自适应控制第4章
- 格式:ppt
- 大小:1.90 MB
- 文档页数:30
第4章模型参考自适应控制系统4.1 概述⏹MRAC系统具有多种结构形式,互相之间可以互相转换。
最典型的一类MRAC系统结构框图如图4.1.1所示,由参考模型、被控对象、参数可调控制器和自适应机构组成。
⏹其中参数可调控制器由一个前馈调节器和一个反馈调节器组成,它与被控对象形成一个常规的反馈控制系统,这个系统相对于MRAC系统来说是一个“内环”。
⏹另外,MRAC系统还有一个由自适应机构组成的自适应反馈回路,称为“外环”,用来调节内环参数可调控制器中的相关参数。
⏹MRAC系统的参考模型体现了人们对闭环控制系统的性能要求。
也就是说,这个参考模型反映了人们期望闭环控制系统如何响应指令信号。
图4.1.1 典型MRAC系统的结构框图到目前为止,已有许多种类型的MRAC系统,并且采用不同分类标准就有不同的分类方法。
⏹如按结构特征来分类,可将MRAC系统分为并联MRAC系统、串联MRAC系统以及串并联MRAC系统。
一般,这三种结构是从不同的观点来讨论的,但是用统一的方法对它们进行分析和综合也是可能的。
⏹根据自适应机构对系统的影响方式可以分为参数自适应方式和信号综合自适应控制方式。
前者表示自适应机构根据参考模型与被控对象之间的误差直接修改控制器的参数,如图4.1.1中从自适应机构出发的实线所代表的方式;后者是由自适应机构产生一个辅助输入信号来修改加在被控对象的信号,如图4.1.1中从自适应机构出发的虚线所代表的方式。
根据MRAC系统的设计方法可以分为如下三类:基于局部参数最优化的方法、基于Lyapunov稳定性理论的方法以及基于Popov超稳定性理论的方法。
⏹基于局部参数最优化的方法是最早采用的MRAC系统设计方法,通常称为MIT律。
⏹基于Lyapunov稳定性理论的方法是Butcharty及Parks于六十年代中期相继提出的,这种方法与局部参数最优化方法相比,不仅可保证系统的稳定性,还具有自适应速度快的优点。
⏹由法国学者Landau于1969年提出的基于Popov超稳定性理论的方法,主要是以Popov超稳定性理论为基础,由于不需要选择Lyapunov函数,并且能给出一族自适应规律,从而该方法有利于设计者结合实际系统灵活地选择合适的自适应规律。
目录第一章自适应控制概述 (1)第一节自适应控制的产生背景及分类 (1)一.自适应控制产生的背景 (1)二.自适应控制的原理及分类 (2)第二章模型参考自适应控制(MODEL REFERENCE ADAPTIVE CONTROL)简称MRAC 3第一节MRAC的基本概念 (3)第二节最优化的设计方法 (4)一、利用梯度法的局部参数最优化的设计方法 (4)第三节基于李雅普诺夫第二方法稳定性理论的MRAC设计方法 (7)一.关于李雅普诺夫( Liaupunov) 稳定性的第二方法 (7)第四节基于超稳定理论的MRAC设计方法 (13)一、关于超稳定性理论的基本概念 (13)二、用超稳定理论设计MRAC系统 (15)第三章自校正控制 (18)第一节自校正控制的原理及组成 (18)第二节最小方差控制律 (21)第一章自适应控制概述任何一个动态系统,通常都具有程度不同的不确定性。
这种不确定性因素的产生主要由于:(1)系统的输入包含有随机扰动,如飞行器飞行过程中的阵风;(2) 系统的测量传感器具有测量噪声;以上两者又称为不确定性的(或随机的)环境因素。
(3) 系统数学模型的参数甚至结构具有不确定性。
如导弹控制系统中气动力参数随导弹飞行高度、速度、导弹质量及重心的变化而变化。
在只存在不确定环境因素,但系统模型具有确定性的情况下,这是随机控制需要解决的问题;而自适应控制是解决具有数学模型不确定性为特征的最优控制问题。
这时如果系统基本工作于确定环境下,则称为确定性自适应控制;如果系统工作于随机环境下,则称为随机自适应控制。
自适应控制的提法可归纳为:在系统数学模型不确定的条件下(工作环境可以是基本确定的或是随机的),要求设计控制规律,使给定的性能指标尽可能达到及保持最优。
为了完成以上任务,自适应控制必须首先要在工作过程中不断地在线辨识系统模型(结构及参数)或性能,作为形成及修正最优控制的依据,这就是所谓的自适应能力,它是自适应控制主要特点。
自适应控制与应用自适应控制与应用第一章自适应控制基本概念第二章模型参考自适应系统设计初步第三章用李亚普诺夫稳定性理论设计MRAC第四章用波波夫超稳定性理论设计MRAC第五章自校正技术及自校正控制器调节器的设计第六章极点配置的自校正技术第一章自适应控制的基本概念1-1 自适应控制的产生1-2自适应控制的定义1-3 自适应控制的基本原理1-4 自适应控制系统的主要类型1-5自适应控制的应用1-1 自适应控制的产生传统的控制系统设计方法,通常是首先建立被控对象的数学模型,然后根据所建数学模型的特性设计控制器(控制律),实施控制。
为了要成功的设计一个控制系统,无论是常规的反馈控制系统还是最优控制系统,都必须要设计者事先知道被控对象的所有特征,及其结构和参数。
1-1 自适应控制的产生设计都要求事先掌握被控对象或被控过程的数学模型。
然而有些数学模型是很难事先确知的,或者由于种种原因,一些系统的数学模型会在运行过程中发生较大范围的变化,这就是说,设计者对系统的特性并不是完全掌控的,或者说系统的特性是不肯定的。
在这些情况下,常规控制就往往达不到预定的控制要求。
引起被控对象特性发生变化的主要原因有:(1)由于系统所处环境的变化而引起的被控对象的参数值的变化。
1-1 自适应控制的产生许多控制对象的数学模型随着时间或工作环境的改变而发生变化,而变化规律往往事先不知道。
例如:引起被控对象特性发生变化的主要原因有:(1)由于系统所处环境的变化而引起的被控对象的参数值的变化。
1-1 自适应控制的产生许多控制对象的数学模型随着时间或工作环境的改变而发生变化,而变化规律往往事先不知道。
(2)系统本身由于工作情况的变化而引起自身参数值的改变.1-1 自适应控制的产生当被控对象的数学模型参数在小范围内变化时,可用一般的反馈控制、最优控制或补偿控制等方法使得系统对外部的扰动或内部参数的小范围变动不很敏感,以达到预期性能。
而当被控对象的数学模型参数在大范围内变化时,上述方法就不能圆满解决问题了,为了使控制对象的参数在大范围变化时,系统仍能自动的工作于最优或次优状态,因而提出了自适应控制的问题。
一、课件简介1.1 课件目的本课件旨在介绍自适应控制的基本概念、原理和应用,帮助学习者深入理解自适应控制理论,掌握自适应控制器的设计和分析方法。
1.2 课件内容本课件主要包括自适应控制的基本概念、自适应控制系统的类型及特点、自适应控制器的设计方法、自适应控制的应用领域等内容。
二、自适应控制的基本概念2.1 自适应控制的定义2.2 自适应控制的目标自适应控制的目标是使系统在未知干扰和参数变化的作用下,仍能达到预定的性能指标,包括稳态性能、动态性能和鲁棒性能等。
2.3 自适应控制的基本原理自适应控制的基本原理包括误差反馈、模型参考自适应控制和自校正控制等。
三、自适应控制系统的类型及特点3.1 类型自适应控制系统主要分为模型参考自适应控制、误差反馈自适应控制和模糊自适应控制等。
3.2 特点自适应控制系统的特点包括具有较强的鲁棒性、适应性和灵活性,能够在线调整控制器参数,适应系统的不确定性和变化。
四、自适应控制器的设计方法4.1 基于李雅普诺夫理论的设计方法4.2 基于最优控制理论的设计方法4.3 基于模糊逻辑的设计方法五、自适应控制的应用领域5.1 工业控制系统5.2 控制5.3 航空航天领域5.4 生物医学领域5.5 新能源领域六、自适应控制的关键技术6.1 系统建模与辨识系统建模与辨识是自适应控制的基础,涉及到对被控对象动态特性的估计和建模。
6.2 参数估计与更新参数估计与更新技术是自适应控制的核心,主要包括观测器设计、参数自适应律设计等。
6.3 控制律设计控制律设计是自适应控制的关键,需要保证系统在面临不确定性和外界干扰时,仍能达到期望的性能指标。
七、自适应控制的应用案例分析7.1 工业过程控制以工业生产线上的温度控制为例,介绍自适应控制如何在工业过程中应用,提高控制精度和稳定性。
7.2 导航以无人驾驶汽车为例,介绍自适应控制如何在复杂环境中实现精确的路径跟踪和避障。
7.3 航空航天器控制以卫星控制系统为例,介绍自适应控制如何在高动态和高不确定环境下保证控制系统的性能。
自适应控制技术在机电系统中的应用机电系统是由机械设备和电气设备组成的复杂系统,控制系统是其关键部分之一。
自适应控制技术是一种应用广泛的跟踪与控制技术,可以适应机电系统中的变化和不确定性因素,并根据系统的反馈信息来自我调整。
本文将介绍自适应控制技术在机电系统中的具体应用。
第一章自适应控制技术概述自适应控制技术是指利用控制系统中的反馈信息,根据系统变化和不确定性因素,对控制器进行自我调整,以达到最优控制效果的一种技术。
其核心思想是通过建立动态模型,实时估计系统的参数和状态,从而进行自适应调节。
自适应控制技术的主要应用领域包括机械、电气、仪表等各种领域。
第二章机电系统中的控制问题在机电系统中,由于其复杂性和不确定性,控制问题往往比较困难。
机电系统的控制问题包括以下几个方面:1. 非线性问题。
机电系统中往往存在非线性关系,如摩擦力、非线性弹性等因素,使得系统的行为不仅是非线性的,还是复杂的。
2. 模型不确定性。
机电系统的模型往往是复杂的,各个部分之间存在耦合关系,因此参数的测量和估计难度较大。
3. 系统时滞。
机电系统中,信号传输、机械失效、传感器响应等因素都会导致系统存在时滞,这将影响到控制器的性能。
4. 外部扰动。
由于机电系统的复杂性,外部扰动通常是不可避免的,这将影响到控制系统的响应速度和精度。
第三章自适应控制技术在机电系统中的应用自适应控制技术由于具有适应性强、控制精度高等优点,被广泛应用于机电系统中,下面将介绍一些常见的应用案例。
1. 摩托车电喷系统中的应用摩托车电喷系统是一种将燃油喷入气缸的系统,使燃油和空气混合后着火燃烧,从而驱动摩托车行驶。
在传统的机械喷油系统中,由于燃油分配不均、氧气含量不同等因素的影响,喷油量和混合比往往存在偏差。
而通过应用自适应控制技术,可以对燃油喷射量进行在线调整,从而达到最优的混合比,提高摩托车的性能和经济性。
2. 机械臂控制系统中的应用机械臂控制系统是一种将机械臂移动到特定位置或执行特定动作的系统。