数列高考真题(2011-2017全国卷文科)数列大题教师版
- 格式:docx
- 大小:207.42 KB
- 文档页数:5
欢迎共阅数列高考题近几年全国高考文科数学数列部分考题统计及所占分值二.填空题7.[2015.全国I 卷.T13]在数列{}n a 中,1n 1n 2,2a a a +==,n S 为{}n a 的前n 项和。
若-n S =126,则n =. 8.[2014.全国II 卷.T14]数列{}n a 满足121,21n na a a +==-,则1a = 9.[2013.北京卷.T11]若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q =;前n 项和n S =。
10.[2012.全国卷.T14]等比数列{}n a 的前n 项和为n S ,若32S 3S 0+=,则公比q = 11.[2012.北京卷.T10]已知{}n a 为等差数列,n S 为其前n 项和,若211=a ,23S a =,则2a =,n S =_______。
12.[2011.北京卷.T12]在等比数列{}n a 中,若141,4,2a a ==则公比q =;12n a a a ++⋯+=.13.[2009.北京卷.T10]若数列{}n a 满足:111,2()n n a a a n N *+==∈,则5a =;前8项的和8S =.(用数字作答) 三.解答题14.[2016.全国II 卷.T17](本小题满分12分)等差数列{}n a 其中[]x 表示不超过x 15.[2016.全国III (I )求23,a a ;(II )求{}n a 15.[2016.北京卷已知{}n a (Ⅰ)求{}n a (Ⅱ)设n n c a =16.[2015.北京卷(Ⅰ)求{a (Ⅱ)设等比数列{}n b 满足2337,b a b a ==.问:6b 与数列{}n a 的第几项相等? 17.[2014.全国I 卷.T17](本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
1.(新课标1)记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列。
2.(新课标2)已知等差数列{}n a 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ,11a =-,11b =,222a b +=.(1)若335a b +=,求{}n b 的通项公式;(2)若321T =,求3S .3.(新课标3)设数列{}n a 满足123(21)2n a a n a n +++-= .(1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.4.(北京)已知等差数列{}n a 和等比数列{}n b 满足111a b ==,2410a a +=,245b b a =. (1)求{}n a 的通项公式; (2)求和:13521n b b b b -++++ .5.(山东)已知{}n a 是各项均为正数的等比数列,且126a a +=,123a a a =(1)求数列{}n a 通项公式;(2){}n b 为各项非零的等差数列,其前n 项和为n S ,知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .6.(天津)已知{}n a 为等差数列,前n 项和为n S (n N *∈),{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.(1)求{}n a 和{}n b 的通项公式;(2)求数列2{}n n a b 的前n 项和(n N *∈).答案:1.(1)(2)n n a =-;(2)22(2)33n n S =--,1n S +,n S ,2n S +成等差数列 2.(1)12n n b +=;(2)36S =-或321S =3.(1)122-=n a n ;(2)122+n n 4.(Ⅰ)21n a n =- ;(Ⅱ)312n -. 5.(1)2n n a =;6.(1)32n a n =-.2n n b =.(2)2(34)216n n T n +=-+。
历年数列高考题汇编答案1、(2011年新课标卷文)已知等比数列{}n a 中,113a =,公比13q =. (I )n S 为{}n a 的前n 项和,证明:12nn a S -=(II )设31323l o g l o g l o g n n b a a a =+++L ,求数列{}n b 的通项公式.解:(Ⅰ)因为.31)31(311nn n a =⨯=-,2311311)311(31n n n S -=--=所以,21nna S -- (Ⅱ)n n a a ab 32313log log log +++=Λ ).......21(n +++-=2)1(+-=n n所以}{n b 的通项公式为.2)1(+-=n n b n2、(2011全国新课标卷理)等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +==(1)求数列{}n a 的通项公式.(2)设 31323l o g l o g ......l o g ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.解:(Ⅰ)设数列{a n}的公比为q ,由23269a aa =得32349a a =所以219q =。
有条件可知a>0,故13q =。
由12231a a +=得12231a a q +=,所以113a =。
故数列{a n }的通项式为a n =13。
(Ⅱ )111111l o gl o g ...l o g n b a a a =+++(12...)(1)2n n n =-++++=-故12112()(1)1n b nn n n =-=--++12111111112...2((1)()...())22311n n bb b n n n +++=--+-++-=-++所以数列1{}b 的前n 项和为21nn -+3、(2010新课标卷理)设数列{}n a 满足21112,32n n n a a a -+=-=g(1) 求数列{}n a 的通项公式;(2) 令n n b na =,求数列的前n 项和n S解(Ⅰ)由已知,当n ≥1时,111211[()()()]n n nn n a a a a a a a a ++-=-+-++-+L21233(222)2n n --=++++L 2(1)12n +-=。
数列一、选择题:(2011年高考安徽卷文科7)若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210++=L (A ) 15 (B) 12 (C ) -12 (D) -15 【答案】A(2011年高考四川卷文科9)数列{a n }的前n 项和为S n ,若a 1=1, a n+1 =3S n (n ≥1),则a 6= (A )3 ×44(B )3 × 44+1 (C) 44(D )44+1 答案: A解析:由题意,得a 2=3a 1=3.当n ≥1时,a n+1 =3S n (n ≥1) ①,所以a n+2 =3S n+1 ②, ②-①得a n+2 = 4a n+1 ,故从第二项起数列等比数列,则a 6=3 ×44.5. (2011年高考陕西卷文科10)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两.个最佳...坑位的编号为( ) (A )(1)和(20) (B )(9)和(10) (C) (9)和(11) (D) (10)和(11) 答案:D(2011年高考全国卷文科6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224A n S S +-=,则k =(A )8 (B )7 (C )6 (D )5 【答案】D【解析】221111(21)(11)2(21)k k k k S S a a a k d a k d a k d +++-=+=++-+++-=++21(21)244245k k k =⨯++⨯=+=⇒=故选D 。
(2011年高考重庆卷文科1)在等差数列{}n a 中,22a =,3104,a a =则=A .12B .14C .16D .18【答案】D 二、填空题:8.(2011年高考浙江卷文科17)若数列2(4)()3n n n ⎧⎫+⎨⎬⎩⎭中的最大项是第k 项,则k =_______。
2011—2017高考全国卷Ⅰ文科数学数列汇编新课标全国卷Ⅰ文科数学汇编数 列一、选择题【2015,7】已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172B .192C .10D .12 【2013,6】设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n【2012,12】数列{n a }满足1(1)21nn n a a n ++-=-,则{na }的前60项和为( )A .3690B .3660C .1845D .1830 二、填空题【2015,13】数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 【2012,14】14.等比数列{}na 的前n 项和为nS ,若3230SS +=,则公比q =_____. 三、解答题【2017,17】记nS 为等比数列{}na 的前n 项和,已知22S =,36S =-.(1)求{}na 的通项公式;(2)求nS ,并判断1n S +,nS ,2n S +是否成等差数列.【2016,17】已知{}na 是公差为3的等差数列,数列{}nb 满足12111==3n n n nb b a b b nb +++=1,,.(1)求{}na 的通项公式;(2)求{}nb 的前n 项和.【2013,17】已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a-+⎧⎫⎨⎬⎩⎭的前n 项和.【2011,17】已知等比数列{}a 中,213a=,公比13q =. (1)nS 为{}na 的前n 项和,证明:12n na S-=;(2)设31323log log log nnba a a =+++L ,求数列nb 的通项公式.解 析一、选择题【2015,7】已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) BA .172B .192C .10D .12 解:依题11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922aa d =+=+=,故选B .【2015,13】数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 6解:数列{a n }是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴ 2n =64,∴n =6.【2013,6】设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n解析:选D .11211321113nnn n a a a q a q S q q --(-)===---=3-2a n ,故选D . 【2012,12】数列{na }满足1(1)21n n n aa n ++-=-,则{na }的前60项和为( )A .3690B .3660C .1845D .1830【解析】因为1(1)21n n n aa n ++-=-,所以211aa -=,323aa +=,435aa -=,547a a +=,659aa -=,7611aa +=,……,5857113aa -=,5958115aa +=,6059117a a -=.由211a a -=,323aa +=可得132a a+=; 由659aa -=,7611aa +=可得572aa +=;…… 由5857113a a -=,5958115aa +=可得57592aa +=;从而1357575913575759()()()21530a a a a a a a a a a a a ++++++=++++++=⨯=L L .又211aa -=,435a a -=,659a a -=,…,5857113a a -=,6059117a a -=,所以2466013559()()aa a a a a a a ++++-++++L L2143656059()()()()a a a a a a a a =-+-+-++-=L 159117++++L3011817702⨯==.从而24660a a a a ++++L 135591770a a a a =+++++L 3017701800=+=. 因此6012345960Sa a a a a a =++++++L 13592460()()a a a a a a =+++++++L L3018001830=+=.故选择D .二、填空题【2015,13】数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 6解:数列{a n }是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴ 2n =64,∴n =6.【2012,14】14.等比数列{}na 的前n 项和为nS ,若3230SS +=,则公比q =___________. 【答案】2-. 【解析】由已知得23123111S a a a a a q a q =++=++,2121133333Sa a a a q=+=+,因为3230SS +=,所以2111440a a q a q++=而1a ≠,所以2440qq ++=,解得2q =-.三、解答题【2017,17】记nS 为等比数列{}na 的前n 项和,已知22S =,36S =-.(1)求{}na 的通项公式;(2)求nS ,并判断1n S +,nS ,2n S +是否成等差数列.【解析】(1)设首项1a ,公比q ,依题意,1q≠,由3328a S S =-=-,23122121182a a q S a a a a q ⎧==-⎪⎨=+=+=⎪⎩,解得122a q ⎧=-⎪⎨=-⎪⎩,1(2)n nn a a q ∴==-.(2)要证12,,n n n S S S ++成等差数列,只需证:122n n nSS S +++=,只需证:120n n n n S S S S ++-+-=,只需证:1120n n n aa a +++++=,只需证:212n n aa ++=-(*),由(1)知(*)式显然成立,12,,n n n S S S ++∴成等差数列.【2016,】17.(本小题满分12分)已知{}na 是公差为3的等差数列,数列{}nb 满足12111==3n n n nb b a b b nb +++=1,,.(1)求{}na 的通项公式; (2)求{}nb 的前n 项和.17. 解析 (1)由题意令11n n n na b b nb +++=中1n =,即1221a bb b +=,解得12a=,故()*31nan n =-∈N .(2)由(1)得()1131n n nn bb nb ++-+=,即113n n bb +=()*n ∈N ,故{}nb 是以11b =为首项,13q =为公比的等比数列,即()1*13n n b n -⎛⎫=∈ ⎪⎝⎭N ,所以{}nb 的前n 项和为1111313122313n n n S -⎛⎫- ⎪⎝⎭==-⋅-.【2013,17】 (本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a-+⎧⎫⎨⎬⎩⎭的前n 项和. 解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+.由已知可得11330,5105,a d a d +=⎧⎨+=⎩解得a 1=1,d =-1.故{a n }的通项公式为a n =2-n .(2)由(1)知21211n n a a -+=1111321222321n n n n ⎛⎫=- ⎪(-)(-)--⎝⎭,从而数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和为1111111211132321n n ⎛⎫-+-++- ⎪---⎝⎭L=12n n-.【2011,17】已知等比数列{}a 中,213a =,公比13q =. (1)nS 为{}n a 的前n 项和,证明:12nna S-=;(2)设31323log log log nnba a a =+++L ,求数列nb 的通项公式. 【解析】(1)因为1111333n n na -⎛⎫=⨯=⎪⎝⎭,111113332113n n n S ⎛⎫ ⎪ ⎪ ⎪⎝⎭--==-,所以12nna S-=.(2)31323log log log nn ba a a =+++L ()12n =-+++L ()12n n +=-.所以{}nb 的通项公式为()12n n n b +=-.。
2011………2017高考全国卷(Ⅰ、Ⅱ、Ⅲ)各年分类汇编(数列) (2017、Ⅰ卷)4.记为等差数列的前项和.若,,则的公差为A .1B .2C .4D .812.几位大学生响应国家的创业号召,开发了一款应用软件。
为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推。
求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂。
那么该款软件的激活码是 A .440B .330C .220D .110(2017、Ⅱ卷)3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A 、1盏B 、3盏C 、5盏D 、9盏 15.等差数列{}n a 的前n 项和为n S ,33=a ,104=S ,则=∑=nk kS 11. (2017、Ⅲ卷)9.等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( )A . -24 B . -3 C . 3 D . 814. 设等比数列{}n a 满足12131,3a a a a +=--=-,则4_______.a = (2016、Ⅰ卷)3、已知等差数列{}n a 前9项的和为27,810=a ,则=100a(A )100 (B )99 (C )98 (D )97 15、 设等比数列{}n a 满足1031=+a a ,542=+a a ,则n a a a ⋯21的最大值为. (2016、Ⅱ卷)17(本小题满分12分)n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a=,其中[]x 表示不超过x 的最大整数,如[]0.90=,[]lg991=.(Ⅰ)求1b ,11b ,101b ;n S {}n a n 4524a a +=648S ={}n a(Ⅱ)求数列{}n b的前1000项和.(2016、Ⅲ卷)12、定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有( ) A .18个B .16个C .14个D .12个17、已知数列{}n a 的前n 项和1n n S a λ=+,其中0λ≠.(I )证明{}n a 是等比数列,并求其通项公式; (II )若53132S = ,求λ. (2015、Ⅰ卷)17)(本小题满分12分)n S 为数列{}n a 的前n 项和.已知20,243n n n n a a a S >+=+,(Ⅰ)求{}n a 的通项公式: (Ⅱ)设11n n n b a a += ,求数列{}n b 的前n 项和。
2011年—2017年新课标全国卷Ⅰ文科数学分类汇编6.数列一、选择题【2015,7】已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( )A .172 B .192C .10D .12 【2013,6】设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ).A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n 【2012,12】数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为( )A .3690B .3660C .1845D .1830 二、填空题【2015,13】数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 【2012,14】14.等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =_____. 三、解答题【2017,17】记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-.(1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.【2016,17】已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.【2014,17】已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根。
(Ⅰ)求{a n }的通项公式; (Ⅱ)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和.【2013,17】已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列21211n n a a -+⎧⎫⎨⎬⎩⎭的前n 项和.【2011,17】已知等比数列{}a 中,213a =,公比13q =. (1)n S 为{}n a 的前n 项和,证明:12nn a S -=;(2)设31323log log log n n b a a a =+++ ,求数列n b 的通项公式.2011年—2017年新课标全国卷Ⅰ文科数学分类汇编6.数列(解析版)一、选择题【2015,7】已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 10=( ) BA .172 B .192C .10D .12 解:依题11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B .【2015,13】数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 6解:数列{a n }是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴ 2n =64,∴n =6. 【2013,6】设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( ). A .S n =2a n -1 B .S n =3a n -2 C .S n =4-3a n D .S n =3-2a n解析:选D .11211321113nnn n a a a q a q S q q --(-)===---=3-2a n,故选D . 【2012,12】数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为( )A .3690B .3660C .1845D .1830【解析】因为1(1)21n n n a a n ++-=-,所以211a a -=,323a a +=,435a a -=,547a a +=,659a a -=,7611a a +=,……,5857113a a -=,5958115a a +=,6059117a a -=.由211a a -=,323a a +=可得132a a +=; 由659a a -=,7611a a +=可得572a a +=; ……由5857113a a -=,5958115a a +=可得57592a a +=;从而1357575913575759()()()21530a a a a a a a a a a a a ++++++=++++++=⨯= . 又211a a -=,435a a -=,659a a -=,…,5857113a a -=,6059117a a -=, 所以2466013559()()a a a a a a a a ++++-++++2143656059()()()()a a a a a a a a =-+-+-++-= 159117++++3011817702⨯==. 从而24660a a a a ++++ 135591770a a a a =+++++ 3017701800=+=.因此6012345960S a a a a a a =++++++ 13592460()()a a a a a a =+++++++3018001830=+=.故选择D . 二、填空题【2015,13】数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和,若S n =126,则n = . 6解:数列{a n }是首项为2,公比为2的等比数列,∴2(12)12612n n S -==-,∴ 2n =64,∴n =6. 【2012,14】14.等比数列{}n a 的前n 项和为n S ,若3230S S +=,则公比q =___________. 【答案】2-.【解析】由已知得23123111S a a a a a q a q =++=++,2121133333S a a a a q =+=+,因为3230S S +=,所以2111440a a q a q ++= 而10a ≠,所以2440q q ++=,解得2q =-.三、解答题【2017,17】记n S 为等比数列{}n a 的前n 项和,已知22S =,36S =-. (1)求{}n a 的通项公式;(2)求n S ,并判断1n S +,n S ,2n S +是否成等差数列.【解析】(1)设首项1a ,公比q ,依题意,1q ≠,由3328a S S =-=-,23122121182a a q S a a a a q ⎧==-⎪⎨=+=+=⎪⎩,解得122a q ⎧=-⎪⎨=-⎪⎩, 1(2)n n n a a q ∴==-.(2)要证12,,n n n S S S ++成等差数列,只需证:122n n n S S S +++=, 只需证:120n n n n S S S S ++-+-=,只需证:1120n n n a a a +++++=, 只需证:212n n a a ++=-(*),由(1)知(*)式显然成立,12,,n n n S S S ++∴成等差数列.【2016,】17.(本小题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,.(1)求{}n a 的通项公式; (2)求{}n b 的前n 项和.17. 解析 (1)由题意令11n n n n a b b nb +++=中1n =,即1221a b b b +=,解得12a =,故()*31n a n n =-∈N .(2)由(1)得()1131n n n n b b nb ++-+=,即113n n b b +=()*n ∈N , 故{}n b 是以11b =为首项,13q =为公比的等比数列,即()1*13n n b n -⎛⎫=∈ ⎪⎝⎭N ,所以{}n b 的前n 项和为1111313122313n n n S -⎛⎫- ⎪⎝⎭==-⋅-. 【2014,17】已知{a n }是递增的等差数列,a 2,a 4是方程x 2-5x +6=0的根。
历年高考《数列》真题汇编1、(2011 年新课标卷文 )已知等比数列 { a n } 中, a 11,公比 q 1 .33 (I ) S n 为 { a n } 的前 n 项和,证明: S n 1 a n2(II )设 b nlog 3 a 1 log 3 a 2 Llog 3 a n ,求数列 { b n } 的通项公式.111解:(Ⅰ)因为 a n1(1 ) n 11 . S n 3 (13n ) 1 3n ,3 33n1 123所以 S n1 an,2(Ⅱ) b nlog 3 a 1log 3 a 2log 3 a n(1 2n(n 1)....... n)n( n 1) .2所以 { b n } 的通项公式为 b n22、 (2011 全国新课标卷理)等比数列 a n 的各项均为正数,且 2a 1 3a 2 1,a 3 2 9a 2a 6.(1)求数列 a n 的通项公式 .(2) 设 b n log 3 a 1 log 3 a 2 ...... log 3 a n , 求数列 1 的前项和 .b n解:(Ⅰ)设数列 {a n } 的公比为 q ,由 a 329a 2a 6 得 a 339a 42 所以 q 21。
有条件可知 a>0, 故1 。
9q3由 2a 1 3a 2 1得 2a 1 3a 2q 1,所以 a 11。
故数列 {a n } 的通项式为 a n =1。
33n(Ⅱ ?) b n log 1 a 1 log 1 a 1 ... log 1 a 1故1 22(11 )b nn( n 1)n n 1所以数列 { 1} 的前 n 项和为2nb nn 13、(2010 新课标卷理)数列a n足a12, a n 1a n3g22n 1(1)求数列a n的通公式;(2)令b n na n,求数列的前n 和S n解(Ⅰ)由已知,当 n≥ 1 ,a n 1 [( a n 1 a n ) (a n a n 1 ) L (a2 a1 )] a1 3(2 2n 1 22n 3 L 2) 2 22( n 1) 1 。
数列
一.等差数列、等比数列的基本概念与性质
全国Ⅱ卷
1.(2014.全国2卷5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的 前n 项和n S =( )
(A ) ()1n n + (B )()1n n - (C )()12
n n + (D)
()12
n n -
2.(2014.全国2卷16)数列{}n a 满足111n n a a +=
-,2a =2,则1a =_________.12
3.(2015.全国2卷5)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( )
A .5
B .7
C .9
D .11 4.(2015.全国2卷9)已知等比数列{}n a 满足11
4
a =
,()35441a a a =-,则2a =( ) 二.数列综合
(一)新课标卷
1.(2011.全国新课标17)(本小题满分12分)已知等比数列{}n a 中,113a =,公比1
3
q =. (I )n S 为{}n a 的前n 项和,证明:12
n
n a S -=
(II )设31323log log log n n b a a a =++
+,求数列{}n b 的通项公式.
解:(Ⅰ)因为.3
1
)31(311n n n a =⨯=
- 所以,2
1n n a S --
(Ⅱ)n n a a a b 32313log log log +++=
所以}{n b 的通项公式为.2
)
1(+-
=n n b n 2.(2014.全国3卷17)(本小题满分12分)已知{}n a 是递增的等差数列,2a 、4a 是方程
2560x x -+=的根。
(I )求{}n a 的通项公式;
(II )求数列2n n a ⎧⎫
⎨
⎬⎩⎭
的前n 项和. 错位相减 【解析】:(I )方程2
560x x -+=的两根为2,3,由题意得22a =,43a =,设数列{}n a 的
公差为 d ,,则422a a d -=,故d=12
,从而13
2a =, 所以{}n a 的通项公式为:1
12
n a n =+ …………6 分 (Ⅱ)设求数列2n n a ⎧⎫
⎨⎬⎩⎭
的前n 项和为S n ,由(Ⅰ)知1222n n
n a n ++=, 则:234134512
22222n n n n n S +++=
+++++ 34512134512222222
n n n n n S ++++=+++++ 两式相减得 所以14
22
n n n S ++=- ………12分
(三)全国Ⅱ卷
1.(2013.全国2卷17)(本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列. (1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -
2. 解:(1)设{a n }的公差为d. 由题意,2
11a =a 1a 13, 即(a 1+10d)2
=a 1(a 1+12d). 于是d(2a 1+25d)=0.
又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.
(2)令S n =a 1+a 4+a 7+…+a 3n -2.
由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =
2n (a 1+a 3n -2)=2
n (-6n +56)=-3n 2
+28n. 2.(2016全国卷2.17)(本小题满分12分) 等差数列{n a }中,34574,6a a a a +=+=.
(Ⅰ)求{n a }的通项公式;
(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.
试题解析:(Ⅰ)设数列{}n a 的公差为d ,由题意有11254,53a d a d -=-=,解得
12
1,5
a d ==,
所以{}n a 的通项公式为23
5
n n a +=. (Ⅱ)由(Ⅰ)知235n n b +⎡⎤
=⎢⎥⎣⎦
, 当n =1,2,3时,23
12,15n n b +≤
<=; 当n =4,5时,23
23,25n n b +≤<=;
当n =6,7,8时,23
34,35n n b +≤<=;
当n =9,10时,23
45,45
n n b +≤<=,
所以数列{}n b 的前10项和为1322334224⨯+⨯+⨯+⨯=. (三)全国III 卷
1、(2016全国卷3.17)(本小题满分12分)
已知各项都为正数的数列{}n a 满足11a =,2
11(21)20n n n n a a a a ++---=.
(I )求23,a a ;
(II )求{}n a 的通项公式. 试题解析:(Ⅰ)由题意得4
1
,2132==
a a . .........5分 考点:1、数列的递推公式;2、等比数列的通项公式. 2、(2017新课标Ⅲ文数)
设数列{}n a 满足123(21)2n a a n a n +++-=.
(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫
⎨
⎬+⎩⎭
的前n 项和.
综合题
1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列;
(2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式.
1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14
3
n n a a -=
. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a .
所以{}n a 是首项为1,公比为4
3
的等比数列. 7分
(2)解:因为14
()3n n a -=,
由1(1,2,)n n n b a b n +=+=,得114
()3n n n b b -+-=. 9分
由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b
=1)34(33
41)34(1211
-=--+--n n ,
(2≥n ),
当n=1时也满足,所以1)3
4
(31-=-n n b .
2.(本小题满分12分)
等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式.
2.设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫
⎨⎬⎩⎭
的前项和.
2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32349a a =所以21
9
q =。
有条件可知a>0,故1
3
q =。
由12231a a +=得12231a a q +=,所以113a =。
故数列{a n }的通项式为a n =1
3
n 。
(Ⅱ?)111111log log ...log n b a a a =+++ 故
1211
2()(1)1
n b n n n n =-=--++ 所以数列1{}n b 的前n 项和为21
n n -+
3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S 3.解:
(Ⅰ)由已知,当n ≥1时,
2(1)12n +-=。
而 12,a =
所以数列{n a }的通项公式为212n n a -=。
(Ⅱ)由212n n n b na n -==⋅知
35211222322n n S n -=⋅+⋅+⋅+
+⋅ ①
从而
23572121222322n n S n +⋅=⋅+⋅+⋅++⋅ ②
①-②得
2352121(12)22222n n n S n -+-⋅=+++
+-⋅ 。
即 211
[(31)22]9
n n S n +=-+。