哈工大计算化学第四章-分子动力学
- 格式:ppt
- 大小:4.21 MB
- 文档页数:118
分子动力学nvt分子动力学(Molecular Dynamics,MD)是一种计算物理学的方法,通过数值模拟粒子的运动,研究材料的物理和化学性质。
其中,NVT (定温定容)是一种常见的模拟方法。
NVT模拟中,系统的温度、体积和粒子数都是固定的。
这意味着系统中粒子之间的相互作用力与外界环境对系统施加的压强平衡,从而保持体积不变;同时,通过控制温度来控制系统内部能量分布。
这样可以在真实环境下模拟材料行为,并得到一些重要参数如扩散系数、热导率等。
NVT模拟中最常用的算法是Verlet算法。
该算法通过计算每个时间步长内每个粒子受到的力以及速度变化来更新粒子位置和速度。
具体来说,在每个时间步长$t$内,首先根据当前位置计算出每个粒子受到的力$F_i(t)$;然后根据牛顿第二定律$F_i=ma_i$计算出加速度$a_i(t)$;接着根据速度变化公式$v_i(t+\Delta t)=v_i(t)+a_i(t)\Delta t$更新速度;最后根据位移变化公式$x_i(t+\Delta t)=x_i(t)+v_i(t+\Deltat)\Delta t$更新位置。
在NVT模拟中,还需要控制系统温度。
一种常见的方法是使用随机力(random force)或随机速度(random velocity)来模拟热运动。
具体来说,在每个时间步长$t$内,除了计算粒子受到的力和速度变化外,还要添加一个随机力或随机速度$\eta_i(t)$,该项满足高斯分布,并且满足Einstein关系$k_BT=\frac{2}{3}\frac{m}{\tau}\langle\eta^2\rangle$,其中$k_B$为玻尔兹曼常数,$T$为系统温度,$m$为粒子质量,$\tau$为弛豫时间。
这样可以保证系统温度不变。
需要注意的是,在NVT模拟中需要选择合适的时间步长$\Delta t$和弛豫时间$\tau$。
过大的时间步长会导致数值不稳定和误差积累;过小的时间步长会导致计算量增加。
分子动力学
分子动力学(Molecular Dynamics)是运用统计物理学原理,通过计算来研究分子系统中
原子和分子的动态流变,从而对分子间相互作用及对引力法则、量子力学理论和其它物理定律的结果等进行模拟研究的仿真技术。
其基本思想是以细胞原理和迈克尔逊-普朗克动能作为模型基础,借助计算机,通过量子
化学方法理论研究分子在长时间运动中的结构性质及相互作用的力学行为,为原子间的交互作用和分子的动力学运动模拟,可以准确地描述原子性质和反应机理。
在复杂分子系统中,我们可以根据原子间相互作用潜力及其体积影响得出原子间劲度系数。
通过计算,实现分子动力学模拟。
一旦分子动力学模拟被成功应用于实际的物理或有机化学问题,就可以对模拟结果与实验结果进行比较。
将模拟结果与实验结果进行相比较与分析,我们可以更加深入地理解分子的性质。
此外,分子动力学技术还可以用在农业、医学、催化以及合成化学等领域之间。
例如,可以利用此技术来设计新型药物,通过调节抗病毒性和毒性等来减少药物副作用,可以研究加工作用,改进催化剂的性能,优化合成步骤,揭示有机体的生理活动等的究理。
总的来说,分子动力学是一个快速发展的模拟技术,可以模拟和解释小分子和蛋白质等大分子的结构和动态特性,以及丰富科学领域的多种新应用,可以说是一种十分重要的模型。
分子动力学的理论及应用分子动力学是一种重要的计算化学方法,用来模拟复杂分子体系的动力学行为。
它从微观角度描述了分子系统的运动和相互作用,可应用于化学、材料学、生物学等多个领域。
本文将介绍分子动力学的基本理论和应用。
一、分子动力学的理论分子动力学核心在于牛顿第二定律,即F=ma。
该定律强调了物体所受到的力和它所产生的加速度之间的关系。
在分子动力学中,分子作为物体,其受力情况和加速度可通过势能函数来描述。
分子系统的能量可通过哈密顿量求得,其中包括分子所受到的所有势能和动能。
为了求解分子的动力学行为,需要进行时间演化。
具体地,需要在短时间内求解分子所受到的力,在此基础上根据分子的质量和加速度来更新分子的位置和速度。
这一过程类似于在离散时间点上计算微分方程。
在分子动力学中,最关键的参数是分子势能函数。
势能函数的形式多种多样,包括经验关系式、量子化学方法和经验分子力场等。
其中,经验分子力场最为常见,其包含了许多常见分子的实验数据,并将这些数据拟合到一个函数形式上。
二、分子动力学的应用分子动力学应用范围极广,常用于计算化学、材料学和生物学等领域。
以下是三个领域的典型应用:1. 计算化学多数化学反应的步骤很难通过实验分析。
分子动力学为计算化学提供了一种可靠的方法,可模拟和计算反应的中间态和过渡态。
这种方法可以为了解化学反应的机理提供深入的视角。
2. 材料学分子动力学也可用于研究材料的物理特性。
例如,可通过模拟来研究硅材料的分子运动、固态异质性等。
这种方法对于材料表面和表面处理技术的研究相当重要。
3. 生物学生物体系是极其复杂的,分子动力学可用于揭示生物分子之间的相互作用和运动。
例如,分子动力学模拟可以被用来研究蛋白质的折叠过程、膜生物学等。
特别是在新药开发中,分子动力学可为药物分子的设计和优化提供有价值的信息。
三、结论综上所述,分子动力学是一种强大的计算化学方法,用于预测分子系统和化学反应的医学性能。
分子动力学理论和技术的不断发展,使其在化学、材料学和生物学等多个领域具有重要的应用。
分子动力学与分子力学不同,它求解的是随时间变化的分子的状态、行为和过程。
分子动力学将原子看作为一连串的弹性球,原子在某一时刻由于运动而发生坐标变化。
在运动的任一瞬间,通过计算每个原子上的作用力和加速度,来测定它们的位置和运动速度。
由于一个原子的位置相对于其他原子的位置不断变化着,同时力也在变化,可用适当的力场方法,通过评价体系的能量,计算出任一特定原子的力。
分子动力学模拟可作瞬时的、通常为皮秒级(10-12s)的分析,由此模拟计算而获得以一定位置和速度存在的原子的运动轨迹。
计算中根据分子体系的大小、特点和要求来决定模拟时间的长短。
分子动力学方法是一通用的全局优化低能构象的方法。
用分子动力学模拟可使分子构象跨越较大的能垒,因此可以通过升温搜寻构象空间,势能的波动对应着分子构象的变化,当总能量出现最小值时,在常温下(300K)平衡,即可求得低能构象。
在常温下的分子动力学模拟需要很长的时间来克服能量势垒,因此分子动力学对分子构象空间的取样相当缓慢。
提高分子体系的温度,可加大样本分子构型空间的取样效率。
分子动力学计算中,常使用蒙特卡洛算法和模拟退火算法。
蒙特卡洛算法:是一种统计抽样方法。
其基本思想是在求解的空间中随机采样并计算目标函数,以在足够多的采样点中找到一个较高质量的最优解作为最终解。
在动力学计算全局优化低能构象时,以经验势函数随机抽样,不断抽取体系构象,使其逐渐趋于热力学平衡。
该方法需要大量采样才能得到较精确的结果,因此收敛速度较慢。
模拟退火算法:退火是将金属或其他固体材料加热至熔化后,再非常缓慢地冷却的过程。
缓慢冷却是为了凝固成规则的处于最稳态的坚硬晶体状态。
模拟退火算法用于分子动力学计算时,可有效地求得分子的全局优势构象。
过程为:先使体系升温,在高温下进行分子动力学模拟,使分子体系有足够的能量,克服柔性分子中存在的各种旋转能垒和顺反异构能垒,搜寻全部构象空间,在构象空间中选出一些能量相对极小的构象;然后逐渐降温,再进行分子动力学模拟,此时较高的能垒已无法越过,在极小化后去除能量较高的构象,最后可以得到相应的能量最小的优势构象。
分子动力学的计算方法分子动力学是一种计算机模拟分子系统的方法,被广泛应用于物理、化学、药学等学科。
它可以模拟分子的运动行为,研究物质的结构、性质和反应机理。
分子动力学模拟所涉及的计算方法有很多种,下面就介绍几种常见的计算方法。
1. 静态计算法静态计算法是指模拟分子构型和能量的静态性质,如能量、构型、电荷分布等。
在模拟过程中,分子系统的能量和构型被确定,而它们的分子动力学信息则被省略。
静态计算法的应用范围较为局限,只适用于对静态性质进行求解的问题,如确定分子的构型、能量和能量表面的特性等。
2. 动态计算法动态计算法是指模拟分子中分子的运动轨迹。
在这种模拟中,分子系统中的所有原子都被赋予速度和位置,然后用牛顿方程来计算分子运动轨迹。
在动态计算法中,通常要通过一定的时间步长来计算分子系统的运动方程。
时间步长越小,精度也就越高,但时间步长越小,计算所需的计算时间也就越长。
3. 辅助定点计算法辅助定点计算法是指模拟分子的构型、能量和动力学性质。
该方法与动态计算法类似,但在计算分子系统的电力学性质时,通过电动力、都柏林核磁共振谱线、拉曼谱线等数据来进行辅助计算。
辅助定点计算法可以将分子中不同原子的电力学性质分别计算,例如电荷分布、分子跃迁、谱线强度等,这些数据有助于进一步确定分子的结构、能量和动力学性质。
4. 分子蒙特卡罗法分子蒙特卡罗法是一种基于随机样本的分子动力学算法,它不需要求解分子系统的精确动力学方程,而是利用统计学原理,通过概率分布计算出系统的稳定运动状态。
该方法可以求解分子的能量、构型、热力学性质和动力学特征等。
总而言之,分子动力学的计算方法有很多种,每种方法都有自身的特点和适用范围。
在实际应用中,需根据具体问题来选择合适的方法,以获得最准确和可靠的答案。
分子动力学模拟与计算化学分子动力学模拟(Molecular Dynamics)是一种计算方法,用于模拟和研究分子系统的运动和相互作用。
它在计算化学和材料科学领域得到广泛应用。
本文将介绍分子动力学模拟的基本原理和应用,并探讨计算化学在该领域的作用。
分子动力学模拟是基于牛顿运动定律的原子和分子运动模型。
它通过数值方法求解牛顿运动方程,模拟物质在经典力场作用下的微观运动行为。
主要的步骤包括:定义系统的初始条件、选择适当的力场和算法、进行数值积分、分析和解释模拟结果。
分子动力学模拟可以研究物质的结构、动力学性质和相变过程,从而增进对分子系统行为的理解。
分子动力学模拟可应用于多个领域,如化学、物理、生物和材料科学等。
在生物学研究中,它可以研究蛋白质的折叠和结构变化、膜蛋白的功能和通透性、药物和受体的相互作用等。
在材料科学研究中,它可以研究材料的热导、电导和力学性质等。
在计算药物筛选中,分子动力学模拟可以模拟药物与目标蛋白的相互作用,预测药物的亲和力和活性。
计算化学在分子动力学模拟中发挥着重要的作用。
首先,计算化学提供了分子动力学模拟所需的原子和分子的力场参数。
力场是描述原子之间相互作用的数学模型,包括键长、键角和二面角等参数。
计算化学通过计算和实验研究获得这些参数,使得分子动力学模拟能够更准确地描述分子系统的行为。
其次,计算化学提供了分子动力学模拟的初步结果验证手段。
分子动力学模拟的结果可以与计算化学方法进行对比和验证。
例如,可以通过计算化学方法计算出物质的稳定结构,然后使用分子动力学模拟验证该结构是否稳定。
此外,计算化学还提供了分子动力学模拟数据的分析和解释方法。
分子动力学模拟生成的数据往往非常庞大,需要使用计算化学方法对其进行统计和分析。
计算化学可以计算态密度、径向分布函数、平衡常数等物理量,帮助研究人员解释模拟结果和理解系统的性质。
最后,计算化学还可以与分子动力学模拟相结合,进行多尺度模拟。
分子动力学模拟通常涉及大量的原子和分子,模拟的时间长,计算成本高。
第四章 分子动力学方法§4.1 分子动力学方法第四章 分子动力学方法分子动力学(Molecular Dynamics,简称MD)是模拟大量粒子集合体系(固 体、气体、液体)中单个粒子的运动的一种手法,其关键的概念是运动,即要计 算粒子的位置、速度和取向随时间的演化。
分子动力学中的质点可以是原子、分 子、或更大的粒子集合,只有在研究分子束实验等情况下,粒子才是真正的分子。
与“分子动力学”相类似的名词还有“晶格动力学”(研究固体中原子的振动)和 “分子力学”(分子结构的量子力学),而分子动力学限于模拟经典粒子的运动。
分子动力学简单来说就是用数值方法求解经典力学中的 N 体问题。
自 Newton时代起, N 体问题就被认为是很重要的物理问题,解析求解或质点轨道 的混沌分析是数理力学中的关注点。
但时至今日,该问题重要性的原因已经进化 成,将单粒子动力学与系统的集体状态相联系,人们试图通过考察单个粒子的运 动来解释大量粒子集合系统的行为。
例如,绕过一物体的流体是怎样产生湍流尾 迹的?蛋白质分子中的原子是怎样相互运动从而折叠成生命支撑形态的?流体 气旋怎样产生如木星上的大红斑那样的长寿旋涡的?溶液中的长链分子怎样自 组装成一些特殊结构?等等。
因此,分子动力学在凝聚态物理、材料科学、高分 子化学和分子生物学等许多研究领域都有广泛的应用。
§4.1 分子动力学方法4.1.1 基本概念4.1.1.1 分子动力学分子动力学现已成为分子尺度上模拟的典型方法之一。
它起源于上世纪50 年代,在70年代中开始受到广泛关注。
分子动力学源于自Newton时代以来的古 老概念,即只要知道了系统组分的初始条件和相互作用力,整个系统的行为就可 以计算出来并可以预测。
该自然的决定性力学解释长期左右了科学界。
Laplace 于1814年曾写到:“Given for one instant an intelligence which could comprehend all the forces by which nature is animated and the respective situation of beings who compose it-an intelligence sufficiently vast to submit these data to analysis-it would embrace in the same formula the movements of the greatest bodies of the universe and those of the lightest atoms; for it, nothing would be uncertain and the future, as the past, would be present to its eyes”(现在的 分子动力学模拟中, Laplace的 “intelligence”由计算机实现,“respective situation”即为给定的一组初始条件, “same formula”为算法程序)。
分子动力学模拟与计算化学随着计算机技术的不断进步,分子动力学模拟在计算化学领域中扮演着日益重要的角色。
分子动力学模拟是一种基于牛顿力学原理的计算方法,通过模拟分子在原子尺度上的运动,可以揭示分子的结构、性质和相互作用等重要信息。
本文将介绍分子动力学模拟的基本原理、计算化学中的应用以及未来发展方向。
一、分子动力学模拟的基本原理分子动力学模拟的基本原理是基于牛顿第二定律,即物体的运动状态由其受到的外力和内力所决定。
在分子动力学模拟中,分子的运动可以通过求解牛顿运动方程来模拟。
为了实现这一目标,需要对分子的势能函数进行描述,通常使用的是分子力场。
分子力场是一组数学函数,能够描述分子中原子之间的相互作用。
通过求解分子的运动方程,可以得到分子在各个时刻的位置、速度和能量等信息。
二、计算化学中的应用1. 分子结构优化分子动力学模拟可以用于分子的结构优化。
分子的结构优化是指在不同的物理和化学条件下,寻找使分子能量最低的结构。
通过分子动力学模拟,可以模拟分子在不同结构状态下的行为,从而找到最稳定的结构。
2. 模拟化学反应分子动力学模拟可以用于模拟化学反应的过程。
通过模拟分子在反应过程中的运动,可以确定反应的速率、机理和产物。
这对于理解和优化化学反应有着重要的意义。
3. 材料设计分子动力学模拟可以用于材料的设计和性能预测。
通过模拟不同材料的结构和性质,可以为新材料的设计和开发提供指导。
例如,可以通过分子动力学模拟来研究材料的力学性质、热传导性质以及光电性能等。
三、未来发展方向分子动力学模拟在计算化学领域有着广阔的应用前景,但仍然存在一些挑战和改进的空间。
1. 模拟精度提高目前的分子力场在描述分子的相互作用时存在一定的误差。
未来的研究需要发展更加准确的分子力场,以提高模拟的精度。
2. 多尺度模拟分子动力学模拟通常是在原子尺度上进行的。
然而,许多化学过程发生在更大尺度上,例如靶蛋白和药物之间的相互作用。
未来的研究需要发展多尺度模拟方法,将原子尺度模拟与连续介质模拟相结合。
1、分子动力学简介:分子动力学方法是一种计算机模拟的实验方法,是研究凝聚态系统的有力工具。
该技术不仅可以得到原子的运动轨迹,还可以观察到原子运动过程中各种微观细节。
它是对理论计算和实验的有力补充。
广泛应用于材料科学、生物物理和药物设计等。
经典MD模拟,其系统规模在一般的计算机上也可达到数万个原子,模拟时间为纳秒量级。
分子动力学总是假定原子的运动服从某种确定的描述,这种描叙可以牛顿方程、拉格朗日方程或哈密顿方程所确定的描述,也就是说原子的运动和确定的轨迹联系在一起。
在忽略核子的量子效应和绝热近似(Born-Oppenheimer)下,分子动力学的这一种假设是可行的。
所谓绝热近似也就是要求在分子动力学过程中的每一瞬间电子都处于原子结构的基态。
要进行分子动力学模拟就必须知道原子间的相互作用势。
在分子动力学模拟中,我们一般采用经验势来代替原子间的相互作用势,如Lennard-Jones势、Mores势、EAM原子嵌入势、F-S多体势。
然而采用经验势必然丢失了局域电子结构之间存在的强相互作用的信息,即不能得到原子动力学过程中的电子性质。
2、分子模拟的三步法和大致分类三步法:第一步:建模。
包括几何建模,物理建模,化学建模,力学建模。
初始条件的设定,这里要从微观和宏观两个方面进行考虑。
第二步:过程。
这里就是体现所谓分子动力学特点的地方。
包括对运动方程的积分的有效算法。
对实际的过程的模拟算法。
关键是分清楚平衡和非平衡,静态和动态以及准静态情况。
第三步:分析。
这里是做学问的关键。
你需要从以上的计算的结果中提取年需要的特征,说明你的问题的实质和结果。
因此关键是统计、平均、定义、计算。
比如温度、体积、压力、应力等宏观量和微观过程量是怎么联系的。
大致分类:2.1电子模拟(量化计算,DFT)量子化学计算一般处理几个到几十个原子常见软件:GAUSSIAN,NWCHEM等密度泛函(DFT)可以算到上百个原子常见软件:V ASP2.2分子模拟(分子动力学,蒙特卡洛)2.2.1分子级别的模拟以分子的运动为主要模拟对象。