计算化学-分子轨道法的基本方程
- 格式:pdf
- 大小:1.72 MB
- 文档页数:55
化学结构理论计算公式化学结构理论计算是一种重要的理论方法,它可以用来预测分子的结构、性质和反应。
在化学研究中,理论计算可以帮助化学家理解分子的行为,并为实验设计提供指导。
本文将介绍一些常用的化学结构理论计算公式,并探讨它们在化学研究中的应用。
1. 分子轨道理论。
分子轨道理论是一种描述分子电子结构的理论方法。
它通过求解分子的薛定谔方程来得到分子的轨道能级和轨道波函数。
分子轨道理论的基本公式可以用哈密顿算符表示:HΨ = EΨ。
其中,H是分子的哈密顿算符,Ψ是分子的波函数,E是分子的能量。
通过求解这个方程,可以得到分子的轨道能级和轨道波函数,从而揭示分子的电子结构和性质。
分子轨道理论在化学研究中有着广泛的应用。
它可以用来解释分子的光谱性质、化学键的形成和断裂过程,以及分子的反应机理。
此外,分子轨道理论还可以用来设计新的分子材料,预测分子的性质和反应活性。
2. 密度泛函理论。
密度泛函理论是一种用来描述分子电子结构的理论方法。
它通过求解分子的电子密度来得到分子的能量和性质。
密度泛函理论的基本公式可以用密度泛函表示:E[ρ] = T[ρ] + V[ρ] + Eee[ρ] + Exc[ρ]其中,E[ρ]是分子的总能量,T[ρ]是分子的动能,V[ρ]是分子的外势能,Eee[ρ]是分子的电子-电子相互作用能,Exc[ρ]是分子的交换-相关能。
通过求解这个方程,可以得到分子的能量和电子密度,从而揭示分子的结构和性质。
密度泛函理论在化学研究中有着广泛的应用。
它可以用来预测分子的结构、光谱性质和反应活性,解释分子的化学键和反应机理,设计新的分子材料。
此外,密度泛函理论还可以用来模拟分子的动力学过程,预测分子的稳定性和反应速率。
3. 分子力场理论。
分子力场理论是一种用来描述分子结构和振动的理论方法。
它通过求解分子的势能函数来得到分子的力场和振动频率。
分子力场理论的基本公式可以用势能函数表示:V(r) = Σi<j Vi,j(r)。
分子轨道表达式
分子轨道是描述分子电子结构的数学函数,可以用波函数或波函数的线性组合来表示。
最常用的方法是使用分子轨道线性组合近似(MO-LCAO)。
分子轨道的表达式可以通过求解分子的薛定谔方程来得到。
一般来说,分子轨道可以通过原子轨道线性组合得到。
分子轨道可以用以下表达式表示:
Ψ = C1φ1 + C2φ2 + C3φ3 + …
其中,Ψ是分子轨道的波函数,C1、C2、C3等是系数,φ1、
φ2、φ3等是原子轨道。
系数C表示分子轨道中各个原子轨道
的贡献大小。
具体的分子轨道表达式由分子的几何结构、电子数目、原子轨道的形式等因素决定。
常见的分子轨道包括:σ轨道、π轨道、π*轨道、σ*轨道等。
需要注意的是,分子轨道是描述电子在整个分子空间中的运动方式,因此其波函数的表达式比较复杂,通常需要使用量子化学计算软件进行计算和模拟。
休克尔分子轨道法1 目的要求(1) 运用HMO 程序计算若干平面共轭分子的电子结构。
(2) 通过HMO 程序的具体运算,加强对这一基本原理的理解,培养学生运用分子轨道概念解决实际问题的能力。
(3) 熟悉微型计算机和磁盘操作系统。
2 基本原理(1) HMO 方法的基本原理:休克尔分子轨道法是量子化学近似计算方法之一,它以简便迅速著称,适宜于计算平面共轭分子中的π电子结构。
在分析有机共轭分子的稳定性、化学反应活性和电子光谱,及研究有机化合物结构与性能的关系等方面有着广泛应用。
该方法主要运用了下列基本假定:①σ-π分离近似。
对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性的不同,可以近似地看成互相独立的。
②独立π电子近似。
分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的。
③LCAO-MO 近似。
对于π体系,可将每个π分子轨道Ψk 看成是由各原子提供的垂直于共轭体系平面的p 原子轨道i ϕ线性组合构成的,即∑=ii ki k C ϕψ (1)在上述假定下,可列出π体系单电子Schrodinger 方程kk E H ψψκπ=ˆ (2)将(1)式代入(2)式,利用变分原理,可得久期方程式: ()()()0112121211111=-++-+-n n n C ES H C ES H C ES H ()()()0222222212121=-++-+-n n n C ES H C ES H C ES H………………………………………………………………()()()0222111=-++-+-nnn nn n n n n C ES H C ES H C ES H此方程组有非零解的充分条件1121211111n n ES H ES H ES H --- 02222222211112=------nnnn n n n n n n n ES H ES H ES H ES H ES H ES H此行列式亦称为久期行列式。