哈工大计算化学之第三章-分子力学
- 格式:ppt
- 大小:2.34 MB
- 文档页数:128
计算化学-分子和量子力学理论及应用导论第二版课程设计1. 课程简介本课程是一门介绍计算化学领域中分子和量子力学理论及应用的导论性课程。
该课程通过讲解计算化学的基础概念、分子的结构与性质、量子化学计算方法等内容,帮助学生建立计算化学的基本理论知识,掌握各种计算方法和软件的使用,并能够将其应用于化学实际问题的计算和分析中。
2. 课程教学目标通过本课程的学习,学生将能够:•理解计算化学的基础概念和相关理论知识;•掌握分子的结构和性质的计算方法;•熟悉量子化学计算方法和软件的使用;•能够应用计算化学的方法解决化学实际问题。
3. 教学内容3.1 计算化学的基础概念•计算化学的定义及其发展历程;•计算化学在化学领域中的应用。
3.2 分子的结构和性质的计算方法•分子力学和分子动力学的理论和方法;•分子结构参数和物理性质的计算方法;•分子动力学的模拟方法。
3.3 量子化学计算方法和软件的使用•量子力学的基本概念和数学表达式;•基态和激发态计算方法;•电子结构方法的比较和选择;•基于量子力学的分子模拟方法。
3.4 化学实际问题的计算和分析•化学反应的机理和动力学计算方法;•分子间相互作用和化学反应率的计算方法;•实际应用案例分析。
4. 教学方法本课程采取理论讲授、案例分析和实践操作相结合的教学方法。
在讲解和演示计算化学的理论知识和计算方法的同时,将安排相关的案例分析和实践操作,增强学生的实践能力和实际运用能力。
5. 考核方式本课程的考核方式为课堂参与和课程作业互评。
其中,课堂参与包括听讲和提问,占总成绩的30%;课程作业包括案例分析和实践操作,占总成绩的70%。
6. 教材•David Sholl和Janice A. Steckel,《计算化学-分子和量子力学理论及应用导论-第二版》。
•刘作华,《量子化学基础》。
7. 参考资料•Frank Jensen,《计算化学》。
•Warren Hehre,《量子化学》。
• A. R. Leach,《分子建模-原理、方法与应用》。
计算化学学习指南计算化学学习基本要求:在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。
计算化学学习的难点:学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。
尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。
计算化学的研究方法:传统意义上的计算化学要完成的任务一般包括以下几个方面:1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴;2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴;3.化学过程模拟和化工过程计算等。
但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。
在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。
尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);2.化学结构与化学反应的计算机处理技术;3.计算机辅助分子设计;4.计算机辅助合成路线设计;5.计算机辅助化学过程综合与开发;6.化学中的人工智能方法等。
无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。
本课程主要学习利用用计算机解化学中的数值计算问题,一般包括以下几个步骤:1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法;问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。
计算化学中的前沿挑战与方法发展计算化学是一门交叉学科,将化学、物理学和计算机科学相结合,通过计算机模拟、虚拟实验等手段来研究分子、材料和化学反应等问题。
计算化学在现代化学研究和应用中扮演着重要的角色,包括药物研究、材料设计和催化剂开发等领域。
但是,计算化学中也存在一些前沿挑战,需要不断发展新的方法来克服。
其中一个挑战是处理复杂体系。
现实中的化学反应、分子和材料往往具有复杂的结构和性质,需要使用复杂的数学模型来描述。
这些模型需要精确计算其能量、结构和反应性等参数,但是传统的计算方法往往在复杂体系中出现精度不足或计算复杂度过高的问题。
为了应对这一挑战,计算化学研究者正在发展新的方法,例如密度泛函理论(DFT)和量子力学分子动力学(QM/MM)模拟等。
DFT是通过对电子密度的函数近似来模拟分子体系的方法,其能够提供更高精度的计算结果。
而QM/MM模拟是将量子力学和分子力学相结合的方法,能够处理大型分子系统的计算问题。
另一个挑战是处理量子效应。
在微观尺度下,物理世界具有量子效应,例如电子云的波动、原子核的量子隧穿等。
这些效应对于一些化学反应和材料性质的计算具有重要影响,但是传统的计算方法往往不能很好地处理这些效应。
为了解决这一问题,计算化学研究者正在发展量子化学方法。
量子化学方法是基于量子力学原理的计算方法,能够更准确地描述化学反应和材料性质的量子效应。
例如,量子化学中的哈特利-福克方法和扫描隧道显微镜(STM)方法,可以精确计算分子结构和电子能级等参数。
最后,一个挑战是处理多物理场耦合的问题。
许多化学反应和材料性质往往与多个物理场(例如温度、压力、电场等)的相互作用有关。
这些物理场的相互作用能够显著地影响它们的特性,但传统的计算方法往往难以处理这些相互作用。
为了克服这一挑战,计算化学研究者正在发展多场耦合计算方法。
这些方法包括多场耦合场(MCFC)方法和多反应场(MFC)方法,能够精确计算多个物理场之间的相互作用和多个反应之间的相互作用。
分子力学和分子动力学方法基础分子力学(Molecular Mechanics)和分子动力学(Molecular Dynamics)是在计算化学中常用的两种方法,用于研究分子结构和性质。
它们基于经典力学和统计力学理论,通过模拟分子间的相互作用来预测分子的行为。
分子力学方法首先被用于模拟蛋白质三维结构和稳定性,但现在已扩展到了许多其他领域,如药物设计、材料科学和生物化学等。
分子力学模拟通过建立分子中原子之间的相互作用势能函数,来计算其结构、能量和力学性质。
这些势能函数通常由力场参数和电子性质来描述,包括键长、键角、二面角、范德华力等。
分子力学方法主要基于以下假设:分子是刚性物体,原子之间的力可以通过经验势能函数描述,且分子在平衡位置附近做小振幅运动,使得能量最小化。
采用这些假设,我们可以通过最小化总能量来获得分子的最稳定构型。
在分子力学方法中,常用的技术包括能量最小化和构象等。
然而,分子力学方法并不能考虑分子体系的动力学行为,即不能模拟分子在时间上的演化。
为了解决这个问题,分子动力学方法被引入。
分子动力学方法可以通过在分子中引入速度,通过牛顿运动定律来模拟分子的行为。
分子动力学方法中,系统中的原子的运动是通过数值求解Newton's equations of motion得到。
这样的模拟可以提供关于分子结构和行为的动态信息。
分子动力学方法可以模拟温度、压力、流体动力学以及物体的力学性质等。
它可以模拟从毫秒到纳秒乃至皮秒量级的时间尺度。
为了获得物理现象的平均性质,通常需要对系统进行多次模拟,这些模拟称为ensemble。
总体而言,分子力学和分子动力学方法提供了深入研究分子结构和性质的手段。
它们是理解生物分子如蛋白质、核酸和多肽等的功能和性质,并用于物质设计和材料科学的重要工具。
随着计算能力的提高,这两种方法在计算化学和生命科学领域的应用会越来越广泛。
化学反应的量子力学或分子力学分析化学反应是在化学领域中最基本的研究对象之一。
我们有很多方法去分析化学反应,而这些方法都有其各自的优缺点。
在计算化学的领域,通过基于量子力学和分子力学理论的计算方法,我们可以对化学反应进行深入的分析,从而更全面地理解它们的本质。
首先,让我们来看看量子力学分析化学反应的方法。
量子力学是一种描述微观粒子行为的理论,它给出了一套用于描述化学反应的数学模型。
根据量子力学的描述,化学反应中涉及到的分子以及反应物之间的相互作用都可以通过波函数表示。
波函数包含了关于反应物的位置、速度和电子结构等信息。
我们可以通过计算波函数之间的差异来推断出反应速率和反应机理等重要信息。
量子力学的实际应用中,主要使用的是量子化学计算软件,如Gaussian、VASP等。
这些软件可以基于波函数和分子轨道等数学模型进行化学反应的计算。
这些计算可以在计算机上实现,在计算机的计算能力不断提高的情况下,我们可以通过更精确高效的计算来获得更深入的理解化学反应的过程。
除了量子力学,我们也可以使用分子力学,这也是一种在计算化学中常使用的方法。
分子力学是通过对分子内原子之间相互作用的计算来描述化学反应的方法。
根据分子力学的描述,分子结构间的相互作用可以通过计算分子中原子之间的相对位置和面对受力的情况来模拟。
分子力学计算可以通过一些软件实现,如Amber、Molpro等。
这些软件基于分子力学理论,可以模拟分子结构的稳定状态和分子的动力学行为。
通过分子力学计算,我们可以研究分子中的键合和元素之间的相互作用等,从而得到反应物的稳定状态和化学反应的特性等关键信息。
化学反应的分子力学和量子力学分析方法都具有各自的优缺点。
分子力学可以更精确地研究分子结构之间的相互作用,而量子力学可以更全面地描述反应物之间的电子结构。
对于大型分子的计算,分子力学比量子力学更加高效。
但是对于某些反应(例如催化反应、氧化反应等),量子力学可以更准确地描述反应过程的细节。