3.3 直角坐标中的分离变量法
- 格式:ppt
- 大小:1.20 MB
- 文档页数:23
<<电磁场与电磁波>>读书报告姓 名: 学 院: 学 号: 专 业: 题 目:分离变量法在求静态场的解的应用 成 绩:二〇一四年四月Xxx 工程学院电子工程类一.引言分离变量法是在数学物理方法中应用最广泛的一种方法。
在求解电磁场与电磁波的分布型问题和边值型问题有很重要的应用。
分布型问题是指已知场源(电荷分布、电流分布)直接计算空间各点和位函数。
而边值型问题是指已知空间某给定区域的场源分布和该区域边界面上的位函数(或其法向导数),求场内位函数的分布。
求解这两类问题可以归结为在给定边界条件下求解拉普拉斯方程或泊松方程,即求解边值问题。
这类问题的解法,例如镜像法,分离变量法,复变函数法,格林函数法和有限差分法,都是很常用的解法。
这里仅对在直角坐标系情况下的分离变量法作简单介绍。
二.内容1.分离变量法的特点:分离变量法是指把一个多变量的函数表示成几个单变量函数乘积,从而将偏微分方程分离为几个带分离常数的常微分方程的方法,属于解析法的一种。
它要求要求所给边界与一个适当的坐标系的坐标面重合.在此坐标系中,待求偏微分方程的解可表示成三个函数的乘积,每一函数仅是一个坐标的函数。
我们仅讨论直角坐标系中的分离变量法.2.推导过程:直角坐标系中的拉普拉斯方程:2222220 x y zϕϕϕ∂∂∂++=∂∂∂我们假设是三个函数的乘积,即(,,)()()()x y z X x Y y Z z ϕ=其中X 只是x 的函数,同时Y 是y 的函数Z 是z 的函数,将上式带入拉普拉斯方程,得然后上式同时除以XYZ0X Y Z++=上式成立的唯一条件是三项中每一项都是常数,故可分解为下列三个即α,β,γ为分离常数,都是待定常数,与边值有关但不能全为实数或全为虚数 。
0=,下面以X ”/X =α2式为例,说明X 的形式与α的关系当α2=0时,则当α2<0时,令α=jk x (k x 为正实数),则 或当α2>0时,令α=k x ,则或 a ,b ,c ,d 为积分常数,由边界条件决定Y(y)Z(z)的解和X(x)类似。
三维球对称谐振子在直角坐标系中由分离变量法求解定态薛定谔,给出能级公式和波函数正文:考虑三维球对称谐振子,其势能函数为 $V(r)$,其中 $r$ 为球谐振子的半径。
在该函数中,球谐振子的势能随着半径的减小而增加。
由于球谐振子是对称的,因此我们只需要在球心处放置一个粒子,即可满足对称性。
在直角坐标系中,球谐振子的势能函数可以表示为:$$V(r) = frac{1}{2} omega^2 r^2$$其中 $omega$ 为球谐振子的角频率。
为了求解薛定谔方程,我们使用分离变量法。
将球谐振子的能量写成 $E(r)$,其中 $E$ 为能量。
然后,我们将 $E(r)$ 代入薛定谔方程中,并分离变量:$$frac{1}{r^2} frac{partial}{partial r} (r^2 frac{partial psi}{partial r}) + left[ frac{1}{r^2} frac{partial^2}{partial theta^2} + frac{partial^2}{partial phi^2} - frac{2}{r} + E(r) ight] psi = 0$$由于球谐振子是对称的,因此 $psi(theta, phi) = psi(r)$。
在分离变量的过程中,我们得到了球谐振子的能级公式:$$E(r) = frac{1}{2} omega^2 r^2$$同时,我们也得到了球谐振子的波函数:$$psi(r) = frac{1}{r^2} sqrt{frac{pi}{2}} r^2$$ 拓展:球谐振子的能级公式和波函数是在直角坐标系中求解得到的。
实际上,球谐振子的薛定谔方程可以在任何坐标系中求解。
在球谐振子的薛定谔方程中,角频率 $omega$ 和半径 $r$ 是独立的变量。
因此,我们可以在不同的坐标系中求解薛定谔方程,并得到不同的能级公式和波函数。
球谐振子的能级公式和波函数是一个重要的结果,它可以帮助我们更好地理解球谐振子的性质。
《电磁场与电磁波理论》思考题第1章思考题1.1什么是标量?什么是矢量?什么是矢量的分量?1.2什么是单位矢量?什么是矢量的单位矢量?1.3什么是位置矢量或矢径?直角坐标系中场点和源点之间的距离矢量是如何表示的?1.4什么是右手法则或右手螺旋法则?1.5若两个矢量相互垂直,则它们的标量积应等于什么?矢量积又如何?1.6若两个矢量相互平行,则它们的矢量积应等于什么?标量积又如何?1.7若两个非零矢量的标量积等于零,则两个矢量应垂直还是平行?1.8若两个非零矢量的矢量积等于零,则两个矢量应垂直还是平行?1.9直角坐标系中矢量的标量积和矢量积如何计算?1.10什么是场?什么是标量场?什么是矢量场?1.11什么是静态场或恒定场?什么是时变场?1.12什么是等值面?它的特点有那些?1.13什么是矢量线?它的特点有那些?1.14哈密顿算子为什么称为矢量微分算子?1.15标量函数的梯度的定义是什么?物理意义是什么?1.16什么是通量?什么是环量?1.17矢量函数的散度的定义是什么?物理意义是什么?1.18矢量函数的旋度的定义是什么?物理意义是什么?1.19什么是拉普拉斯算子?标量和矢量的拉普拉斯运算分别是如何定义的?1.20直角坐标系中梯度、散度、旋度和拉普拉斯算子在的表示式是怎样的?1.21三个重要的矢量恒等式是怎样的?1.22什么是无源场?什么是无旋场?1.23为什么任何一个梯度场必为无旋场?为什么任何一个无旋场必为有位场?1.24为什么任何一个旋度场必为无源场?为什么任何一个无源场必为旋度场?1.25高斯散度定理和斯托克斯定理的表示式和意义是什么?1.26什么是矢量的唯一性定理?1.27在无限大空间中是否存在既无源又无旋的场?为什么?1.28直角坐标系中的长度元、面积元和体积元是如何表示的?1.29圆柱坐标系中的长度元、面积元和体积元是如何表示的?1.30球面坐标系中的长度元、面积元和体积元是如何表示的?2.1什么是体电荷、面电荷、线电荷和点电荷?他们分别是如何定义的?2.2什么是试验电荷?什么是电场强度?2.3什么是电介质、磁介质和导体或导电媒质?2.4什么是电偶极子?电偶极矩矢量是如何定义的?2.5什么是电极化强度?电介质的极化现象是怎样的?2.6什么是电位移或电通量密度?2.7什么是相对介电常数和(绝对)介电常数?什么是自由空间?2.8什么是线性各向同性的电介质?2.9什么是恒定电流?什么是时变电流?什么是传导电流?什么是运流电流?2.10什么是体电流、面电流和线电流?他们分别是如何定义的?2.11什么是微分形式欧姆定律?2.12什么是洛伦兹力?什么是磁感应强度?2.13什么是磁偶极子?磁偶极矩矢量是如何定义的?2.14什么是磁化强度? 磁介质的磁化现象是怎样的?2.15什么是顺磁质?什么是抗磁质?什么是铁磁性物质?2.16什么是相对磁导率和(绝对)磁导率?2.17什么是磁场强度?2.18什么是线性各向同性的磁介质?2.19电磁学的三大基本实验定律是哪三个?2.20什么是库仑定律?什么是静电场的环量定律?什么是高斯定律?2.21由静电场的环量定律可以什么结论?2.22穿过任一高斯面的电场强度通量与该闭合曲面所包围的哪些电荷有关?2.23穿过任一高斯面的电位移通量与该闭合曲面所包围的哪些电荷有关?2.24高斯面上的场矢量与高斯面外的电荷是否有关?为什么?2.25什么是安培定律?什么是比奥—萨伐尔定律?2.26什么是磁通连续性定律?什么是安培环路定律?2.27磁场强度沿任一闭合回路的环量与哪些电流有关?2.28磁感应强度沿任一闭合回路的环量与哪些电流有关?2.29闭合回路上的磁场强度与闭合回路以外的电流是否有关?为什么?2.30什么是感应电流?什么是感应电场?什么是感应电动势?2.31什么是法拉第电磁感应定律?2.32什么是电荷守恒定律?电荷守恒定律的数学表达式是怎样的?2.33麦克斯韦的漩涡电场假设的基本思想是什么?2.34什么是位移电流?什么是位移电流密度?2.35什么是全电流?什么是全电流密度?什么是全电流连续性定律?2.36为什么说五个基本方程不是独立的?2.37什么是电磁场的边界条件?他们是如何得到的?2.38为什么边界条件的讨论分解成法向分量和切向分量来进行?2.39在不同媒质分界面上,永远是连续的是电磁场的哪些分量?2.40电磁场的哪些分量当不存在传导面电流和自由面电荷时是连续的?2.41什么是理想介质?什么是理想导体?2.42边界条件有哪三种常用形式?他们有什么特点?2.43在理想导体表面上不存在电磁场的什么分量?2.44垂直于理想导体表面的是电力线还是磁力线?平行于理想导体表面的是电力线还是磁力线?2.45理想导体表面的面电流密度等于磁场的什么分量?理想导体表面面电荷密度等于电场的什么分量?3.1什么是静电场?如何由是麦克斯韦方程组得到静电场的基本方程?3.2静电场是无源场还是无旋场?3.3静电场边界条件有哪两种常用形式?他们有什么特点?3.4在静电场中的不同电介质分界面上,电场强度和电位移的什么分量总是连续的?3.5什么是静电场折射定律?3.6静电场的什么分量在导体表面总是为零?导体表面面电荷密度等于电场的什么分量?3.7在静电场中,电场强度沿一个开放路径的线积分与积分路径是否有关?为什么?3.8静电场中任一点的电位是如何定义的?什么是零电位参考点?3.9静电场中任一点的电位是否是唯一的?电场强度是否是唯一的?3.10什么是等位面?电场强度矢量与等位面有什么关系?为什么?3.11什么是电位的泊松方程和拉普拉斯方程?什么是电场强度的泊松方程和拉普拉斯方程?3.12电位的边界条件是如何得到的?为什么电位在界面上总是连续?3.13为什么说导体必为等位体,导体与电介质的交界面必为等位面?3.14静电场的能量和能量密度是如何计算的?3.15导体的电容与哪些因素有关?与导体的电位和所带的电量是否有关?3.16什么是电容器?电容器的电容是如何定义的?3.17电容器的电容与其电场储能有什么关系?3.18什么是静电场分布型问题?什么是静电场的边值型问题?3.19静电场的边值问题可以分为哪三类?3.20什么是静电场唯一性定理?它是如何证明的?3.21静电场边值问题主要解法有哪些?3.22什么是直接积分法?什么情况下可以采用直接积分法?直接积分法的基本步骤是什么?3.23直角坐标系中一维电位分布的拉普拉斯方程的通解是怎样的?电荷均匀分布和线性分布区域电位的通解各是怎样的?3.24圆柱坐标系中无源区域、电荷均匀分布和线性分布区域三个一维电位分布满足的二阶微分方程各是怎样的?电位的通解各是怎样的?3.25球面坐标系中无源区域、电荷均匀分布和线性分布区域三个一维电位分布满足的二阶微分方程各是怎样的?电位的通解各是怎样的?3.26什么是分离变量法?什么是分离常数?什么是分离方程?3.27直角坐标系中的分离常数有哪几个?直角坐标系中的分离方程是怎样的?3.28直角坐标系中的分离方程的通解与分离常数有什么关系?3.29直角坐标系中分离变量法的的两种常见的二维问题是指什么情况?3.30什么是直角坐标系中分离变量法的基本问题?3.31如何根据基本问题的边界条件选取通解的具体形式?3.32如何利用三角函数的正交性或者傅立叶级数的公式来确定基本问题的最终解?3.33什么是镜像法?什么是镜像电荷?如何确定镜像电荷?3.34点电荷关于无限大导体平面的镜像电荷是如何确定的?此时导体表面的感应电荷有什么特点?3.35无限大导体平面上方与其平行的无限长直的均匀线电荷的镜像是怎样的?(画图) 3.36两个无限大相交理想导体平面之间的夹角满足什么条件才能采用镜像法?镜像电荷的数目与夹角有什么关系?(画图)3.37两个平行的无限大导体平面之间的点电荷的镜像电荷有多少?(画图)3.38接地导体球外的点电荷的镜像电荷是如何确定的?导体表面的感应电荷有什么特点?(画图)3.39接地导体球内的点电荷的镜像电荷是如何确定的?导体表面的感应电荷有什么特点?(画图)3.40如果导体球或球壳没有接地,如何借助于镜像法来求各处的场分布?3.41什么是静电场的数值解法?什么是“场域型”数值方法?什么是“边界型”数值方法?3.42什么是有限差分法?有限差分法的基本步骤是什么?3.43二维泊松方程对应的差分方程是怎样的?3.44二维静电场边值问题的有限差分法的基本步骤是怎样的?3.45什么是差分方程的超松弛迭代法求解?它的基本步骤是怎样的?3.46什么是矩量法?矩量法的三个基本步骤是什么?3.47静电场边值问题的矩量法的基本步骤是怎样的?第4章思考题4.1什么是恒定电流或直流?什么是时变电流或交流?4.2什么是恒定电场?如何由是麦克斯韦方程组得到恒定电场的基本方程?4.3恒定电场是无源场还是无旋场?4.4在电导率不同的导体的分界面上,电场强度和电流密度的什么分量是连续的?4.5在不同导体的分界面上电场强度和电流密度的什么分量是不连续的?4.6恒定电场中电位与静电场的电位有什么异同点?4.7为什么在线性和各向同性的均匀媒质中恒定电场中电位总是满足的拉普拉斯方程? 4.8线性和各向同性的均匀媒质中是否存在体电荷?4.9导电媒质分界面上的面电荷的密度是如何确定的?4.10什么情况下,导电媒质分界面上的不存在面电荷?4.11什么是电流的热效应?恒定电场的功率损耗是如何计算的?4.12什么是焦耳定律的微分形式和积分形式?4.13什么是漏电流?什么是漏电导?4.14什么是静电比拟法?它有什么用处?4.15什么情况下可以将静电场与恒定电场相比拟?4.16电容器的漏电导与电容的对应关系是怎样的?4.17什么是恒定磁场?如何由是麦克斯韦方程组得到恒定磁场的基本方程?4.18恒定磁场是无源场还是无旋场?4.19在磁导率不同的磁介质的分界面上,磁场强度和磁感应强度什么分量是连续的?4.20在不同磁介质的分界面上磁场强度和磁感应强度的什么分量是不连续的?4.21什么是恒定磁场折射定律?4.22什么是恒定磁场镜像法?4.23恒定磁场的矢量磁位是如何定义的?4.24什么是库仑条件或库仑规范?为什么恒定磁场的矢量磁位要满足库仑条件或库仑规范?4.25什么是恒定磁场矢量磁位的泊松方程和拉普拉斯方程?4.26由比奥—萨伐尔定律得到的恒定磁场矢量磁位的积分表示式是否满足恒定磁场的微分方程?4.27恒定磁场的标量磁位是如何定义的?它有什么要求?4.28为什么恒定磁场的标量磁位只是满足拉普拉斯方程?4.29恒定磁场的标量磁位的边界条件是如何得到的?4.30恒定磁场的能量和能量密度是如何计算的?4.31什么是导体载流回路的电感?它与哪些因素有关?4.32什么是自感?什么是互感?什么是内自感?什么是外自感?4.33导体回路的电感与导体回路的电流是否有关?4.34导体载流回路的电感与磁场储能有什么关系?第5章思考题5.1什么是时谐电磁场?什么是时谐电磁场的复振幅和复振幅矢量?5.2如何由时变电磁场的基本方程得到时谐电磁场的基本方程(基本方程的复数形式)?5.3如何由时变电磁场的结构方程得到时谐电磁场的结构方程(结构方程的复数形式)?5.4如何由时变电磁场的边界条件得到时谐电磁场的边界条件(边界条件的复数形式)?5.5时谐电磁场边界条件有哪三种常用形式?他们有什么特点?5.6在不同媒质分界面上,永远是连续的是时谐电磁场的哪个分量?5.7在理想导体表面上不存在时谐电磁场的什么分量?5.8垂直于理想导体表面的是时谐电磁场的电力线还是磁力线?平行于理想导体表面的是时谐电磁场的电力线还是磁力线?5.9理想导体表面的面电流密度等于时谐电磁场的什么分量?理想导体表面面电荷密度等于时谐电磁场的什么分量?5.10什么是导电媒质的复介电常数?什么是导电媒质的损耗角正切?5.11时变电磁场的矢量磁位和标量电位是如何定义?5.12什么是洛伦兹条件或洛伦兹规范?洛伦兹条件与电流连续性方程是否是一致的?5.13什么情况下矢量磁位和标量电位满足齐次达兰贝尔方程?5.14什么情况下电场强度和磁场强度满足齐次达兰贝尔方程?5.15什么是滞后位?什么是超前位?为什么在无限大自由空间中只有滞后位?5.16矢量磁位和标量电位的滞后位是怎样的?5.17时谐电磁场的矢量磁位和标量电位是如何定义?5.18如何得到时谐电磁场的矢量磁位和标量电位的洛伦兹条件或洛伦兹规范?5.19如何得到时谐电磁场的矢量磁位和标量电位的亥姆霍兹方程(复波动方程)?5.20如何得到时谐电磁场的矢量磁位和标量电位的滞后位和超前位?5.21瞬时坡印廷矢量是如何定义的?它的物理意义是什么?它有什么特性?5.22什么是瞬时坡印廷定理的微分形式和积分形式?瞬时坡印廷定理的物理意义是什么?5.23什么是平均坡印廷矢量?5.24复坡印廷矢量是如何定义的?它的物理意义是什么?5.25天线的作用是什么?天线有哪些类型?5.26什么是电基本振子?什么是磁基本振子?5.27什么是线天线?什么是对称天线?什么是半波天线?5.28什么是近区场?什么是远区场?5.29电基本振子的近区场有什么特性?5.30电基本振子的远区场有什么特性?5.31磁基本振子的近区场有什么特性?5.32磁基本振子的远区场有什么特性?5.33基本振子和磁基本振子的电场有什么异同点?它们谁的辐射能力大?5.34基本振子和磁基本振子的对偶性是怎样的?5.35什么是水平极化天线?什么是垂直极化天线?5.36天线的方向性因子、方向函数和方向图指的是什么?5.37什么是天线的E面方向图?什么是天线的H面方向图?5.38什么是无方向天线?什么是全向天线?什么是定向天线?5.39基本振子、磁基本振子和半波天线的方向图有什么特点?5.40什么是天线辐射功率?天线的半功率波瓣宽度和零功率波瓣宽度是如何定义的?5.41基本振子和磁基本振子的半功率波瓣宽度和零功率波瓣宽度的大小是怎样的?5.42什么是天线阵?它的作用是什么?决定天线阵的辐射特性的主要参数有哪些?5.43天线阵方向图相乘原理是指什么?5.44什么是均匀直线式天线阵?什么是均匀直线式边射阵?什么是均匀直线式端射阵?。
三维球对称谐振子在直角坐标系中由分离变量法求解定态薛定谔,给出能级公式和波函数三维球对称谐振子是一个在三维球坐标系中具有球对称性的体系,其哈密顿量可以表示为:\[H = -\frac{\hbar^2}{2m}\nabla^2 + \frac{1}{2}m\omega^2r^2\]其中,\(\hbar\)是约化普朗克常数,\(m\)是质量,\(\omega\)是频率,\(r\)是径向距离。
根据分离变量法,可以将波函数表示为径向部分和角向部分的乘积形式:\[\psi(r,\theta,\phi) = R(r)Y(\theta,\phi)\]由于体系具有球对称性,角向部分的函数\(Y(\theta,\phi)\)可以表示为球谐函数的形式:\[Y(\theta,\phi) = f(\theta)g(\phi)\]将波函数代入薛定谔方程得到:\[\left(-\frac{\hbar^2}{2m}\nabla^2 +\frac{1}{2}m\omega^2r^2\right)R(r)f(\theta)g(\phi) = ER(r)f(\theta)g(\phi)\]根据球坐标系中的拉普拉斯算符的表达式,可以展开薛定谔方程为:\[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partialR}{\partial r}\right) +\frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial f}{\partial \theta}\right) +\frac{1}{r^2\sin^2\theta}\frac{\partial^2g}{\partial \phi^2} +\frac{2m}{\hbar^2}\left[E - \frac{1}{2}m\omega^2r^2\right]Rfg = 0\]接下来,我们通过分离变量的方法对方程进行求解。