计算化学-分子轨道法的基本方程
- 格式:pdf
- 大小:1.72 MB
- 文档页数:55
化学结构理论计算公式化学结构理论计算是一种重要的理论方法,它可以用来预测分子的结构、性质和反应。
在化学研究中,理论计算可以帮助化学家理解分子的行为,并为实验设计提供指导。
本文将介绍一些常用的化学结构理论计算公式,并探讨它们在化学研究中的应用。
1. 分子轨道理论。
分子轨道理论是一种描述分子电子结构的理论方法。
它通过求解分子的薛定谔方程来得到分子的轨道能级和轨道波函数。
分子轨道理论的基本公式可以用哈密顿算符表示:HΨ = EΨ。
其中,H是分子的哈密顿算符,Ψ是分子的波函数,E是分子的能量。
通过求解这个方程,可以得到分子的轨道能级和轨道波函数,从而揭示分子的电子结构和性质。
分子轨道理论在化学研究中有着广泛的应用。
它可以用来解释分子的光谱性质、化学键的形成和断裂过程,以及分子的反应机理。
此外,分子轨道理论还可以用来设计新的分子材料,预测分子的性质和反应活性。
2. 密度泛函理论。
密度泛函理论是一种用来描述分子电子结构的理论方法。
它通过求解分子的电子密度来得到分子的能量和性质。
密度泛函理论的基本公式可以用密度泛函表示:E[ρ] = T[ρ] + V[ρ] + Eee[ρ] + Exc[ρ]其中,E[ρ]是分子的总能量,T[ρ]是分子的动能,V[ρ]是分子的外势能,Eee[ρ]是分子的电子-电子相互作用能,Exc[ρ]是分子的交换-相关能。
通过求解这个方程,可以得到分子的能量和电子密度,从而揭示分子的结构和性质。
密度泛函理论在化学研究中有着广泛的应用。
它可以用来预测分子的结构、光谱性质和反应活性,解释分子的化学键和反应机理,设计新的分子材料。
此外,密度泛函理论还可以用来模拟分子的动力学过程,预测分子的稳定性和反应速率。
3. 分子力场理论。
分子力场理论是一种用来描述分子结构和振动的理论方法。
它通过求解分子的势能函数来得到分子的力场和振动频率。
分子力场理论的基本公式可以用势能函数表示:V(r) = Σi<j Vi,j(r)。
分子轨道表达式
分子轨道是描述分子电子结构的数学函数,可以用波函数或波函数的线性组合来表示。
最常用的方法是使用分子轨道线性组合近似(MO-LCAO)。
分子轨道的表达式可以通过求解分子的薛定谔方程来得到。
一般来说,分子轨道可以通过原子轨道线性组合得到。
分子轨道可以用以下表达式表示:
Ψ = C1φ1 + C2φ2 + C3φ3 + …
其中,Ψ是分子轨道的波函数,C1、C2、C3等是系数,φ1、
φ2、φ3等是原子轨道。
系数C表示分子轨道中各个原子轨道
的贡献大小。
具体的分子轨道表达式由分子的几何结构、电子数目、原子轨道的形式等因素决定。
常见的分子轨道包括:σ轨道、π轨道、π*轨道、σ*轨道等。
需要注意的是,分子轨道是描述电子在整个分子空间中的运动方式,因此其波函数的表达式比较复杂,通常需要使用量子化学计算软件进行计算和模拟。
休克尔分子轨道法1 目的要求(1) 运用HMO 程序计算若干平面共轭分子的电子结构。
(2) 通过HMO 程序的具体运算,加强对这一基本原理的理解,培养学生运用分子轨道概念解决实际问题的能力。
(3) 熟悉微型计算机和磁盘操作系统。
2 基本原理(1) HMO 方法的基本原理:休克尔分子轨道法是量子化学近似计算方法之一,它以简便迅速著称,适宜于计算平面共轭分子中的π电子结构。
在分析有机共轭分子的稳定性、化学反应活性和电子光谱,及研究有机化合物结构与性能的关系等方面有着广泛应用。
该方法主要运用了下列基本假定:①σ-π分离近似。
对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性的不同,可以近似地看成互相独立的。
②独立π电子近似。
分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的。
③LCAO-MO 近似。
对于π体系,可将每个π分子轨道Ψk 看成是由各原子提供的垂直于共轭体系平面的p 原子轨道i ϕ线性组合构成的,即∑=ii ki k C ϕψ (1)在上述假定下,可列出π体系单电子Schrodinger 方程kk E H ψψκπ=ˆ (2)将(1)式代入(2)式,利用变分原理,可得久期方程式: ()()()0112121211111=-++-+-n n n C ES H C ES H C ES H ()()()0222222212121=-++-+-n n n C ES H C ES H C ES H………………………………………………………………()()()0222111=-++-+-nnn nn n n n n C ES H C ES H C ES H此方程组有非零解的充分条件1121211111n n ES H ES H ES H --- 02222222211112=------nnnn n n n n n n n ES H ES H ES H ES H ES H ES H此行列式亦称为久期行列式。
结构化学论⽂---分⼦轨道理论结构论⽂分⼦轨道理论的发展及其应⽤2011111510xxxx⼀、前⾔价建理论、分⼦轨道理论和配位场理论是三种重要的化学键理论。
三、四⼗年代,价键理论占主要的地位。
五⼗年代以来由于分⼦轨道理论容易计算且得到实验(光电能谱)的⽀持,取得了巨⼤的发展,逐渐占优势。
价建理论不但在理论化学上有重要的意义(下⽂中将详细介绍)。
在应⽤领域也有重要的发展,如分⼦轨道理论计算有机化合物的吸收光谱⽤于染料化学;前线分⼦轨道理论在选矿中的研究等等。
⼆、简介1、分⼦轨道理论产⽣和发展在分⼦轨道理论出现以前,价键理论着眼于成键原⼦间最外层轨道中未成对的电⼦在形成化学键时的贡献,能成功地解释了共价分⼦的空间构型,因⽽得到了⼴泛的应⽤。
但如能考虑成键原⼦的内层电⼦在成键时贡献,显然更符合成键的实际情况。
1932年,美国化学家 Mulliken RS和德国化学家HundF 提出了⼀种新的共价键理论——分⼦轨道理论(molecular orbital theory),即MO法。
该理论注意了分⼦的整体性,因此较好地说明了多原⼦分⼦的结构。
⽬前,该理论在现代共价键理论中占有很重要的地位。
以下是各个年代提出的关于分⼦轨道理论的⼀些重要理论和⽅法,是分⼦轨道理论发展过程中的⼏个⾥程碑!1926-1932年,在讨论分⼦光谱时,Mulliken和Hund提出了分⼦轨道理论。
认为:电⼦是在整个分⼦轨道中运动,不是定域化的。
他们还提出能级图、成键、反键轨道等重要的概念。
1931-1933年,Hukel提出了⼀种简单的分⼦轨道理论,⽤于讨论共轭分⼦的性质,相当成功。
1950年,Boys⽤Guass函数研究原⼦轨道,解决了多中⼼积分问题,是今天⼴为利⽤的⾃洽场分⼦轨道理论的基础,在量⼦化学的研究中占有重要地位。
1951年,Roothaan在Hartree-Fock⽅程的基础上,把分⼦轨道写成原⼦轨道的线性组合,得到Roothaan⽅程。
分子轨道法简述
分子轨道法
分子轨道法(MO)是一种理论计算化学方法,它是根据分子的原子所构成的分子结构,用于计算分子振动、激发态、分子射线谱以及其他相关的性质和能量的计算方法。
它基于分子的基础态电子结构来计算分子的能量和反应性质。
在原子的质子和电子的微观层面上,分子的整体特性可以由分子结构、原子之间的相互作用、原子的电荷分布以及其他相关变量来表征。
在分子轨道方法中,分子的能量可以通过构建哈密顿量来描述,无论是粒子的总能量,还是激发态的能量,都可以用哈密顿量来表示。
哈密顿量是由电子交换-相互作用、磁矩-相互作用、电荷-相互作用和磁化矩-相互作用组成的,其结构取决于分子中原子的电荷、质量和位置。
然后,可以用哈密顿量来求解Schrdinger方程,得到一组本征态解,即分子轨道。
每种本征态对应一个能量,从而可以计算出分子的总能量和激发态能量。
此外,分子轨道方法还可以用于计算分子的态密度和电荷密度等性质。
由于分子态密度和电荷密度的变化可以反映出分子内的电子结构和空间分布,因此,可以根据分子态密度和电荷密度计算出分子的物理性质,如极化率,力常数和偶极矩等。
总之,分子轨道方法是一种基于分子的基础态电子结构来计算分子的性质和能量的计算方法。
它可以计算出分子的总能量和激发态能量,以及分子态密度、电荷密度和其他物理性质。
分子轨道式
分子轨道式是物理学和化学领域的重要概念,用于解释复杂的物质分子的性质和行为。
它是研究分子性质和反应机理的基础理论。
在过去的几十年里,分子轨道理论的发展已经发挥了重要的作用,为研究分子设计新的合成方法和药物发现等提供了分子结构模型和其他有价值的信息。
分子轨道式是一种用于根据分子结构分析分子性质和反应性质的理论。
它基于原子轨道模型,假定电子是布朗包围在原子核周围的概念。
因此,一个分子中的电子位置和能量可以通过对电子轨道作出相应的分析来解释。
为了描述分子,根据这种模型,有许多方法可以用来描述它,从最简单的模型到复杂的模型。
常用的模型有Hartree-Fock模型,各种类型的极化矩阵模型以及化学家称为受偶作用力(VSEPR)的模型。
当受到外力时,分子性质可能会发生变化,这也能由分子轨道理论来预测。
最常用的此类变化是化学反应,分子轨道理论可以解释,两种分子如何相互作用,以及由此产生的活性物质的性质。
为了更有效地分析分子的性质和反应,一些计算方法也被提出和使用,可以自动计算分子的能量和反应的可能性。
此外,分子轨道式也被广泛应用于生物领域,例如对生物分子的结构和功能以及其他蛋白质和小分子在体内如何发挥作用。
它可以提供有关生物分子和蛋白质功能的关键信息,从而为新药物开发提供重要支持。
综上所述,分子轨道式是化学和物理领域中使用最广泛的量子力学理论,它可以帮助研究人员更好地理解和解释分子的性质和功能,也有助于帮助研究人员开发新的合成方法和药物发现。
随着近代科学技术的发展,分子轨道理论将继续为大规模的研究和设计分子结构提供有价值的信息和关键参数。