2021年高考数学一轮复习第八章立体几何8.1空间几何体的三视图表面积和体积课时练理
- 格式:doc
- 大小:334.50 KB
- 文档页数:13
第八章立体几何第一讲空间几何体的结构、三视图、表面积和体积1。
[2020全国卷Ⅲ,8,5分][理]如图8-1—1为某几何体的三视图,则该几何体的表面积是()A.6+4√2B.4+4√2C。
6+2√3D。
4+2√32。
[2020浙江,5,4分]某几何体的三视图(单位:cm)如图8—1-2所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.63。
[2021合肥市调研检测]表面积为324π的球,其内接正四棱柱(底面是正方形的直棱柱)的高是14,则这个正四棱柱的表面积等于()A。
567 B.576 C.240 D.49π4.[2021安徽省四校联考]在三棱锥A—BCD中,△ABC和△BCD 都是边长为2的正三角形,当三棱锥A-BCD的表面积最大时,其内切球的半径是()A。
2√2−√6 B。
2-√3 C。
√2D。
√665。
[数学文化题]《九章算术》与《几何原本》并称现代数学的两大源泉.在《九章算术》卷五商功篇中介绍了羡除(此处是指三面为等腰梯形,其他两侧面为直角三角形的五面体)体积的求法。
在如图8—1—3所示的羡除中,平面ABDA’是铅垂面,下宽AA'=3 m,上宽BD=4 m,深3 m,平面BCED是水平面,末端宽CE=5 m,无深,长6 m(直线CE到BD的距离),则该羡除的体积为()图8-1—3A.24 m3B.30 m3 C。
36 m3 D。
42 m36.[2020全国卷Ⅱ,10,5分][理]已知△ABC是面积为9√34的等边三角形,且其顶点都在球O的球面上。
若球O的表面积为16π,则O到平面ABC的距离为()A。
√3B。
32C.1 D。
√327.[2021安徽省示范高中联考]蹴鞠(如图8—1—4所示),又名“蹋鞠”“蹴球”“蹴圆"“筑球”“踢圆”等,“蹴”有用脚蹴、蹋、踢的含义,“鞠”最早系外包皮革、内实米糠的球.因而“蹴鞠”就是指古人以脚蹴、蹋、踢皮球的活动,类似今日的足球。
高考微点八空间几何体的三视图、表面积与体积牢记概念公式,避免卡壳空间几何体的表面积与体积公式几何体名称表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球4πR243πR31.画三视图的基本要求:正俯一样长,俯侧一样宽,正侧一样高.2.长方体的对角线与共点三条棱之间的长度关系为d2=a2+b2+c2;长方体外接球半径为R时,有(2R)2=a2+b2+c2.3.棱长为a的正四面体内切球半径r=612a,外接球半径R=64a.高效微点训练,完美升级1.(2019·临沂模拟)某几何体的三视图如图所示,那么这个几何体是()A.三棱锥B.四棱锥C.四棱台D.三棱台解析因为正视图和侧视图都为三角形,可知几何体为锥体,又因为俯视图为三角形,故该几何体为三棱锥.答案 A2.《九章算术》商功章有题:一圆柱形谷仓,高1丈3尺313寸,容纳米2 000斛(注:1丈=10尺,1尺=10寸,1斛≈1.62立方尺,圆周率取3),则圆柱底面圆周长约为()A.1丈3尺B.5丈4尺C.9丈2尺D.48丈6尺解析由题意,圆柱形谷仓的高h=10+3+110×⎝⎛⎭⎪⎫3+13=403(尺),体积V≈2000×1.62=3 240(立方尺).设圆柱的底面半径为R尺,由体积公式得πR2×403≈3240,得3R2×403≈3 240,解得R2≈81,故R≈9,所以底面圆周长C=2πR≈2×3×9=54(尺),即5丈4尺.答案 B3.如图是棱长为2的正方体的表面展开图,则多面体ABCDE的体积为()A.2B.2 3C.43 D.83解析多面体ABCDE为四棱锥(如图),利用割补法可得其体积V=4-43=83.答案 D4.若圆锥与球的体积相等,且圆锥底面半径与球的直径相等,则圆锥侧面积与球面面积之比为( ) A.2∶2 B.3∶2 C.5∶2D.3∶2解析 设圆锥底面半径为r ,高为h ,则球的半径R =r2, 由条件知,13πr 2h =43π⎝ ⎛⎭⎪⎫r 23,所以h =r2.所以圆锥的侧面积S 1=πr ·h 2+r 2=πrr 24+r 2=52πr 2,球面面积S 2=4πR 2=4π×⎝ ⎛⎭⎪⎫r 22=πr 2,所以S 1∶S 2=5∶2. 答案 C5.(2019·衡水中学调研)某几何体的三视图如图所示,则该几何体的体积为( )A.6B.4C.223D.203解析 由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是边长为2的等腰直角三角形,故几何体体积V =23-12×2×2×1=6.答案 A6.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A.2+ 2 B.1+22C.2+22D.1+ 2解析 恢复后的原图形为一直角梯形, 所以S =12(1+2+1)×2=2+ 2. 答案 A7.如图所示,正四棱锥P -ABCD 底面的四个顶点A ,B ,C ,D 在球O 的同一个大圆上,点P 在球面上,若V P -ABCD =163,则球O 的表面积是( )A.4πB.8πC.12πD.16π解析 由OP =OC =R ,AB =2R ,得13AB 2·OP =13×(2R )2×R =163,所以R =2. ∴S 球=4πR 2=16π. 答案 D8.某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A.1B.2C.3D.4解析在正方体中作出该几何体的直观图,记为四棱锥P-ABCD,如图,由图可知在此四棱锥的侧面中,直角三角形的个数为3.答案 C9.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.3π4C.π2 D.π4解析如图画出圆柱的轴截面ABCD,O为球心.球半径R=OA=1,球心到底面圆的距离为OM=12.∴底面圆半径r=AM=OA2-OM2=32,故圆柱体积V=π·r2·h=π·⎝⎛⎭⎪⎫322×1=3π4.答案 B10.如图,网格纸上小正方形的边长为1,粗实线画出的是某四棱锥的三视图,则该四棱锥的所有棱中,最长的棱的长度为( )A.41B.34C.5D.3 2解析 由三视图可知该几何体为如图所示的四棱锥P -ABCD .其中P A ⊥底面ABCD ,四棱锥P -ABCD 的底面是边长为3的正方形,高P A =4. 连接AC ,易知最长的棱为PC ,且PC =P A 2+AC 2=42+32+32=34.答案 B11.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为________.解析 设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7. 答案712.正四棱锥的底面边长为2,侧棱长均为3,其正视图和侧视图是全等的等腰三角形,则正视图的周长为________.解析 由题意知,正视图就是如图所示的截面PEF ,其中E ,F 分别是AD ,BC的中点,连接AO ,易得AO =2,又P A =3,于是解得PO =1,所以PE =2,故其正视图的周长为2+2 2. 答案 2+2 213.某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)为________.解析 由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6. 答案 614.在四棱锥P -ABCD 中,底面ABCD 是边长为2的菱形,∠BAD =60°,侧棱P A ⊥底面ABCD ,P A =2,E 为AB 的中点,则三棱锥P -BCE 的体积为________. 解析 由题意知S △EBC =12×2×1×sin 120°=32,故V P -EBC =13×2×32=33. 答案 3315.某几何体的三视图如图所示,则该几何体的表面积为________.解析 由三视图可得该几何体为圆柱和四分之一球的组合体.圆柱的底面半径为1,高为3,球的半径为1.故该几何体的表面积为S =π×12+2π×1×3+4π×12×14+12π×12+12π×12=9π. 答案 9π16.三棱锥P -ABC 的三条侧棱P A ,PB ,PC 两两垂直,且P A =2,PB =1,PC =3,则该三棱锥的外接球的体积是________.解析 三棱锥P -ABC 的三条侧棱P A ,PB ,PC 两两互相垂直,它的外接球就是它扩展为长方体的外接球,求出长方体的对角线的长为2+1+3=6,所以球的直径是6,半径为62.球的体积为V =43×π×⎝ ⎛⎭⎪⎫623=6π.答案6π。
第八章 立体几何第二节 空间几何体的表面积与体积A 级·基础过关|固根基|1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( ) A .4π B .3π C .2πD .π解析:选C 由几何体的形成过程知,所得几何体为圆柱,底面半径为1,高为1,其侧面积S =2πrh =2π×1×1=2π.故选C.2.(2020届惠州市高三第二次调研)某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成的,俯视图由圆与内接三角形构成,则该几何体的体积为( )A.2π3+16 B.2π6+12 C.2π6+16D.2π3+12解析:选C 由三视图可知该几何体是一个半球上面有一个三棱锥,其体积V =13×12×1×1×1+12×4π3×⎝ ⎛⎭⎪⎫223=2π6+16,故选C. 3.《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .4+6 2解析:选C 由三视图知,该几何体是直三棱柱ABC -A 1B 1C 1,其中AB =AA 1=2,BC =AC =2,∠ACB =90°,其直观图如图所示,侧面为三个矩形,故该“堑堵”的侧面积S =(2+22)×2=4+42,故选C.4.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3cm 3C.1 372π3 cm 3D.2 048π3cm 3解析:选A 设球的半径为R ,则由题意知,球被正方体上底面截得的圆的半径为4 cm ,球心到截面圆的距离为(R -2)cm ,则R 2=(R -2)2+42,解得R =5,所以球的体积为4π×533=500π3(cm 3).5.(2019届辽宁五校协作体联考)一个长方体被一平面截去一部分后,所剩几何体的三视图如图所示,则该几何体的体积为( )A .36B .48C .64D .72解析:选B由几何体的三视图可得,几何体如图所示,将几何体分割为两个三棱柱,所以该几何体的体积为12×3×4×4+12×3×4×4=48,故选B.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.解析:三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中,△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以V D 1-EDF =V F -DD 1E =13×12×1=16.答案:167.(2019届福建市第一学期高三期末)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积为________.解析:如图,由题意知圆柱的中心O 为这个球的球心,于是,球的半径r =OB =OA 2+AB 2=12+(3)2=2.故这个球的表面积S =4πr 2=16π.答案:16π8.已知边长为2的等边三角形ABC ,D 为BC 的中点,沿AD 进行折叠,使折叠后的∠BDC=π2,则过A ,B ,C ,D 四点的球的表面积为________.解析:连接BC ,由题知几何体ABCD 为三棱锥,BD =CD =1,AD =3,BD⊥AD,CD⊥AD,BD⊥CD,将折叠后的图形补成一个长、宽、高分别是 3,1,1的长方体,其体对角线长即为外接球的直径,2R =1+1+3=5,故该三棱锥外接球的半径是R =52,其表面积为4πR 2=5π. 答案:5π9.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m .因为A 1B 1=AB =6 m ,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3); 正四棱柱ABCD -A 1B 1C 1D 1的体积 V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.10.如图,在长方体ABCD -A 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求平面α把该长方体分成的两部分体积的比值. 解:(1)交线围成的正方形EHGF 如图所示.(2)如图,作EM⊥AB,垂足为M ,则AM =A 1E =4,EB 1=16-4=12,EM =AA 1=8. 因为四边形EHGF 为正方形,所以EH =EF =BC =10. 于是MH = EH 2-EM 2=6,则AH =10,HB =6. 故S 四边形A 1EHA =12×(4+10)×8=56,S 四边形EB 1BH =12×(12+6)×8=72.因为长方体被平面α分成两个高为10的直棱柱, 所以其体积的比值为97⎝ ⎛⎭⎪⎫79也正确. B 级·素养提升|练能力|11.已知一个简单几何体的三视图如图所示,则该几何体的体积为( )A .3π+6B .6π+6C .3π+12D .12解析:选A 由三视图还原几何体如图,该几何体为组合体,左半部分是四分之一圆锥,右半部分是三棱锥, 则其体积V =14×13×π×32×4+13×12×3×3×4=3π+6.故选A.12.体积为3的三棱锥P -ABC 的顶点都在球O 的球面上,PA⊥平面ABC ,PA =2,∠ABC=120°,则球O 的体积的最小值为( )A.773π B.2873π C.19193π D.76193π 解析:选B 设AB =c ,BC =a ,AC =b ,由题可得,3=13×S △ABC ×2,解得S △ABC =332,因为∠ABC=120°,S △ABC =332=12acsin 120°,所以ac =6,由余弦定理可得,b 2=a 2+c 2-2accos 120°=a 2+c2+ac≥2ac+ac =3ac =18,当且仅当a =c 时取等号,此时b min =32,设△ABC 外接圆的半径为r ,则b sin 120°=2r(b 最小,则外接圆半径最小),故3232=2r min ,所以r min =6,如图,设O 1为△ABC 外接圆的圆心,过O 作OD⊥PA,垂足为D ,R 为球O 的半径,连接O 1A ,O 1O ,OA ,OD ,PO ,设OO 1=h ,在Rt △OO 1A 中,R 2=r 2+OO 21=r 2+h 2,在Rt △OPD 中,R 2=r 2+(2-h)2,联立得h =1.当r min =6时,R 2min =6+1=7,R min =7,故球O 体积的最小值为43πR 3min =43π×(7)3=287π3,故选B. 13.榫卯是我国古代工匠极为精巧的发明,它是在两个构件上采用凹凸部分相结合的一种连接方式.我国的北京紫禁城、山西悬空寺、福建宁德的廊桥等建筑都用到了榫卯结构.图中网格纸上小正方形的边长为1,粗实线画出的是一种榫卯构件中榫的三视图,则其体积为________,表面积为________.解析:由三视图可知,榫卯构件中的榫由一个长方体和一个圆柱拼接而成,故其体积V=4×2×3+π×32×6=24+54π,表面积S=2×π×32+2×π×3×6+4×3×2+2×2×3=54π+36.答案:24+54π54π+3614.(2020届合肥调研)如图,已知三棱柱ABC-A1B1C1,M为棱AB上一点,BC1∥平面A1MC.(1)求证:AM=BM;(2)若△ABC是等边三角形,AB=AA1,∠A1AB=∠A1AC=60°,△A1MC的面积为42,求三棱柱ABC-A1B1C1的体积.解:(1)证明:如图,连接AC1交A1C于N,连接MN.∵BC1∥平面A1MC,BC1⊂平面ABC1,平面ABC1∩平面A1MC=MN,∴BC1∥MN.由三棱柱ABC-A1B1C1知,四边形ACC1A1为平行四边形,∴N为AC1的中点.∴M为AB的中点,即AM=BM.(2)连接A1B,∵△ABC是等边三角形,AB=AA1,∠A1AB=∠A1AC=60°,∴△ABC,△AA1B,△AA1C是全等的等边三角形,由(1)知,M为AB的中点,∴A1M⊥AB,CM⊥AB.∵A1M∩CM=M,∴AB⊥平面A1MC.设AB =2a ,则A 1M =CM =3a ,A 1C =2a ,∴△A 1MC 的面积为12·2a ·2a =2a 2=42,解得a =2,即AM =2,∴V 三棱锥A -A 1MC =13·S △A 1MC ·AM =823,从而V 三棱柱ABC -A 1B 1C 1=6·V 三棱锥A -A 1MC =16 2.。
第2讲空间几何体的表面积和体积基础知识整合1.多面体的表面积、侧面积因为多面体的各个面都是平面,所以多面体的侧面积就是01侧面展开图的面积,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=022πrlS圆锥侧=03πrlS圆台侧=04π(r1+r2)l3.柱、锥、台和球的表面积和体积名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=05Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=0613Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S=074πr2V=0843πr31.与体积有关的几个结论(1)一个组合体的体积等于它的各部分体积的和或差.(2)底面面积及高都相等的两个同类几何体的体积相等.2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)直棱柱的外接球半径可利用棱柱的上下底面平行,借助球的对称性,可知球心为上下底面外接圆圆心连线的中点,再根据勾股定理求球的半径.(4)设正四面体的棱长为a ,则它的高为63a ,内切球半径r =612a ,外接球半径R =64a .正四面体的外接球与内切球的半径之比为3∶1.1.(2019·福州二模)设一个球形西瓜,切下一刀后所得切面圆的半径为4,球心到切面圆心的距离为3,则该西瓜的体积为( )A .100π B.256π3 C.400π3 D.500π3答案 D解析 由题意知切面圆的半径r =4,球心到切面的距离d =3,所以球的半径R =r 2+d 2=42+32=5,故球的体积V =43πR 3=43π×53=500π3,即该西瓜的体积为500π3.2.(2019·安徽蚌埠质检)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为( )A .π+43B .π+2C .2π+43D .2π+2答案 A解析由三视图可知,该几何体由半个圆柱和一个三棱锥组合而成.故该几何体的体积为12×π×12×2+13×12×2×2×2=π+43.3.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是( )A.2 B.4C.6 D.8答案 C解析由三视图知该几何体是底面为直角梯形的直四棱柱,即如图所示四棱柱A1B1C1D1-ABCD.由三视图中的数据可知底面梯形的两底分别为1和2,高为2,所以S底面=12×(1+2)×2=3.因为直四棱柱的高为2,所以体积V=3×2=6.故选C.4.(2019·北京东城区模拟)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A.2+ 5 B.4+ 5C.2+2 5 D.5答案 C解析该三棱锥的直观图如图所示,过点D作DE⊥BC,交BC于点E,连接AE,则BC=2,EC=1,AD=1,ED=2,S 表=S △BCD +S △ACD +S △ABD +S △ABC =12×2×2+12×5×1+12×5×1+12×2×5=2+2 5.故选C.5.如图,半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体的棱长为6,则球的表面积和体积分别为________,________.答案 36π 36π解析 底面中心与C ′的连线即为半径,设球的半径为R ,则R 2=(6)2+(3)2=9.所以R =3,所以S 球=4πR 2=36π,V 球=43πR 3=36π.6.如图所示,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =3,则球O 的体积等于________.答案9π2解析 由题意知,DC 边的中点就是球心O , ∵它到D ,A ,C ,B 四点的距离相等, ∴球的半径R =12CD ,又AB =BC =3,∴AC =6,∴CD =AC 2+AD 2=3, ∴R =32,∴V 球O =4π3⎝ ⎛⎭⎪⎫323=9π2.核心考向突破考向一 几何体的表面积例 1 (1)(2019·衡水模拟)如图是某个几何体的三视图,则这个几何体的表面积是( )A .π+42+4B .2π+42+4C .2π+42+2D .2π+22+4答案 B解析 由几何体的三视图可知,该几何体是由半圆柱与三棱柱组成的几何体,其直观图如图所示,其表面积S =2×12π×12+π×1×1+2×12×2×1+(2+2+2)×2-2×1=2π+42+4.故选B.(2)(2019·郑州二模)如图是某几何体的三视图,图中方格的单位长度为1,则该几何体的表面积为________.答案 8+4 5解析 由三视图,知该几何体为三棱锥,将该几何体放在长方体中如图所示,由题意可知长方体的长、宽、高分别为2,2,4,由BC =2,CD =2计算,得BD =22,AD =25,AB =25,所以S △BCD =12×2×2=2,S △ADC =12×2×25=25, S △ABC =12×2×25=25,因为△ABD 为等腰三角形,高为252-22=32,所以S △ABD =12×22×32=6,所以该几何体的表面积为2+25+25+6=8+4 5.几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.[即时训练] 1.(2019·山东潍坊模拟)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π答案 C解析 由三视图可知该几何体为组合体,上半部分为圆柱,下半部分为圆锥,圆柱的底面半径为1,高为2,圆锥的底面半径为3,高为4,则该几何体的表面积S =π×32+π×3×5+2π×1×2=28π.故选C.2.(2019·河北承德模拟)某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( )A.8+42+2 5 B.6+42+4 5C.6+22+2 5 D.8+22+2 5答案 C解析由三视图可知,该几何体为放在正方体内的四棱锥E-ABCD,如图,正方体的棱长为2,该四棱锥底面为正方形,面积为4,前后两个侧面为等腰三角形,面积分别为22,2,左右两个侧面为直角三角形,面积都为5,可得这个几何体的表面积为6+22+25,故选C.精准设计考向,多角度探究突破考向二几何体的体积角度1 补形法求体积例2 (1)(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A.90π B.63πC.42π D.36π答案 B解析(割补法)由几何体的三视图可知,该几何体是一个圆柱截去上面虚线部分所得,如图所示.将圆柱补全,并将圆柱从点A处水平分成上下两部分.由图可知,该几何体的体积等于下部分圆柱的体积加上上部分圆柱体积的12,所以该几何体的体积V =π×32×4+π×32×6×12=63π.故选B.(2)(2019·北京高考)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为________.答案 40解析 由题意知去掉的四棱柱的底面为直角梯形,底面积S =(2+4)×2÷2=6,高为正方体的棱长4,所以去掉的四棱柱的体积为6×4=24.又正方体的体积为43=64,所以该几何体的体积为64-24=40.角度2 分割法求体积例3 (1)(2019·山西五校联考)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有刍甍,下广三丈,袤四丈;上袤二丈,无广;高一丈,问:积几何?”其意思为:“今有底面为矩形的屋脊柱的楔体,下底面宽3丈,长4丈;上棱长2丈,高1丈,问它的体积是多少?”已知1丈为10尺,现将该楔体的三视图给出,其中网格纸上小正方形的边长为1丈,则该楔体的体积为( )A .5000立方尺B .5500立方尺C .6000立方尺D .6500立方尺答案 A解析 该楔体的直观图如图中的几何体ABCDEF .取AB 的中点G ,CD 的中点H ,连接FG ,GH ,HF ,则该几何体的体积为四棱锥F -GBCH 与三棱柱ADE -GHF 的体积之和.又可以将三棱柱ADE -GHF 割补成高为EF ,底面积为S =12×3×1=32(平方丈)的一个直棱柱,故该楔体的体积V =32×2+13×2×3×1=5(立方丈)=5000(立方尺).故选A.(2)(2019·浙江高考)祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324答案 B解析 如图,该柱体是一个五棱柱,棱柱的高为6,底面可以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3.则底面面积S =2+62×3+4+62×3=27,因此,该柱体的体积V =27×6=162.故选B.角度3 转化法求体积例4 (1)如图所示,在正三棱柱ABC -A 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥A -A 1EF 的体积是________.答案 8 3解析 由正三棱柱的底面边长为4,得点F 到平面A 1AE 的距离(等于点C 到平面A 1ABB 1的距离)为32×4=23,则V 三棱锥A -A 1EF =V 三棱锥F -A 1AE =13S △A 1AE ×23=13×12×6×4×23=8 3.(2)在三棱锥P -ABC 中,D ,E 分别为PB ,PC 的中点,记三棱锥D -ABE 的体积为V 1,三棱锥P -ABC 的体积为V 2,则V 1V 2=________.答案1 4解析如图所示,由于D,E分别是边PB与PC的中点,所以S△BDE=14S△PBC.又因为三棱锥A-BDE与三棱锥A-PBC的高相等,所以V1V2=14.(1)处理体积问题的思路(2)求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体、不熟悉的几何体补成熟悉的几何体,便于计算等体积法选择合适的底面来求几何体的体积,常用于求三棱锥的体积,即利用三棱锥的任何一个面可作为三棱锥的底面进行等体积变换[即时训练] 3.(2019·河北沧州质检)《九章算术》是中国古代第一部数学专著,书中有关于“堑堵”的记载,“堑堵”即底面是直角三角形的直三棱柱.已知某“堑堵”被一个平面截去一部分后,剩下部分的三视图如图所示,则剩下部分的体积是( ) A.50 B.75C.25.5 D.37.5答案 D解析如图,由题意及给定的三视图可知,剩余部分是在直三棱柱的基础上,截去一个四棱锥C 1-MNB 1A 1所得的,且直三棱柱的底面是腰长为5的等腰直角三角形,高为5.图中几何体ABCC 1MN 为剩余部分,因为AM =2,B 1C 1⊥平面MNB 1A 1,所以剩余部分的体积V =V 三棱柱A 1B 1C 1-ABC -V 四棱锥C 1-A 1B 1NM =12×5×5×5-13×3×5×5=37.5,故选D.4.如图所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.答案 16解析 三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为线段AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中,△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以V 三棱锥F -DD 1E =13×12×1=16.考向三 与球有关的切、接问题例5 (1)(2019·全国卷Ⅰ)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .86πB .46πC .26π D.6π 答案D 解析设PA =PB =PC =2a ,则EF =a ,FC =3,∴EC 2=3-a 2. 在△PEC 中,cos ∠PEC =a 2+3-a 2-2a22a 3-a2.在△AEC 中,cos ∠AEC =a 2+3-a 2-42a 3-a2. ∵∠PEC 与∠AEC 互补,∴3-4a 2=1,a =22, 故PA =PB =PC = 2.又AB =BC =AC =2,∴PA ⊥PB ⊥PC , ∴外接球的直径2R =22+22+22=6,∴R =62,∴V =43πR 3=43π×⎝ ⎛⎭⎪⎫623=6π.故选D. (2)(2019·沈阳市东北育才学校模拟)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π答案 B解析 将半径为3,圆心角为2π3的扇形围成一个圆锥,设圆锥的底面圆的半径为R ,则有2πR =3×2π3,所以R =1,设圆锥的内切球的半径为r ,结合圆锥和球的特征,可知内切球的球心必在圆锥的高线上,设圆锥的高为h ,因为圆锥的母线长为3,所以h =9-1=22,所以rh -r =R 3,解得r =22,因此内切球的表面积S =4πr 2=2π.故选B.“切”“接”问题的处理规律(1)“切”的处理解决与球有关的内切问题主要是指球内切于多面体与旋转体,解答时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面.(2)“接”的处理把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[即时训练] 5.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3答案 B解析 如图所示,点M 为三角形ABC 的重心,E 为AC 的中点,当DM ⊥平面ABC 时,三棱锥D -ABC 体积最大,此时,OD =OB =R =4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心, ∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=18 3.故选B.6.(2019·漳州模拟)在直三棱柱A 1B 1C 1-ABC 中,A 1B 1=3,B 1C 1=4,A 1C 1=5,AA 1=2,则其外接球与内切球的表面积之比为( )A.294B.192C.292D .29答案 A解析 由底面三角形的三边长可知,底面三角形为直角三角形,内切球半径r =AA 12=1,取AC ,A 1C 1的中点D ,E ,则外接球球心是DE 的中点O ,由A 1C 1=5,AA 1=2,得AC 1=29,所以外接球半径R =OA =292,所以S 外S 内=4πR 24πr 2=294,故选A.1.(2019·郑州二模)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的外接球的体积为( )A.455π2B.1355π2C .1805πD .905π答案 A解析 构造底面边长为3,6,高为3的长方体,由三视图可知,该几何体是如图1中所示的三棱锥P -ABC .所以在该三棱锥中,PA ⊥底面ABC ,并且AB ⊥AC ,把该三棱锥放在如图2所示的底面边长为32,高为3的长方体中,则该三棱锥的外接球就是该长方体的外接球,设该三棱锥的外接球的半径为R ,则有(2R )2=32+(32)2+(32)2=45,解得R =352,所以该三棱锥的外接球的体积V =43πR 3=43π⎝ ⎛⎭⎪⎫3523=455π2,故选A.2.(2019·宝鸡中学高三第一次模拟)已知一个四面体ABCD 的每个顶点都在表面积为9π的球O 的表面上,且AB =CD =a ,AC =AD =BC =BD =5,则a =________.答案 2 2解析 由题意,知四面体ABCD 的对棱都相等,故该四面体可以通过补形补成一个长方体,如图所示.设AF =x ,BF =y ,CF =z ,则x 2+z 2=y 2+z 2=5,又4π·⎝ ⎛⎭⎪⎫x 2+y 2+z 222=9π,解得x =y =2,∴a =x 2+y 2=2 2. 答题启示1.若四面体中有三条棱两两垂直,则方法是找到三条两两互相垂直的棱,借助墙角模型补成长方体(如图),用公式 a 2+b 2+c 2=2R 求解.2.若四面体的对棱相等,则解题步骤为第一步:画出一个长方形,标出三组互为异面直线的对棱;第二步:设长方体的长宽高分别为a ,b ,c ,列出方程⎩⎪⎨⎪⎧a 2+b 2=BC 2=α2,b 2+c 2=AC 2=β2,c 2+a 2=AB 2=γ2(其中α,β,γ为常数)⇒a 2+b 2+c 2=α2+β2+γ22;第三步:根据墙角模型,a 2+b 2+c 2=2R ⇒R =a 2+b 2+c 22.对点训练1.在△ABC 中,AB =AC =2,∠BAC =90°,将△ABC 沿BC 上的高AD 折成直二面角B ′-AD -C ,则三棱锥B ′-ACD 的外接球的表面积为( )A .π B.2π C .3πD .2π答案 C解析 如图,∵AB =AC =2,∠BAC =90°,∴BC =2,则BD =DC =AD =1,由题意,得AD ⊥底面B ′DC ,又二面角B ′-AD -C 为直二面角,∴B ′D ⊥DC ,把三棱锥B ′-ACD 补形为正方体,则正方体的体对角线长为3,则三棱锥B ′-ACD 的外接球的半径为32,则其外接球的表面积为S =4π×⎝⎛⎭⎪⎫322=3π.故选C. 2.(2019·漳州质量监测)已知正四面体ABCD 的外接球的体积为86π,则这个四面体的表面积为________.答案 16 3解析 将正四面体ABCD 放在一个正方体内,设正方体的棱长为a ,如图所示,设正四面体ABCD 的外接球的半径为R ,则43πR 3=86π,解得R = 6.因为正四面体ABCD 的外接球和正方体的外接球是同一个球,则有3a =2R =26,所以a =2 2.而正四面体ABCD 的每条棱长均为正方体的面对角线长,所以正四面体ABCD 的棱长为2a =4,因此,这个正四面体的表面积为4×12×42×sin π3=16 3.。
第2讲 空间几何体的表面积与体积一、知识梳理1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱 圆锥 圆台侧面展开图侧面积公式S 圆柱侧=2πrl S 圆锥侧=πrlS 圆台侧=π(r +r ′)l表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底 V =S 底h锥体 (棱锥和圆锥)S 表面积=S 侧+S 底 V =13S 底h 台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h 球S =4πR 2 V =43πR 31.正方体与球的切、接常用结论 正方体的棱长为a ,球的半径为R ,(1)若球为正方体的外接球,则2R =3a ; (2)若球为正方体的内切球,则2R =a ;(3)若球与正方体的各棱相切,则2R=2a .2.长方体共顶点的三条棱长分别为a ,b,c ,外接球的半径为R ,则2R =a 2+b 2+c 2. 二、习题改编1.(必修2P27练习1改编)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为 cm.解析:由题意,得S 表=πr 2+πrl =πr 2+πr ·2r =3πr 2=12π,解得r 2=4,所以r =2(cm).答案:22.(必修2P27例4改编)圆柱的底面直径与高都等于球的直径,则球的体积与圆柱的体积比V 球∶V 柱为 .解析:设球的半径为R ,则V 球V 柱=43πR 3πR 2×2R =23.答案:23一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)多面体的表面积等于各个面的面积之和.( ) (2)锥体的体积等于底面积与高之积.( ) (3)球的体积之比等于半径比的平方.( )(4)简单组合体的体积等于组成它的简单几何体体积的和或差.( ) (5)长方体既有外接球又有内切球.( ) 答案:(1)√ (2)× (3)× (4)√ (5)× 二、易错纠偏常见误区(1)锥体的高与底面不清楚致误; (2)不会分类讨论致误.1.如图,长方体ABCD A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E BCD 的体积是 .解析:设长方体中BC =a ,CD =b ,CC 1=c ,则abc =120,所以V E BCD=13×12ab ×12c =112abc =10. 答案:102.将一个相邻边长分别为4π,8π的矩形卷成一个圆柱,则这个圆柱的表面积是 .解析:当底面周长为4π时,底面圆的半径为2,两个底面的面积之和是8π;当底面周长为8π时,底面圆的半径为4,两个底面的面积之和为32π.无论哪种方式,侧面积都是矩形的面积32π2,故所求的表面积是32π2+8π或32π2+32π.答案:32π2+8π或32π2+32π空间几何体的表面积(师生共研)(1)(2018·高考全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2020·湖南省五市十校联考)某四棱锥的三视图如图所示,其侧视图是等腰直角三角形,俯视图的轮廓是直角梯形,则该四棱锥的各侧面面积的最大值为( )A .8B .4 5C .8 2D .12 2【解析】 (1)因为过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,所以圆柱的高为22,底面圆的直径为22,所以该圆柱的表面积为2×π×(2)2+22π×22=12π.(2)由三视图可知该几何体是一个底面为直角梯形,高为4的四棱锥,如图,其中侧棱PA ⊥平面ABCD ,PA =4,AB =4,BC =4,CD =6,所以AD =25,PD =6,PB =42,连接AC ,则AC =42,所以PC =43,显然在各侧面面积中△PCD 的面积最大,又PD =CD =6,所以PC 边上的高为62-⎝ ⎛⎭⎪⎫4322=26,所以S △PCD =12×43×26=122,故该四棱锥的各侧面面积的最大值为122,故选D.【答案】 (1)B (2)D空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积问题应注意衔接部分的处理. (3)旋转体的表面积问题应注意其侧面展开图的应用.1.(2020·江西七校第一次联考)一个半径为1的球对称削去了三部分,其俯视图如图所示,那么该立体图形的表面积为( )A .3πB .4πC .5πD .6π解析:选C.由题中俯视图可知该球被平均分成6部分,削去了3部分,剩余的3部分为该几何体,所以该立体图形的表面积为2×π×12+3×π×12=5π,故选C.2.(2020·辽宁丹东质量测试(一))一个圆锥的轴截面是面积为1的等腰直角三角形,则这个圆锥的侧面积为 .解析:设圆锥的底面圆半径为r ,因为圆锥的轴截面是面积为1的等腰直角三角形,所以等腰直角三角形的斜边长为2r ,斜边上的高为r ,所以12×2r ×r =1,解得r =1,圆锥的母线长l =12+12=2,圆锥的侧面积为πrl =2π. 答案:2π空间几何体的体积(多维探究) 角度一 求简单几何体的体积(1)(2020·石家庄质量检测)某几何体的三视图如图所示(图中小正方形网格的边长为1),则该几何体的体积是( )A .8B .6C .4D .2(2)将一张边长为12 cm 的正方形纸片按如图(1)所示将阴影部分的四个全等的等腰三角形裁去,余下部分沿虚线折叠并拼成一个有底的正四棱锥,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A.3236 cm 3B.6436 cm 3C.3232 cm 3D .6432 cm 3【解析】 (1)由三视图可得该几何体为底面是直角梯形的直四棱柱(如图所示),其中底面直角梯形的上、下底分别为1,2,高为2,直四棱柱的高为2,所以该几何体的体积为(1+2)×22×2=6,故选B.(2)设折成的四棱锥的底面边长为a cm ,高为h cm ,则h =32a cm ,由题设可得四棱锥侧面的高等于四棱锥的底面边长,所以12a +a =12×22⇒a =42,所以四棱锥的体积V =13×(42)2×32×42=6463cm 3,故选B. 【答案】 (1)B (2)B简单几何体体积的求法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解.角度二 求组合体的体积(2020·唐山市摸底考试)已知某几何体的三视图如图所示(俯视图中曲线为四分之一圆弧),则该几何体的表面积为( )A .1-π4B .3+π2C .2+π4D .4【解析】 由题设知,该几何体是棱长为1的正方体被截去底面半径为1的14圆柱后得到的,如图所示,所以表面积S =2×(1×1-14×π×12)+2×(1×1)+14×2π×1×1=4.故选D.【答案】 D(1)处理体积问题的思路(2)求体积的常用方法 直接法 对于规则的几何体,利用相关公式直接计算割补法把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算 等体积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面作为三棱锥的底面进行等体积变换1.(2019·高考北京卷)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为 .解析:如图,由三视图可知,该几何体为正方体ABCD A 1B 1C 1D 1去掉四棱柱B 1C 1GF A 1D 1HE 所得,其中正方体ABCD A 1B 1C 1D 1的体积为64,VB 1C 1GF A 1D 1HE =(4+2)×2×12×4=24,所以该几何体的体积为64-24=40.答案:402.(2019·高考全国卷Ⅲ)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体ABCD A 1B 1C 1D 1挖去四棱锥O EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6 cm ,AA 1=4 cm.3D 打印所用原料密度为0.9 g/cm 3.不考虑打印损耗,制作该模型所需原料的质量为 g.解析:长方体ABCD A 1B 1C 1D 1的体积V 1=6×6×4=144(cm 3),而四棱锥O EFGH 的底面积为矩形BB 1C 1C 的面积的一半,高为AB 长的一半,所以四棱锥O EFGH 的体积V 2=13×12×4×6×3=12(cm 3),所以长方体ABCD A 1B 1C 1D 1挖去四棱锥O EFGH 后所得几何体的体积V =V 1-V 2=132(cm 3),所以制作该模型所需原料的质量为132×0.9=118.8(g).答案:118.8球与空间几何体的接、切问题(师生共研)(1)若直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,且AB =3,AC =4,AB⊥AC ,AA 1=12,则球O 的表面积为 .(2)(一题多解)(2019·高考天津卷)已知四棱锥的底面是边长为2的正方形,侧棱长均为 5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为 .【解析】 (1)将直三棱柱补形为长方体ABEC A 1B 1E 1C 1,则球O 是长方体ABEC A 1B 1E 1C 1的外接球.所以体对角线BC 1的长为球O 的直径. 因此2R =32+42+122=13. 故S 球=4πR 2=169π.(2)法一:由题意得圆柱的高为四棱锥高的一半,底面圆的直径为以四棱锥侧棱的四个中点为顶点的正方形的对角线,易求得圆柱的底面圆的直径为1,高为1,所以该圆柱的体积V =π×⎝ ⎛⎭⎪⎫122×1=π4.法二:由题可得,四棱锥底面对角线的长为2,则圆柱底面的半径为12,易知四棱锥的高为5-1=2,故圆柱的高为1,所以该圆柱的体积为π×⎝ ⎛⎭⎪⎫122×1=π4. 【答案】 (1)169π (2)π4处理球的“切”“接”问题的求解策略解决与球有关的切、接问题,其通法是作截面,将空间几何问题转化为平面几何问题求解,其解题的思维流程是:1.正四棱锥P ABCD 的侧棱和底面边长都等于22,则它的外接球的表面积是( ) A .16π B .12π C.8πD .4π解析:选A.设正四棱锥的外接球半径为R ,顶点P 在底面上的射影为O ,因为OA =12AC=12 AB 2+BC 2=12(22)2+(22)2=2,所以PO =PA 2-OA 2=(22)2-22=2.又OA =OB =OC =OD =2,由此可知R =2,于是S 球=4πR 2=16π.2.设球O 内切于正三棱柱ABC A 1B 1C 1,则球O 的体积与正三棱柱ABC A 1B 1C 1的体积的比值为 .解析:设球O 半径为R ,正三棱柱ABC A 1B 1C 1的底面边长为a ,则R =33×a 2=36a ,即a =23R ,又正三棱柱ABC A 1B 1C 1的高为2R ,所以球O 的体积与正三棱柱ABC A 1B 1C 1的体积的比值为43πR 334a 2×2R =43πR 334×12R 2×2R =23π27.答案:23π27核心素养系列14 直观想象——数学文化与空间几何体(2020·甘肃、青海、宁夏3月联考)汉朝时,张衡得出圆周率的平方除以16等于58.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,俯视图中的曲线为圆,利用张衡的结论可得该几何体的体积为( )A .32B .40 C.32103D .40103【解析】 将三视图还原成如图所示的几何体:半个圆柱和半个圆锥的组合体,底面半径为2,高为4,则体积V =12π×22×4+13×12π×22×4=323π,因为圆周率的平方除以16等于58,即π216=58,所以π=10,所以V =32103.故选C.【答案】 C本题是数学文化与三视图结合,主要是根据几何体的三视图及三视图中的数据,求几何体的体积或侧(表)面积.此类问题难点:一是根据三视图的形状特征确定几何体的结构特征;二是将三视图中的数据转化为几何体的几何度量.考查了直观想象这一核心素养.(2020·安徽六安一中模拟(四))我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的半椭球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,短半轴长为1,长半轴长为3的椭球体的体积是 .解析:因为S 圆=S 环总成立,所以半椭球体的体积为πb 2a -13πb 2a =23πb 2a ,所以椭球体的体积V =43πb 2a .因为椭球体的短半轴长为1,长半轴长为3. 所以椭球体的体积V =43πb 2a =43π×12×3=4π.答案:4π[基础题组练]1.(2020·安徽合肥质检)已知圆锥的高为3,底面半径为4,若一球的表面积与此圆锥侧面积相等,则该球的半径为( )A .5 B. 5 C .9D .3解析:选B.因为圆锥的底面半径r =4,高h =3,所以圆锥的母线l =5,所以圆锥的侧面积S =πrl =20π,设球的半径为R ,则4πR 2=20π,所以R =5,故选B.2.(2020·蓉城名校第一次联考)已知一个几何体的正视图和侧视图如图1所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图2所示),则此几何体的体积为( )A .1 B. 2 C .2D .2 2解析:选B.根据直观图可得该几何体的俯视图是一个直角边长分别是2和2的直角三角形(如图所示),根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V =13×⎝ ⎛⎭⎪⎫12×2×2×3= 2.故选B.3.(2020·武汉市武昌调研考试)中国古代数学名著《九章算术》中记载了公元前344年商鞅监制的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(单位:立方寸),则图中的x 为( )A .1.2B .1.6C .1.8D .2.4解析:选B.该几何体是一个组合体,左边是一个底面半径为12的圆柱,右边是一个长、宽、高分别为5.4-x ,3,1的长方体,所以组合体的体积V =V 圆柱+V 长方体=π·⎝ ⎛⎭⎪⎫122×x +(5.4-x )×3×1=12.6(其中π=3),解得x =1.6.故选B.4.(2020·辽宁大连第一次(3月)双基测试)我国古代数学名著《九章算术》中有如下问题:“今有羡除,下广六尺,上广一丈,深三尺,末广八尺,无深,袤七尺.问积几何 ”.羡除是一个五面体,其中三个面是梯形,另两个面是三角形,已知一个羡除的三视图如图中粗线所示,其中小正方形网格的边长为1,则该羡除的表面中,三个梯形的面积之和为( )A .40B .43C .46D .47解析:选C.由三视图可知,该几何体的直观图如图所示,其中平面ABCD ⊥平面ABEF ,CD =2,AB =6,EF =4,等腰梯形ABEF 的高为3,等腰梯形ABCD 的高为4,等腰梯形FECD的高为9+16=5,三个梯形的面积之和为2+62×4+4+62×3+2+42×5=46,故选C.5.(2020·辽宁沈阳东北育才学校五模)将半径为3,圆心角为2π3的扇形围成一个圆锥,则该圆锥的内切球的表面积为( )A .πB .2πC .3πD .4π解析:选B.将半径为3,圆心角为2π3的扇形围成一个圆锥,设圆锥的底面圆半径为R ,则有2πR =3×2π3,所以R =1.设圆锥的内切球半径为r ,圆锥的高为h ,内切球球心必在圆锥的高线上,因为圆锥的母线长为3,所以h =9-1=22,所以有rh -r =R 3,解得r =22,因此内切球的表面积S =4πr 2=2π.故选B. 6.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为 .解析:设新的底面半径为r ,由题意得13πr 2·4+πr 2·8=13π×52×4+π×22×8,解得r =7.答案:77.(2020·沈阳质量监测)某四棱锥的三视图如图所示,则该四棱锥的侧面积是 .解析:由三视图可知该几何体是一个四棱锥,记为四棱锥P ABCD ,如图所示,其中PA ⊥底面ABCD ,四边形ABCD 是正方形,且PA =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝ ⎛⎭⎪⎫12×2×2+12×2×22=4+4 2.答案:4+4 28.(2020·长春市质量监测(一))已知一所有棱长都是2的三棱锥,则该三棱锥的体积为 .解析:记所有棱长都是2的三棱锥为P ABC ,如图所示,取BC 的中点D ,连接AD ,PD ,作PO ⊥AD 于点O ,则PO ⊥平面ABC ,且OP =63×2=233,故三棱锥P ABC 的体积V =13S △ABC·OP =13×34×(2)2×233=13.答案:139.如图,在四边形ABCD 中,∠DAB =90°,∠ADC =135°,AB =5,CD =22,AD =2,求四边形ABCD 绕AD 旋转一周所成几何体的表面积及体积.解:由已知得CE =2,DE =2,CB =5,S 表面积=S圆台侧+S圆台下底+S圆锥侧=π(2+5)×5+π×25+π×2×22=(60+42)π,V =V 圆台-V圆锥=13(π·22+π·52+22·52π2)×4-13π×22×2=1483π. 10.(应用型)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P A 1B 1C 1D 1,下部的形状是正四棱柱ABCD A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍,若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?解:由PO 1=2 m ,知O 1O =4PO 1=8 m.因为A 1B 1=AB =6 m ,所以正四棱锥P A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3);正四棱柱ABCD A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3),所以仓库的容积V =V 锥+V 柱=24+288=312(m 3). 故仓库的容积是312 m 3.[综合题组练]1.(2019·高考全国卷Ⅰ)已知三棱锥PABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )A.86πB.46πC.26πD.6π解析:选D.因为点E,F分别为PA,AB的中点,所以EF∥PB,因为∠CEF=90°,所以EF⊥CE,所以PB⊥CE.取AC的中点D,连接BD,PD,易证AC⊥平面BDP,所以PB⊥AC,又AC∩CE=C,AC,CE⊂平面PAC,所以PB⊥平面PAC,所以PB⊥PA,PB⊥PC,因为PA=PB=PC,△ABC为正三角形,所以PA⊥PC,即PA,PB,PC两两垂直,将三棱锥PABC放在正方体中如图所示.因为AB=2,所以该正方体的棱长为2,所以该正方体的体对角线长为6,所以三棱锥PABC的外接球的半径R=62,所以球O的体积V=43πR3=43π⎝⎛⎭⎪⎫623=6π,故选D.2.如图,正方体ABCDA1B1C1D1的棱长为3,线段B1D1上有两个动点E,F且EF=1,则当E,F移动时,下列结论不正确的是( )A.AE∥平面C1BDB.四面体ACEF的体积不为定值C.三棱锥ABEF的体积为定值D.四面体ACDF的体积为定值解析:选B.对于A,如图1,AB1∥DC1,易证AB1∥平面C1BD,同理AD1∥平面C1BD,且AB 1∩AD 1=A ,所以平面AB 1D 1∥平面C 1BD ,又AE ⊂平面AB 1D 1,所以AE ∥平面C 1BD ,A 正确;对于B ,如图2,S △AEF =12EF ·h 1=12×1×(32)2-⎝ ⎛⎭⎪⎫3222=364,点C 到平面AEF的距离为点C 到平面AB 1D 1的距离d 为定值,所以V A CEF=V C AEF=13×364×d =64d 为定值,所以B 错误;对于C ,如图3,S △BEF =12×1×3=32,点A 到平面BEF 的距离为A 到平面BB 1D 1D 的距离d 为定值,所以V A BEF=13×32×d =12d 为定值,C 正确;对于D ,如图4,四面体ACDF 的体积为V A CDF=V F ACD=13×12×3×3×3=92为定值,D 正确.3.(2020·东北师大附中、重庆一中等校联合模拟)若侧面积为4π的圆柱有一外接球O ,当球O 的体积取得最小值时,圆柱的表面积为 .解析:设圆柱的底面圆半径为r ,高为h , 则球的半径R =r 2+⎝ ⎛⎭⎪⎫h 22.因为球的体积V =4π3R 3,故V 最小当且仅当R 最小.圆柱的侧面积为2πrh =4π,所以rh =2.所以h 2=1r,所以R =r 2+1r 2≥2,当且仅当r 2=1r2.即r =1时取等号,此时k 取最小值,所以r =1,h =2,圆柱的表面积为2π+4π=6π.答案:6π4.(2020·新疆第一次毕业诊断及模拟测试)如图,A 1B 1C 1D 1是以ABCD 为底面的长方体的一个斜截面,其中AB =4,BC =3,AA 1=5,BB 1=8,CC 1=12,求该几何体的体积.解:过A 1作A 1E ⊥BB 1于点E , 作A 1G ⊥DD 1于点G , 过E 作EF ⊥CC 1于点F ,过D 1作D 1H ⊥CC 1于点H ,连接EH ,GF , 因为平面ABB 1A 1∥平面DCC 1D 1, 所以A 1B 1∥D 1C 1.因为AA 1=BE =5,所以EB 1=8-5=3,C 1H =EB 1=3,GD 1=HF =12-5-3=4,则几何体被分割成一个长方体ABCD A 1EFG ,一个斜三棱柱A 1B 1E D 1C 1H 和一个直三棱柱A 1D 1G EHF .故该几何体的体积为V =3×4×5+12×3×4×4+12×3×4×3=102.。
精品基础教育教学资料,仅供参考,需要可下载使用!第八章⎪⎪⎪立 体 几 何第一节空间几何体的三视图、直观图、表面积与体积突破点(一) 空间几何体的三视图和直观图基础联通 抓主干知识的“源”与“流” 1.空间几何体的结构特征 (1)多面体的结构特征 多面体 结构特征棱柱 有两个面平行,其余各面都是四边形且每相邻两个面的交线都平行且相等棱锥 有一个面是多边形,而其余各面都是有一个公共顶点的三角形 棱台棱锥被平行于底面的平面所截,截面和底面之间的部分叫做棱台几何体 旋转图形 旋转轴圆柱 矩形 矩形任一边所在的直线 圆锥 直角三角形 一条直角边所在的直线圆台 直角梯形或等腰梯形直角腰所在的直线或等腰梯形上下底中点的连线球半圆或圆直径所在的直线(1)三视图的名称几何体的三视图包括:正视图、侧视图、俯视图. (2)三视图的画法①在画三视图时,能看见的轮廓线和棱用实线表示,重叠的线只画一条,不能看见的轮廓线和棱用虚线表示.②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体的正投影图.3.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,其规则是:本节主要包括3个知识点:1.空间几何体的三视图和直观图;2.空间几何体的表面积与体积;3.与球有关的切、接应用问题.(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直.(2)原图形中平行于坐标轴的线段,直观图中仍分别平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半.考点贯通抓高考命题的“形”与“神”空间几何体的结构特征[例1](1)用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体(2)下列说法正确的是()A.有两个平面互相平行,其余各面都是平行四边形的多面体是棱柱B.四棱锥的四个侧面都可以是直角三角形C.有两个平面互相平行,其余各面都是梯形的多面体是棱台D.棱台的各侧棱延长后不一定交于一点[解析](1)截面是任意的且都是圆面,则该几何体为球体.(2)A错,如图(1);B正确,如图(2),其中底面ABCD是矩形,PD⊥平面ABCD,可证明∠PAB,∠PCB,∠PDA,∠PDC都是直角,这样四个侧面都是直角三角形;C错,如图(3);D错,由棱台的定义知,其侧棱的延长线必相交于同一点.[答案](1)C(2)B[方法技巧]解决与空间几何体结构特征有关问题的三个技巧(1)把握几何体的结构特征,要多观察实物,提高空间想象能力;(2)紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,如例1(2)中的A,C两项易判断失误;(3)通过反例对结构特征进行辨析.空间几何体的三视图1.画三视图的规则长对正、高平齐、宽相等,即俯视图与正视图一样长;正视图与侧视图一样高;侧视图与俯视图一样宽.2.三视图的排列顺序先画正视图,俯视图放在正视图的下方,侧视图放在正视图的右方.[例2](1)(2017·贵州七校联考)如图所示,四面体ABCD的四个顶点是长方体的四个顶点(长方体是虚拟图形,起辅助作用),则四面体ABCD的三视图是(用①②③④⑤⑥代表图形,按正视图,侧视图,俯视图的顺序排列)()A.①②⑥B.①②③C.④⑤⑥D.③④⑤(2)(2016·天津高考)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()[解析](1)正视图应该是边长为3和4的矩形,其对角线左下到右上是实线,左上到右下是虚线,因此正视图是①;侧视图应该是边长为5和4的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此侧视图是②;俯视图应该是边长为3和5的矩形,其对角线左上到右下是实线,左下到右上是虚线,因此俯视图是③.(2)先根据正视图和俯视图还原出几何体,再作其侧(左)视图.由几何体的正视图和俯视图可知该几何体为图①,故其侧(左)视图为图②.[答案](1)B(2)B[方法技巧]三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图注意正视图、侧视图和俯视图的观察方向;注意能看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的视图解决此类问题,可先根据已知的一部分视图,还原、推测直观图的可能形式,然后再找其剩下部分视图的可能形式.当然作为选择题,也可将选项逐项代入检验.(3)由几何体的三视图还原几何体的形状要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.空间几何体的直观图直观图与原图形面积的关系按照斜二测画法得到的平面图形的直观图与原图形面积的关系:(1)S直观图=24S原图形.(2)S原图形=22S直观图.[例3]用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()[解析]由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y轴上的对角线长为2 2.[答案] A能力练通抓应用体验的“得”与“失”1.[考点一]如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的腰,以下四个命题中,假命题是()A.等腰四棱锥的腰与底面所成的角都相等B.等腰四棱锥的侧面与底面所成的二面角都相等或互补C.等腰四棱锥的底面四边形必存在外接圆D.等腰四棱锥的各顶点必在同一球面上解析:选B因为“等腰四棱锥”的四条侧棱都相等,所以它的顶点在底面的射影到底面的四个顶点的距离相等,故A,C是真命题;且在它的高上必能找到一点到各个顶点的距离相等,故D是真命题;B是假命题,如底面是一个等腰梯形时结论就不成立.2.[考点二]一几何体的直观图如图,下列给出的四个俯视图中正确的是()解析:选B由直观图可知,该几何体由一个长方体和一个截角三棱柱组成.从上往下看,外层轮廓线是一个矩形,矩形内部是一条水平线段连接两个三角形.3.[考点二]已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一条直角边为2的直角三角形,则该三棱锥的正视图可能为()解析:选C当正视图为等腰三角形时,则高应为2,且应为虚线,排除A,D;当正视图是直角三角形时,由条件得一个直观图如图所示,中间的线是看不见的线PA形成的投影,应为虚线,故答案为C.4.[考点三]用斜二测画法画出的某平面图形的直观图如图,边AB平行于y轴,BC,AD平行于x轴.已知四边形ABCD的面积为2 2 cm2,则原平面图形的面积为()A.4 cm2B.4 2 cm2C.8 cm2D.8 2 cm2解析:选C 依题意可知∠BAD =45°,则原平面图形为直角梯形,上下底面的长与BC ,AD 相等,高为梯形ABCD 的高的22倍,所以原平面图形的面积为8 cm 2.5.[考点二](2017·南昌模拟)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,点P 是平面A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与侧视图的面积之比为( )A .1∶1B .2∶1C .2∶3D .3∶2解析:选A 根据题意,三棱锥P -BCD 的正视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高;侧视图是三角形,且底边为正四棱柱的底面边长、高为正四棱柱的高.故三棱锥P -BCD 的正视图与侧视图的面积之比为1∶1.突破点(二) 空间几何体的表面积与体积基础联通 抓主干知识的“源”与“流” 1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l圆柱、圆锥、圆台侧面积间的关系:S 圆柱侧=2πrl ――→r ′=rS 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl . 2.空间几何体的表面积与体积公式名称 几何体表面积 体积柱体 (棱柱和圆柱)S 表面积=S 侧+2S 底V =Sh 锥体 (棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体 (棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3考点贯通 抓高考命题的“形”与“神”空间几何体的表面积[例1] (1)(2017·安徽江南十校联考)某几何体的三视图如图所示,其中侧视图的下半部分曲线为半圆弧,则该几何体的表面积为( )A .4π+16+4 3B .5π+16+4 3C .4π+16+2 3D .5π+16+2 3(2)一个四面体的三视图如图所示,则该四面体的表面积是( )A .1+ 3B .2+ 3C .1+2 2D .2 2[解析] (1)由三视图可知该几何体是一个正三棱柱和一个半圆柱的组合体,三棱柱的两个侧面面积之和为2×4×2=16,两个底面面积之和为2×12×2×3=23;半圆柱的侧面积为π×4=4π,两个底面面积之和为2×12×π×12=π,所以几何体的表面积为5π+16+23,故选D.(2)根据三视图还原几何体如图所示,其中侧面ABD ⊥底面BCD ,另两个侧面ABC ,ACD 为等边三角形,则有S 表面积=2×12×2×1+2×34×(2)2=2+3.[答案] (1)D (2)B[方法技巧]求空间几何体表面积的常见类型及思路(1)求多面体的表面积,只需将它们沿着棱“剪开”展成平面图形,利用求平面图形面积的方法求多面体的表面积.(2)求旋转体的表面积,可以从旋转体的形成过程及其几何特征入手,将其展开后求表面积,但要搞清它们的底面半径、母线长与对应侧面展开图中的边长关系.(3)求不规则几何体的表面积时,通常将所给几何体分割成基本的柱体、锥体、台体,先求出这些基本的柱体、锥体、台体的表面积,再通过求和或作差,求出所给几何体的表面积.空间几何体的体积柱体、锥体、台体体积间的关系[例2] (1)(2016·北京高考)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)某几何体的三视图如图所示,则该几何体的体积为( )A.13+2π B.13π6 C.7π3D.5π2[解析] (1)通过三视图可还原几何体为如图所示的三棱锥P -ABC ,通过侧视图得高h =1,通过俯视图得底面积S =12×1×1=12,所以体积V =13Sh =13×12×1=16.(2)由三视图可知,该几何体是一个圆柱和半个圆锥组合而成的几何体,其体积为π×12×2+12×13π×12×1=13π6.[答案] (1)A (2)B [方法技巧]求空间几何体体积的常见类型及思路(1)若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,等积转换法多用来求三棱锥的体积.(2)若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.能力练通 抓应用体验的“得”与“失”1.[考点二](2016·山东高考)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.故选C. 2.[考点二]已知一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3 cm 3 B .2π cm 3 C.7π3cm 3 D .3π cm 3解析:选C 该几何体为一个圆柱挖去半个球得到的几何体,其体积V =π×12×3-12×4π×133=7π3(cm 3).3.[考点一]某几何体的三视图如图所示,则它的表面积为( )A .125+20B .242+20C .44D .12 5解析:选A 由三视图得,这是一个正四棱台,且上、下底面的边长分别为2,4,则侧面梯形的高h = 22+⎝⎛⎭⎫4-222=5,所以该正四棱台的表面积S =(2+4)×52×4+22+42=125+20.4.[考点一]某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:选B 由三视图知,该几何体是一个直四棱柱,上、下底面为直角梯形,如图所示.直角梯形斜腰长为12+12=2,所以底面周长为4+2,侧面积为2×(4+2)=8+22,两底面的面积和为2×12×1×(1+2)=3,所以该几何体的表面积为8+22+3=11+2 2.5.[考点二]中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸):若π取3,其体积为12.6(立方寸),则图中的x 的值为________.解析:由三视图知,商鞅铜方升由一圆柱和一长方体组合而成,由题意得:(5.4-x )×3×1+π·⎝⎛⎭⎫122x =12.6,解得x =1.6.答案:1.6突破点(三) 与球有关的切、接应用问题1.球的表面积和体积是每年高考的热点,且多与三视图、多面体等综合命题,常以选择题、填空题的形式出现.解决此类问题时,一是要善于把空间问题平面化,把平面问题转化到直角三角形中处理;二是要将变化的模型转化到固定的长方体或正方体中.2.与球有关的组合体问题主要有两种,一种是内切问题,一种是外接问题.解题时要认真分析图形,明确切点和接点的位置,确定有关“元素”间的数量关系,并作出合适的截面图.考点贯通 抓高考命题的“形”与“神”多面体的内切球问题[例1] 若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.[解析] 设正四面体棱长为a , 则正四面体表面积为S 1=4×34·a 2=3a 2,其内切球半径为正四面体高的14, 即r =14×63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26, 则S 1S 2=3a 2π6a 2=63π. [答案] 63π[方法技巧]处理与球有关内切问题的策略解答此类问题时首先要找准切点,通过作截面来解决.如果内切的是多面体,则作截面时主要抓住多面体过球心的对角面来作.多面体的外接球问题处理与球有关外接问题的策略把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.[例2] (1)(2017·抚顺模拟)已知直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310(2)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A.81π4 B .16π C .9πD.27π4(3)一个正方体削去一个角所得到的几何体的三视图如图所示(图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________.[解析] (1)如图所示,由球心作平面ABC 的垂线,则垂足为BC 的中点M .又AM =12BC =52,OM =12AA 1=6,所以球O 的半径R =OA =⎝⎛⎭⎫522+62=132.(2)如图所示,设球半径为R ,底面中心为O ′且球心为O , ∵正四棱锥P -ABCD 中AB =2, ∴AO ′= 2. ∵PO ′=4,∴在Rt △AOO ′中,AO 2=AO ′2+OO ′2, ∴R 2=(2)2+(4-R )2, 解得R =94,∴该球的表面积为4πR 2=4π×⎝⎛⎭⎫942=81π4.(3)依题意可知,新的几何体的外接球也就是原正方体的外接球,球的直径就是正方体的体对角线,∴2R =23(R 为球的半径),∴R =3, ∴球的体积V =43πR 3=43π.[答案] (1)C (2)A (3)43π [方法技巧]与球有关外接问题的解题规律(1)直棱柱外接球的球心到直棱柱底面的距离恰为棱柱高的12.(2)正方体外接球的直径为正方体的体对角线的长.此结论也适合长方体,或由同一顶点出发的两两互相垂直的三条棱构成的三棱柱或三棱锥.(3)求多面体外接球半径的关键是找到由球的半径构成的三角形,解三角形即可.能力练通 抓应用体验的“得”与“失”1.[考点一]一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于( )A .1B .2C .3D .4解析:选B 该几何体为直三棱柱,底面是边长分别为6,8,10的直角三角形,侧棱长为12,故能得到的最大球的半径等于底面直角三角形内切圆的半径,其半径为r =2Sa +b +c =2×12×6×86+8+10=2,故选B.2.[考点二]如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π解析:选D 由三视图知,该几何体可以由一个长方体截去4个角后得到,此长方体的长、宽、高分别为5,4,3,所以外接球半径R 满足2R =42+32+52=52,所以外接球的表面积为S =4πR 2=4π×⎝⎛⎭⎫5222=50π,故选D. 3.[考点二](2016·太原模拟)如图,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′-BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′-BCD 的顶点在同一个球面上,则该球的表面积为( )A .3πB.32π C .4π D.34π 解析:选A 由图示可得BD =A ′C =2,BC =3,△DBC 与△A ′BC 都是以BC 为斜边的直角三角形,由此可得BC 中点到四个点A ′,B ,C ,D 的距离相等,即该三棱锥的外接球的直径为3,所以该外接球的表面积S =4π×⎝⎛⎭⎫322=3π. 4.[考点二]设一个球的表面积为S 1,它的内接正方体的表面积为S 2,则S 1S 2的值等于( )A.2πB.6πC.π6D.π2解析:选D 设球的半径为R ,其内接正方体的棱长为a ,则易知R 2=34a 2,即a =233R ,则S 1S 2=4πR 26×⎝⎛⎭⎫233R 2=π2.[全国卷5年真题集中演练——明规律] 1.(2016·全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 由三视图知该几何体是圆锥与圆柱的组合体,设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得,l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.2.(2016·全国丙卷)在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB.9π2C .6πD.32π3解析:选B 设球的半径为R ,∵△ABC 的内切圆半径为6+8-102=2,∴R ≤2.又2R ≤3,∴R ≤32,∴V max =43×π×⎝⎛⎭⎫323=9π2.故选B. 3.(2015·新课标全国卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16 D.15解析:选D 由已知三视图知该几何体是由一个正方体截去了一个“大角”后剩余的部分,如图所示,截去部分是一个三棱锥.设正方体的棱长为1,则三棱锥的体积为V 1=13×12×1×1×1=16,剩余部分的体积V 2=13-16=56.所以V 1V 2=1656=15,故选D. 4.(2015·新课标全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:选C 如图,设球的半径为R ,∵∠AOB =90°,∴S △AOB =12R 2.∵V O -ABC =V C -AOB ,而△AOB 面积为定值,∴当点C 到平面AOB 的距离最大时,V O -ABC 最大,∴当C 为与球的大圆面AOB 垂直的直径的端点时,体积V O -ABC 最大,为13×12R 2×R =36,∴R =6,∴球O 的表面积为4πR 2=4π×62=144π.故选C.5.(2015·新课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:选B 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.6.(2015·新课标全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V=14×13π·r 2·5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛).故选B. 7.(2014·新课标全国卷Ⅱ)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.13解析:选C 原毛坯的体积V =(π×32)×6=54π(cm 3),由三视图可知该零件为两个圆柱的组合体,其体积V ′=V 1+V 2=(π×22)×4+(π×32)×2=34π(cm 3),故所求比值为1-V ′V =1027.8.(2013·新课标全国卷Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A.16+8π B.8+8πC.16+16π D.8+16π解析:选A根据三视图可以判断该几何体由上、下两部分组成,其中上面部分为长方体,下面部分为半个圆柱,所以组合体的体积为2×2×4+12×22×π×4=16+8π,故选A.9.(2012·新课标全国卷)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.26 B.36 C.23 D.22解析:选A由于三棱锥S-ABC与三棱锥O-ABC底面都是△ABC,O是SC的中点,因此三棱锥S-ABC的高是三棱锥O-ABC高的2倍,所以三棱锥S-ABC的体积也是三棱锥O-ABC体积的2倍.在三棱锥O-ABC中,其棱长都是1,如图所示,S△ABC=34×AB2=34,高OD=12-⎝⎛⎭⎫332=63,所以V S-ABC=2V O-ABC=2×13×34×63=26.[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考[练基础小题——强化运算能力]1.下列结论正确的是()A.各个面都是三角形的几何体是三棱锥B.以三角形的一条边所在直线为旋转轴,其余两边绕旋转轴旋转形成的曲面所围成的几何体叫圆锥C.棱锥的侧棱长与底面多边形的边长都相等,则该棱锥可能是六棱锥D.圆锥的顶点与底面圆周上的任意一点的连线都是母线解析:选D A错误,如图①是由两个相同的三棱锥叠放在一起构成的几何体,它的各个面都是三角形,但它不是三棱锥;B 错误,如图②,若△ABC 不是直角三角形,或△ABC 是直角三角形但旋转轴不是直角边,所得的几何体都不是圆锥;C 错误,若该棱锥是六棱锥,由题设知,它是正六棱锥.易证正六棱锥的侧棱长必大于底面边长,这与题设矛盾.2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( )A.41π3B.62π3C.83π3D.104π3解析:选D 由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π3. 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )A .12+4 2B .18+8 2C .28D .20+8 2解析:选D 由三视图可知该几何体是底面为等腰直角三角形的直三棱柱,如图.则该几何体的表面积为S =2×12×2×2+4×2×2+22×4=20+82,故选D.4.《九章算数》中,将底面是直角三角形的直三棱柱称为“堑堵”,已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的侧面积为( )A .2B .4+2 2C .4+4 2D .6+4 2解析:选C 由题可知,该几何体的底面为等腰直角三角形,等腰直角三角形的斜边长为2,腰长为2,棱柱的高为2.所以其侧面积S =2×2+22×2=4+42,故选C.5.已知一个正方体的所有顶点在一个球面上,若球的体积为9π2,则正方体的棱长为________.解析:设正方体棱长为a ,球半径为R ,则43πR 3=9π2,∴R =32,∴3a =3,∴a = 3.答案: 3[练常考题点——检验高考能力]一、选择题1.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A.a2 B.3πa3πC.23πa 3πD.23a 3π解析:选C 设圆锥的底面半径为r ,母线长为l ,由题意知2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.2.在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D .2π解析:选C 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C. 3.一个几何体的三视图如图所示,则该几何体的体积为( )A.163B.203C.152D.132解析:选D 该几何体可视为正方体截去两个三棱锥所得,如图所示,所以其体积为23-13×12×2×2×2-13×12×1×1×1=132.故选D.4.已知正四面体的棱长为2,则其外接球的表面积为( ) A .8π B .12π C.32π D .3π 解析:选D 如图所示,过顶点A 作AO ⊥底面BCD ,垂足为O ,则O 为正三角形BCD 的中心,连接DO 并延长交BC 于E ,又正四面体的棱长为2,所以DE =62,OD =23DE =63,所以在直角三角形AOD 中,AO =AD 2-OD 2=233.设正四面体外接球的球心为P ,半径为R ,连接PD ,则在直角三角形POD 中,PD 2=PO 2+OD 2,即R 2=⎝⎛⎭⎫233-R 2+⎝⎛⎭⎫632,解得R =32,所以外接球的表面积S =4πR 2=3π. 5.(2017·郑州质检)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为( )A .8πB .16πC .32πD .64π解析:选C 还原三视图可知该几何体为一个四棱锥,将该四棱锥补成一个长、宽、高分别为22,22,4的长方体,则该长方体外接球的半径r =(22)2+(22)2+422=22,则所求外接球的表面积为4πr 2=32π.6.已知四棱锥P -ABCD 的三视图如图所示,则四棱锥P -ABCD 的四个侧面中面积的最大值是( )A .6B .8C .2 5D .3解析:选A 四棱锥如图所示,作PN ⊥平面ABCD ,交DC 于点N ,PC =PD =3,DN =2,则PN =32-22=5,AB =4,BC =2,BC ⊥CD ,故BC ⊥平面PDC ,即BC ⊥PC ,同理AD ⊥PD .设M 为AB 的中点,连接PM ,MN ,则PM =3,S △PDC =12×4×5=25,S △PBC =S△PAD=12×2×3=3,S △PAB =12×4×3=6,所以四棱锥P -ABCD 的四个侧面中面积的最大值是6.二、填空题7.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,P 在线段BD 1上,且BP PD 1=12,M 为线段B 1C 1上的动点,则三棱锥M -PBC 的体积为________.解析:∵BP PD 1=12,∴点P 到平面BC 1的距离是D 1到平面BC 1距离的13,即三棱锥P -MBC 的高h =D 1C 13=1.M 为线段B 1C 1上的点, ∴S △MBC =12×3×3=92,∴V M -PBC =V P -MBC =13×92×1=32. 答案:328.一个几何体的三视图如图所示(单位:m),则该几何体的体积为________m 3.。
2021年高考数学一轮复习第八章立体几何8.1空间几何体的三视图
表面积和体积课时练理
1.[xx·衡水中学猜题]一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是( )
A.球B.三棱锥
C.正方体D.圆柱
答案D
解析∵圆柱的三视图中有两个矩形和一个圆,
∴这个几何体不可以是圆柱.
2.[xx·衡水中学一轮检测]如图所示,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是( )
答案B
解析通过观察图形,三棱锥的正视图应为高为4,底面边长为3的直角三角形.3.[xx·冀州中学模拟]某几何体的三视图如图(其中侧视图中的圆弧是半圆),则该几何体的表面积为( )
A.92+14π B.82+14π
C.92+24π D.82+24π
答案A
解析易知该几何体是长方体与半个圆柱的组合体.其表面积S=4×5+2×4×5+2×4×4+π×22+π×2×5=92+14π,故选A.
4.[xx·衡水二中周测]一个空间几何体的三视图如下图所示,则该几何体的表面积为( )
A.48 B.48+817
C .32+817
D .80
答案 B
解析 观察三视图可知,该几何体为四棱柱,底面为梯形,两底边长分别为2,4,高为4,底面梯形的腰长为42+12=17,棱柱的高为4.该几何体的表面积为1
2×(2+
4)×4×2+2×17×4+2×4+4×4=48+817.故选B.
5.[xx·枣强中学仿真]若某几何体的三视图如图所示,则这个几何体的直观图可以是( )
答案 D
解析 A 的正视图,俯视图不对,故A 错.B 的正视图,侧视图不对,故B 错.C 的侧视图,俯视图不对,故C 错,故选D.
6.[xx·衡水二中月考]已知正三角形ABC 三个顶点都在半径为2的球面上,球心O 到平面ABC 的距离为1,点E 是线段AB 的中点,过点E 作球O 的截面,则截面面积的最
小值是( )
A.
7π
4 B .2π
C.9π
4
D .3π
答案 C
解析 由题意知,正三角形ABC 的外接圆半径为22-12=3,AB =3,过点E 的截
面面积最小时,截面是以AB 为直径的圆,截面面积S =π×⎝ ⎛⎭
⎪⎫322=9π
4,故选C.
7.[xx·武邑中学热身]如图所示,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE ,△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为( )
A.
2
3
B.
33
C.43
D.32
解析 如图所示,分别过A ,B 作EF 的垂线,垂足分别为G ,H ,连接DG ,CH ,则
原几何体分割为两个三棱锥和一个直三棱柱,
∵三棱锥高为1
2,直三棱柱柱高为1,AG =
12-⎝ ⎛⎭
⎪⎫
122=32,取AD 中点M ,则MG =
22,∴S △AGD =12×1×22=24
, ∴V =
24×1+2×13×24×12=2
3
. 8.[xx·武邑中学模拟]某几何体的三视图如图所示,则该几何体的体积为( )
A .8π+16
B .8π-16
C .8π+8
D .16π-8
解析 由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-1
2
×4×2×4=8π-16.
9.[xx·枣强中学一轮检测]一个水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这个平面图形的面积为( )
A.14+2
4 B .2+
22
C.14+22
D.1
2
+2 答案 B
解析 如图将直观图ABCD 还原后为直角梯形A ′BCD ′,其中A ′B =2AB =2,BC =1+
22,A ′D ′=AD =1.∴S =12×( 1+1+22 )×2=2+2
2
.故选B.
10. [xx·衡水中学周测]已知四棱锥P-ABCD的三视图如图所示,则四棱锥P-ABCD 的四个侧面的面积中最大的是( )
A.6 B.8
C.2 5 D.3
答案A
解析 四棱锥如图所示,PN ⊥面ABCD ,交DC 于N ,且PN =
32-⎝ ⎛⎭
⎪⎫
422=5,AB =
4,BC =2,BC ⊥CD ,故BC ⊥面PDC ,即BC ⊥PC ,同理AD ⊥PD .M 为AB 的中点,则PM =3,
S △PDC =12
×4×5=25,S △PBC =S △PAD =12
×2×3=3,S △PAB =12
×4×3=6,所以四棱锥P -ABCD 的四个侧面的面积中最大的是6.
11.[xx·冀州中学月考]某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )
A.
2π
3 B.
π3 C.2π
9
D.
16π
9
答案 D
解析 由题知该几何体为底面半径为2,高为4的圆锥的13部分,其体积是
1
3π×22×4×13=16π
9
.故选D.
12.[xx·武邑中学周测]已知某几何体的直观图及三视图分别如图1、2所示,三视图的轮廓均为正方形,则该几何体的表面积为________.
答案 12+43
解析 如图所示,本题主要考查三视图的知识,考查了空间想象能力,借助常见的
正方体模型是解题关键.由三视图知,该几何体由正方体沿面AB 1D 1与面CB 1D 1截去两个角所得,其表面由两个正三角形,四个直角三角形和一个正方形组成.计算得其表面积为12+4 3.
能力组
13.[xx·衡水中学月考]某四面体的三视图如图所示,该四面体的六条棱的最大长度是( )
A.4 2 B.27
C.2 6 D.25
答案B
解析由三视图可知四面体直观图如图1所示.
由图2可知,BD=4,∠BDE=60°,在△BCD中,
由余弦定理知,BC=27.又AB=22+42=25,AC=22+22=22,故选B.
14. [xx·枣强中学猜题]已知三棱锥D-ABC中,AB=BC=1,AD=2,BD=5,AC
=2,BC ⊥AD ,则该三棱锥的外接球的表面积为( )
A.6π
B .6π
C .5π
D .8π
答案 B
解析 ∵由勾股定理易知AB ⊥BC ,
DA ⊥BC ,∴BC ⊥平面DAB .
∴CD =BD 2+BC 2= 6.
∴AC 2+AD 2=CD 2.
∴DA ⊥AC .
取CD 的中点O ,由直角三角形的性质知O 到点A ,B ,C ,D 的距离均为
62,其即为三棱锥的外接球球心.故三棱锥的外接球的表面积为4π×⎝ ⎛⎭
⎪⎫622=6π. 15.[xx·衡水中学期中]一个几何体的三视图如图所示,其侧视图是一个等边三角形,则这个几何体的体积是________.
答案 83+433π 解析 观察三视图可知,该几何体是圆锥的一半与一个四棱锥的组合体,圆锥底面半径为2,四棱锥底面边长分别为3,4,它们的高均为 42-⎝ ⎛⎭
⎪⎫422=23,所以该几何体体积为12×13π×22×23+13×4×3×23=83+433
π. 16.[xx·武邑中学期中]如图所示,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a ,c 为常数,则四面体ABCD 的体积的最大值是________.
答案 23
c a 2-c 2-1
解析 过点A 作AE ⊥BC ,垂足为E ,连接DE ,如图所示.
由AD ⊥BC 可知,BC ⊥平面ADE ,所以四面体ABCD 的体积V =V B -ADE +V C -ADE =13
S △ADE ·BC =23
S △ADE . 当AB =BD =AC =DC =a 时,四面体ABCD 的体积最大.过E 作EF ⊥DA ,垂足为F . 已知EA =ED ,所以△ADE 为等腰三角形,
所以点F 为AD 的中点.
又因为AE 2=AB 2-BE 2=a 2-1,
所以EF =AE 2-AF 2=a 2-c 2-1.
所以S △ADE =12
AD ·EF =c a 2-c 2-1. 所以四面体ABCD 的体积的最大值为
V max =23S △ADE =23c a 2-c 2-1.。