Optimization of Bell's Inequality Violation For Continuous Variable Systems
- 格式:pdf
- 大小:98.91 KB
- 文档页数:8
高三现代科技前沿探索英语阅读理解20题1<背景文章>Artificial intelligence (AI) is rapidly transforming the field of healthcare. In recent years, AI has made significant progress in various aspects of medical care, bringing new opportunities and challenges.One of the major applications of AI in healthcare is in disease diagnosis. AI-powered systems can analyze large amounts of medical data, such as medical images and patient records, to detect diseases at an early stage. For example, deep learning algorithms can accurately identify tumors in medical images, helping doctors make more accurate diagnoses.Another area where AI is making a big impact is in drug discovery. By analyzing vast amounts of biological data, AI can help researchers identify potential drug targets and design new drugs more efficiently. This can significantly shorten the time and cost of drug development.AI also has the potential to improve patient care by providing personalized treatment plans. Based on a patient's genetic information, medical history, and other factors, AI can recommend the most appropriate treatment options.However, the application of AI in healthcare also faces some challenges. One of the main concerns is data privacy and security. Medicaldata is highly sensitive, and ensuring its protection is crucial. Another challenge is the lack of transparency in AI algorithms. Doctors and patients need to understand how AI makes decisions in order to trust its recommendations.In conclusion, while AI holds great promise for improving healthcare, it also poses significant challenges that need to be addressed.1. What is one of the major applications of AI in healthcare?A. Disease prevention.B. Disease diagnosis.C. Health maintenance.D. Medical education.答案:B。
高维Bell不等式及其最大违背的开题报告一、研究背景贝尔不等式是描述量子力学的本质区别于经典力学的重要工具之一。
20世纪60年代,约翰·贝尔提出了著名的贝尔不等式,在随后的几十年里,它成为了物理学家们探索量子力学与经典力学差异的基础。
然而,贝尔不等式只适用于描述两个物理系统之间的关系,并且只能适用于二元判定问题,即问题只有两个可能的答案。
因此,在研究多个物理系统之间的关系时,需要使用高维Bell不等式。
二、研究内容高维Bell不等式是一种用于描述多个量子系统之间关系的不等式。
它是通过推广贝尔不等式得到的,可以用于描述三个及以上的物理系统之间的关系。
高维Bell不等式和贝尔不等式一样,用于描述在类似Einstein-Podolsky-Rosen实验中,经典理论和量子力学之间的不同。
研究高维Bell不等式的过程需要用到数学工具,如Hilbert空间、线性算子、张量积等概念,以及离散数学中的图论、组合等知识。
通过这些工具,可以推导出不同维度下的Bell不等式及其最大违背。
三、研究意义高维Bell不等式及其最大违背的研究,对于深入理解量子力学与经典力学之间差异具有重要意义。
同时,高维Bell不等式对于实验检验量子力学的基本原理和理论的准确性具有重要意义。
研究结果还可以为量子信息科学、量子计算等领域的发展提供理论支持。
四、研究方法本文主要采用文献调研和数理推导相结合的方法,通过分析已有文献中的内容,运用数学工具对高维Bell不等式进行推导,探究其理论基础和数学性质,并分析其在实际应用中的意义。
五、研究进展至今,高维Bell不等式及其最大违背的研究仍然是一个活跃的领域。
目前已经有不少关于高维Bell不等式的研究成果,如高斯态的Bell不等式、含有n条臂的若干种类型的Bell不等式、三个系综的高维正态通信协议等等。
这些成果为高维Bell不等式的进一步探究提供了理论依据和实验验证的基础。
六、结论高维Bell不等式及其最大违背的研究,是探究量子世界和经典世界差异的重要研究方向。
量子物理的基础及其光学实验张开银 王树春 赵丽娟 黄 晖 张光寅 许京军(南开大学物理科学学院光子学中心,天津,300071)摘要:主要针对长期争论的量子力学的基本概念问题,即量子纠缠态,从实验方面对其做了回顾。
重点论述了近期光学实验在量子纠缠态方面的一系列新的进展,主要介绍了利用自发参量下转换产生两光子和三光子纠缠态的实验。
关键词:双缝干涉 量子纠缠 EPR Bell 态Optical experiments and the foundations of quantum physicsZhang Kaiyin ,Wang Shuchun ,Zhao Lijuan ,Huang Hui ,Zhang Guangyin ,Xu Jingjun(Photonics Research Center ,Institute of Physics ,Nankai University ,T ianjing ,300071)Abstract :This paper gives a review of experiments related to the foundations of quantum physics ,i.e.quantum entanglement.A series of late developments in the field of quantum entanglement ,especially tw o 2photon and three 2photon entanglement experiments which are based on the process of spontaneous parametric down con 2version ,is introduced.K ey w ords :double slit interference quantum entanglement EPR Bell state引 言20世纪物理科学的革命是建立了相对论和量子力学,从根本上改变了人们对时间、空间、物质以及运动的概念。
关于一个改进的Hardy-Hilbert不等式杨乔顺;龙萍;周昱【期刊名称】《大学数学》【年(卷),期】2012(028)001【摘要】通过建立权系数并利用改进了的H lder不等式,得到了一个新的改进的Hardy-Hilbert不等式.当p=2时,便得到了经典的Hilbert不等式的一个改进.%It is shown that a new improvement of Hardy-Hilbert inequality can be established by introducing a weight coefficient and by means of a sharpening of Holder' s inequality, for case p = 2 , a sharp result of the classical Hilbert inequality is obtained.【总页数】4页(P107-110)【作者】杨乔顺;龙萍;周昱【作者单位】吉首大学师范学院数计系,湖南吉首416000;吉首大学师范学院数计系,湖南吉首416000;吉首大学师范学院数计系,湖南吉首416000【正文语种】中文【中图分类】O178【相关文献】1.关于Hardy-Hilbert不等式的一个改进 [J], 陈小雨;高雪梅2.一个已加强的Hardy-Hilbert不等式的改进 [J], 王文杰;陈小雨;谭立3.Hardy-Hilbert 不等式一个新的改进 [J], 赵玉中;郭继峰4.关于一个Hardy-Hilbert型不等式的改进与推广 [J], 罗静;隆建军5.Hardy-Hilbert不等式一个新的改进 [J], 王祥;张太忠因版权原因,仅展示原文概要,查看原文内容请购买。
专利名称:Optimization problem solving发明人:Trnka, Pavel,Pekar, Jaroslav申请号:EP11157244.2申请日:20110307公开号:EP2498189A1公开日:20120912专利内容由知识产权出版社提供专利附图:摘要:Optimization problem solving is described herein. For example, one or more method embodiments include assigning one of a number of predefined values to each of a number of shadow prices of the system, distributing the assigned predefined shadow price values to a number of sub-problems, wherein each sub-problem is associated withone of a number of subsystems of the system, performing an analysis, wherein the analysis includes determining a parametric solution and a region of validity for each of the number of sub-problems, determining an intersection of the regions of validity of all the parametric solutions, determining whether the optimization problem is solved from the parametric solutions of the number of sub-problems, determining one or more shadow price updates based on the parametric solutions, and distributing the updated shadow prices to sub-problems having a region of validity that does not include the updated shadow prices, and repeating the analysis using the updated shadow prices until the optimization problem is solved from the parametric solutions of the number of sub-problems.申请人:Honeywell spol s.r.o.地址:V Parku 2325/18 14800 Prague 4 CZ国籍:CZ代理机构:Buckley, Guy Julian更多信息请下载全文后查看。