哈工大计算化学之第三章-分子力学
- 格式:ppt
- 大小:2.34 MB
- 文档页数:128
计算化学-分子和量子力学理论及应用导论第二版课程设计1. 课程简介本课程是一门介绍计算化学领域中分子和量子力学理论及应用的导论性课程。
该课程通过讲解计算化学的基础概念、分子的结构与性质、量子化学计算方法等内容,帮助学生建立计算化学的基本理论知识,掌握各种计算方法和软件的使用,并能够将其应用于化学实际问题的计算和分析中。
2. 课程教学目标通过本课程的学习,学生将能够:•理解计算化学的基础概念和相关理论知识;•掌握分子的结构和性质的计算方法;•熟悉量子化学计算方法和软件的使用;•能够应用计算化学的方法解决化学实际问题。
3. 教学内容3.1 计算化学的基础概念•计算化学的定义及其发展历程;•计算化学在化学领域中的应用。
3.2 分子的结构和性质的计算方法•分子力学和分子动力学的理论和方法;•分子结构参数和物理性质的计算方法;•分子动力学的模拟方法。
3.3 量子化学计算方法和软件的使用•量子力学的基本概念和数学表达式;•基态和激发态计算方法;•电子结构方法的比较和选择;•基于量子力学的分子模拟方法。
3.4 化学实际问题的计算和分析•化学反应的机理和动力学计算方法;•分子间相互作用和化学反应率的计算方法;•实际应用案例分析。
4. 教学方法本课程采取理论讲授、案例分析和实践操作相结合的教学方法。
在讲解和演示计算化学的理论知识和计算方法的同时,将安排相关的案例分析和实践操作,增强学生的实践能力和实际运用能力。
5. 考核方式本课程的考核方式为课堂参与和课程作业互评。
其中,课堂参与包括听讲和提问,占总成绩的30%;课程作业包括案例分析和实践操作,占总成绩的70%。
6. 教材•David Sholl和Janice A. Steckel,《计算化学-分子和量子力学理论及应用导论-第二版》。
•刘作华,《量子化学基础》。
7. 参考资料•Frank Jensen,《计算化学》。
•Warren Hehre,《量子化学》。
• A. R. Leach,《分子建模-原理、方法与应用》。
计算化学学习指南计算化学学习基本要求:在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。
计算化学学习的难点:学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。
尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。
计算化学的研究方法:传统意义上的计算化学要完成的任务一般包括以下几个方面:1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴;2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴;3.化学过程模拟和化工过程计算等。
但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。
在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。
尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);2.化学结构与化学反应的计算机处理技术;3.计算机辅助分子设计;4.计算机辅助合成路线设计;5.计算机辅助化学过程综合与开发;6.化学中的人工智能方法等。
无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。
本课程主要学习利用用计算机解化学中的数值计算问题,一般包括以下几个步骤:1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法;问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。
计算化学中的前沿挑战与方法发展计算化学是一门交叉学科,将化学、物理学和计算机科学相结合,通过计算机模拟、虚拟实验等手段来研究分子、材料和化学反应等问题。
计算化学在现代化学研究和应用中扮演着重要的角色,包括药物研究、材料设计和催化剂开发等领域。
但是,计算化学中也存在一些前沿挑战,需要不断发展新的方法来克服。
其中一个挑战是处理复杂体系。
现实中的化学反应、分子和材料往往具有复杂的结构和性质,需要使用复杂的数学模型来描述。
这些模型需要精确计算其能量、结构和反应性等参数,但是传统的计算方法往往在复杂体系中出现精度不足或计算复杂度过高的问题。
为了应对这一挑战,计算化学研究者正在发展新的方法,例如密度泛函理论(DFT)和量子力学分子动力学(QM/MM)模拟等。
DFT是通过对电子密度的函数近似来模拟分子体系的方法,其能够提供更高精度的计算结果。
而QM/MM模拟是将量子力学和分子力学相结合的方法,能够处理大型分子系统的计算问题。
另一个挑战是处理量子效应。
在微观尺度下,物理世界具有量子效应,例如电子云的波动、原子核的量子隧穿等。
这些效应对于一些化学反应和材料性质的计算具有重要影响,但是传统的计算方法往往不能很好地处理这些效应。
为了解决这一问题,计算化学研究者正在发展量子化学方法。
量子化学方法是基于量子力学原理的计算方法,能够更准确地描述化学反应和材料性质的量子效应。
例如,量子化学中的哈特利-福克方法和扫描隧道显微镜(STM)方法,可以精确计算分子结构和电子能级等参数。
最后,一个挑战是处理多物理场耦合的问题。
许多化学反应和材料性质往往与多个物理场(例如温度、压力、电场等)的相互作用有关。
这些物理场的相互作用能够显著地影响它们的特性,但传统的计算方法往往难以处理这些相互作用。
为了克服这一挑战,计算化学研究者正在发展多场耦合计算方法。
这些方法包括多场耦合场(MCFC)方法和多反应场(MFC)方法,能够精确计算多个物理场之间的相互作用和多个反应之间的相互作用。
分子力学和分子动力学方法基础分子力学(Molecular Mechanics)和分子动力学(Molecular Dynamics)是在计算化学中常用的两种方法,用于研究分子结构和性质。
它们基于经典力学和统计力学理论,通过模拟分子间的相互作用来预测分子的行为。
分子力学方法首先被用于模拟蛋白质三维结构和稳定性,但现在已扩展到了许多其他领域,如药物设计、材料科学和生物化学等。
分子力学模拟通过建立分子中原子之间的相互作用势能函数,来计算其结构、能量和力学性质。
这些势能函数通常由力场参数和电子性质来描述,包括键长、键角、二面角、范德华力等。
分子力学方法主要基于以下假设:分子是刚性物体,原子之间的力可以通过经验势能函数描述,且分子在平衡位置附近做小振幅运动,使得能量最小化。
采用这些假设,我们可以通过最小化总能量来获得分子的最稳定构型。
在分子力学方法中,常用的技术包括能量最小化和构象等。
然而,分子力学方法并不能考虑分子体系的动力学行为,即不能模拟分子在时间上的演化。
为了解决这个问题,分子动力学方法被引入。
分子动力学方法可以通过在分子中引入速度,通过牛顿运动定律来模拟分子的行为。
分子动力学方法中,系统中的原子的运动是通过数值求解Newton's equations of motion得到。
这样的模拟可以提供关于分子结构和行为的动态信息。
分子动力学方法可以模拟温度、压力、流体动力学以及物体的力学性质等。
它可以模拟从毫秒到纳秒乃至皮秒量级的时间尺度。
为了获得物理现象的平均性质,通常需要对系统进行多次模拟,这些模拟称为ensemble。
总体而言,分子力学和分子动力学方法提供了深入研究分子结构和性质的手段。
它们是理解生物分子如蛋白质、核酸和多肽等的功能和性质,并用于物质设计和材料科学的重要工具。
随着计算能力的提高,这两种方法在计算化学和生命科学领域的应用会越来越广泛。
化学反应的量子力学或分子力学分析化学反应是在化学领域中最基本的研究对象之一。
我们有很多方法去分析化学反应,而这些方法都有其各自的优缺点。
在计算化学的领域,通过基于量子力学和分子力学理论的计算方法,我们可以对化学反应进行深入的分析,从而更全面地理解它们的本质。
首先,让我们来看看量子力学分析化学反应的方法。
量子力学是一种描述微观粒子行为的理论,它给出了一套用于描述化学反应的数学模型。
根据量子力学的描述,化学反应中涉及到的分子以及反应物之间的相互作用都可以通过波函数表示。
波函数包含了关于反应物的位置、速度和电子结构等信息。
我们可以通过计算波函数之间的差异来推断出反应速率和反应机理等重要信息。
量子力学的实际应用中,主要使用的是量子化学计算软件,如Gaussian、VASP等。
这些软件可以基于波函数和分子轨道等数学模型进行化学反应的计算。
这些计算可以在计算机上实现,在计算机的计算能力不断提高的情况下,我们可以通过更精确高效的计算来获得更深入的理解化学反应的过程。
除了量子力学,我们也可以使用分子力学,这也是一种在计算化学中常使用的方法。
分子力学是通过对分子内原子之间相互作用的计算来描述化学反应的方法。
根据分子力学的描述,分子结构间的相互作用可以通过计算分子中原子之间的相对位置和面对受力的情况来模拟。
分子力学计算可以通过一些软件实现,如Amber、Molpro等。
这些软件基于分子力学理论,可以模拟分子结构的稳定状态和分子的动力学行为。
通过分子力学计算,我们可以研究分子中的键合和元素之间的相互作用等,从而得到反应物的稳定状态和化学反应的特性等关键信息。
化学反应的分子力学和量子力学分析方法都具有各自的优缺点。
分子力学可以更精确地研究分子结构之间的相互作用,而量子力学可以更全面地描述反应物之间的电子结构。
对于大型分子的计算,分子力学比量子力学更加高效。
但是对于某些反应(例如催化反应、氧化反应等),量子力学可以更准确地描述反应过程的细节。
分子力学公式总结1. 引言分子力学是研究分子和固体的宏观力学性质的一种方法。
在分子力学中,我们可以使用一系列公式来描述分子系统的结构、能量和运动等特性。
本文将总结一些常用的分子力学公式,以帮助读者更好地理解和应用分子力学。
2. 基本概念在开始介绍公式之前,我们先来回顾一些基本概念。
•原子:构成分子和固体的最小单位,具有质量和电荷等特性。
•键:连接原子的强共价相互作用。
•键长:描述连接两个原子的键的长度。
•键能:描述键中的弹簧势能,与键的长度相关。
•势能曲线:描述分子系统势能与原子间距离的关系。
3. 势能计算3.1 动能分子系统的总能量可以分为动能和势能两部分。
动能可以根据分子的质量和速度计算得出。
动能公式如下:KE = 1/2 * m * v^2其中,KE表示动能,m表示质量,v表示速度。
3.2 势能势能是描述原子之间相互作用的能量。
分子力学中常用的势能函数有Lennard-Jones势能函数和Morse势能函数等。
3.2.1 Lennard-Jones势能函数Lennard-Jones势能函数是一种常用的描述非键相互作用的势能函数。
其公式如下:V_LJ = 4 * ε *((σ/r)^12 - (σ/r)^6)其中,V_LJ表示Lennard-Jones势能,ε表示势能参数,σ表示长度参数,r表示原子间距离。
3.2.2 Morse势能函数Morse势能函数用于描述键的势能。
其公式如下:V_M = D * (1 - exp(-a(r - r_e)))^2其中,V_M表示Morse势能,D表示键能参数,a表示势能参数,r表示原子间距离,r_e表示平衡键长。
3.3 分子力场分子力场是一组用于描述分子系统势能函数的参数。
常用的分子力场包括UFF (Universal Force Field)和Amber力场等。
4. 结构优化结构优化是分子力学中常用的方法之一,用于找到分子系统的能量最小结构。
4.1 力的计算结构优化过程中,需要计算分子系统中每个原子所受的力。
分子力学模拟方法探究分子力学模拟方法是一种通过计算机模拟和数值计算来研究分子间相互作用和运动行为的方法。
它是现代计算化学和生物物理学的重要工具之一、本文将介绍分子力学模拟方法的基本原理和应用,并探究其在不同领域中的具体应用。
分子力学模拟方法的基本原理是基于牛顿的第二定律和库仑定律的应用。
通过建立分子的结构模型和描述分子间相互作用的势能函数,通过求解运动方程组和数值积分等计算方法,可以模拟出分子体系在不同条件下的稳定结构和运动行为。
分子力学模拟方法在化学、材料科学和生物物理学等领域中有广泛的应用。
在化学领域中,可以利用分子力学模拟方法研究化学反应的动力学和产物的生成机理。
例如,通过模拟反应物在不同温度和压力下的相对稳定结构和能量变化,可以预测反应的速率和选择性。
分子力学模拟方法还可以用于设计新型催化剂和材料,通过模拟不同结构的分子体系的稳定性和反应活性,可以预测材料的性能并指导实验合成。
在材料科学中,分子力学模拟方法可以用于研究材料的力学性质和热力学行为。
通过模拟分子在应力和温度加载下的结构和运动行为,可以预测材料的强度、弹性模量和热膨胀系数等物理性质。
分子力学模拟方法还可以模拟材料的相变行为和晶体生长过程,深入理解材料的结构演化和相变机制。
在生物物理学中,分子力学模拟方法可以用于研究生物大分子的结构和功能。
例如,通过模拟蛋白质的折叠过程和稳定结构,可以揭示蛋白质的结构-功能关系和蛋白质的折叠机制。
分子力学模拟方法还可以模拟蛋白质和小分子药物的相互作用,预测药物的靶点和作用方式。
此外,分子力学模拟方法还可以研究生物膜的结构和功能,模拟离子通道和蛋白质运输机制。
除了以上的应用领域,分子力学模拟方法还可以在环境科学、能源材料和纳米科技等领域中发挥重要作用。
例如,通过模拟污染物在水和大气中的传输和分解,可以预测环境污染物的迁移行为和环境影响。
在能源材料领域,分子力学模拟方法可以用于设计高效的太阳能电池和储能材料,通过模拟光吸收和电荷传输过程,优化材料的光电转换效率。
计算化学基础教学大纲计算化学基础教学大纲计算化学是一门结合计算机科学和化学原理的学科,通过数学模型和计算方法来研究和解决化学问题。
它在现代化学研究中扮演着重要的角色,能够帮助化学家们更好地理解分子结构、反应机制和性质等方面的问题。
为了培养学生对计算化学的基本理论和实践应用的理解,制定一份计算化学基础教学大纲是非常重要的。
一、课程简介计算化学基础课程旨在介绍计算化学的基本概念、原理和方法,培养学生的计算思维和科学研究能力。
本课程将涵盖分子力学、量子化学、计算化学软件和数据库等方面的内容,通过理论讲解和实践操作相结合的方式进行教学。
二、课程目标1. 理解计算化学的基本原理和方法,包括分子力学和量子化学的基本理论;2. 掌握计算化学软件和数据库的使用,能够进行分子结构优化、能量计算和性质预测等基本计算;3. 培养学生的科学研究能力,能够利用计算化学方法解决实际化学问题;4. 培养学生的团队合作和沟通能力,能够与他人合作完成计算化学实验和项目。
三、教学内容1. 分子力学- 分子结构和力场参数的引入- 分子力学模拟的基本原理和方法- 分子结构优化和能量计算的基本步骤- 分子动力学模拟和反应动力学的基本原理2. 量子化学- 量子力学的基本原理和数学表达- 原子轨道和分子轨道的理论基础- 基态和激发态的计算方法和应用- 电子结构计算和性质预测的基本原理3. 计算化学软件和数据库- 常用计算化学软件的介绍和使用- 分子结构优化和能量计算软件的操作- 数据库的查询和分析方法- 计算化学软件和数据库的实际应用案例四、教学方法1. 理论讲解通过课堂讲解,向学生介绍计算化学的基本概念、原理和方法,引导学生理解计算化学的基本思想和应用。
2. 实验操作组织学生进行计算化学实验,包括分子结构优化、能量计算和性质预测等操作,培养学生的实践能力和科学研究能力。
3. 课程设计设计一些小型课程项目,要求学生利用计算化学方法解决实际化学问题,培养学生的团队合作和创新能力。
计算化学课程纲要绪论∙什么是计算化学(定义)计算化学是根据基本的物理化学理论(通常是量子化学)以大量的数值运算方式来探讨化学系统的性质。
广义上讲,计算化学是一门涉及多种学科的边缘学科,在更广泛的意义上又可称作“计算机化学”。
它是化学、数学、计算机科学等学科交叉的新兴学科。
计算化学是化学的一个分支,但不属于真正意义上的化学,它是利用数学、统计学和计算机科学的方法,进行化学、化工的实验设计、数据与信息的处理、分类、解析和预测。
所以:计算化学是用于化学研究的一种方法学,是一种越来越重要的工具。
计算化学这个名词有时也用来表示计算机科学与化学的交叉学科。
∙计算化学的地位(整理)计算化学促进化学界的研究方法和工业界的生产方式不断革新,是绿色化学和绿色化工的基础,是联系化学化工为国民经济可持续性发展服务的桥梁。
中科院院士徐光宪先生在其报告中称“理论化学和计算化学的基础及应用研究”是21世纪化学的11个突破口之一。
1998年诺贝尔化学奖授予W.Kohn和J.A.Pople。
颁奖公告说:“量子化学已经发展成为广大化学家所使用的工具,将化学带入一个新时代,在这个新时代里实验和理论能够共同协力探讨分子体系的性质。
化学不再是纯粹的实验科学了。
”∙计算化学的过去、现在和未来(了解)发展:计算化学是连接化学、化工与数学、统计学、计算机科学、物理学、药物学、材料科学等学科高度交叉、相互渗透的新的生长点,是许多实用技术的基础,并深受当今计算机与网络通讯技术飞速发展的影响,而处在迅速发展和不断演变之中。
以量子化学计算为代表的计算化学发展史以化工过程计算机控制为代表的化工过程自动化发展史计算数学与分析化学相结合的发展史计算机网络技术在化学信息收集方面的应用计算机模拟技术在化学化工模拟中的应用∙计算化学主要研究内容(方法、过程等概括)包括化学数据库、化学人工智能、分子结构建模与图像显示、计算机分子模拟(分子力学和分子动力学)和量子化学计算的体系数据和性质的综合分析,从而设计分子和合成路线,数据采集、统计分析及其他应用,化学CAI。
材料计算设计基础实验指导书朱景川编哈尔滨工业大学2005年2月实验一、第一性原理计算1. 实验目的(1) 掌握第一性原理和密度泛涵的计算方法;(2) 学会使用Visualizer 的各种建模和可视化工具;(3) 熟悉CASTEP 模块的功能。
2. 实验原理CASTEP 是基于密度泛涵理论平面波赝势基础上的量子力学计算。
密度泛涵理论的基本思想是原子、分子和固体的基本物理性质可以用粒子密度函数进行描述。
可以归纳为两个基本定理:定理1:粒子数密度函数是一个决定系统基态物理性质的基本参量。
定理2:在粒子数不变的条件下能量对密度函数变分得到系统基态的能量。
不计自旋的全同费米子的哈密顿量为:H T U V =++其中动能项为:()()T dr r r ψψ+=∇∇⎰库仑作用项为:11'()(')()(')2'U drdr r r r r r r ψψψψ++=-⎰ V 为对所有粒子均相同的局域势u(r)表示的外场影响:()()()V dru r r r ψψ+=⎰粒子数密度函数为:()()()r r r ρψψ+=ΦΦ对于给定的()r υ,能量泛函[]E ρ定义为:[]()()E dr r r T U ρυρ=+Φ+Φ⎰;[]F T U ρ=Φ+Φ系统基态的能量:'''''[]''''[][]()()[][]()()[]E T U V GE F dr r r E G G F dr r r E G ρρυρφρυρρΦ=Φ+Φ+ΦΦ==+>⎰=+=⎰3. 实验内容实验 1. 材料的电子结构计算;实验2. 晶体材料的晶格[点阵]参数预报(要求材料体系为金属合金、化合物半导体或有机 高分子材料);实验 3. 材料的弹性模量计算。
* 在三个实验内容中可以任选一个内容进行计算,有能力的同学也可以全做。
4. 实验设备和仪器(1)硬件:多台PC机和一台高性能计算服务器。
计算化学基础计算化学是一门综合应用计算机科学和化学原理的学科,通过利用计算机的力量来解决和研究化学问题。
它广泛应用于药物设计、催化剂开发、材料科学等领域。
计算化学的基础是量子化学理论,它是基于量子力学的一种计算方法,用于描述原子和分子的结构、性质和反应。
量子化学理论通过求解薛定谔方程来计算分子的能量、几何构型和振动频率等信息。
这些计算结果可以帮助化学家理解分子的性质和反应机理。
在计算化学中,分子力场是另一个重要的基础概念。
分子力场模型通过经验参数来描述分子内原子之间的相互作用,以及分子与外部环境之间的相互作用。
通过分子力场模型,可以预测分子的几何构型、能量和振动频率等性质。
计算化学还涉及到计算化学方法的开发和应用。
计算化学方法是一系列用于解决化学问题的数学和计算机算法。
常见的计算化学方法包括密度泛函理论(DFT)、分子力学和半经验方法等。
这些方法在计算速度和精度上有所不同,可以根据具体问题的需要选择合适的方法。
在药物设计中,计算化学起着至关重要的作用。
通过计算化学方法,可以预测药物分子与靶标蛋白的相互作用,优化药物分子的活性和选择性。
计算化学可以帮助药物研发人员筛选出具有潜在药效的分子,并减少实验的时间和费用。
另一个应用领域是催化剂开发。
催化剂是在化学反应中起催化作用的物质。
计算化学可以帮助研究人员理解催化剂的反应机理,优化催化剂的结构和性能。
通过计算化学的方法,可以预测催化剂的活性位点和反应路径,为催化剂的设计和改进提供指导。
材料科学也是计算化学的重要应用领域之一。
计算化学可以帮助研究人员预测材料的结构、性质和相变等信息。
通过计算化学的方法,可以筛选出具有特殊性能的材料,加速新材料的开发和设计。
计算化学在环境保护和能源领域也有广泛的应用。
通过计算化学的方法,可以研究大气污染物的生成和迁移规律,优化环境治理措施。
同时,计算化学还可以帮助研究人员研究新型能源材料和储能材料,提高能源的利用效率。
计算化学作为一门交叉学科,对于化学研究和应用具有重要的意义。