差与偶然误差的综合影响的程度。