第2章剪切与扭转 材料力学
- 格式:ppt
- 大小:3.41 MB
- 文档页数:53
2014—2015学年第2学期《材料力学》复习要点_参考填空题——仅供参考,有待修改!适用班级:20130300401/2/3/4、20130300501/2/3、20130500901/2/3/4 班第一章绪论1.强度是指构件抵抗破坏的能力,刚度是指构件抵抗变形的能力。
2材料力学的任务,是在保证构件既安全可靠又经济节省的前提下,为构件选择合适的材料,确定合理的的截面形状和尺寸,提供必要的理论基础、实用的计算方法和实验技术。
3.研究构件的承载能力时,构件所产生的变形不能忽略,因此把构件抽象为变形固体。
4.变形固体材料的基本假设是(1)连续性假设,(2)均匀性假设,(3)各向同性假设,(4)小变形假设。
5.杆件的基本变形形式是拉伸或压缩、剪切、扭转、弯曲。
第二章拉伸、压缩与剪切1.轴向拉(压)杆的受力特点是:外力(或合外力)沿杆件的轴向作用,变形特点是:杆件沿轴线方向伸长或缩短,沿横向扩大或缩小。
2.杆件由于外力作用而引起的附加内力简称为杆的内力,轴向拉(压)时杆件的内力称为轴力,用符号F N表示,并规定背离截面的轴力为正,反之为负。
3.求任一截面上的内力应用截面法法,具体步骤是:在欲求内力的杆件上,假想地用一截面把杆件截分为两部分,取其中一部分为研究对象,列静力学的平衡方程,解出该截面内力的大小和方向。
4.由截面法求轴力可以得出简便方法:两外力作用点之间各截面的轴力相等,任意x截面的轴力F N (x)等于x截面左侧(或右侧)全部轴向外力的代数和。
5.应力是内力在截面的单位面积上的力,其单位用N/m2(p a)表示。
由于一般机械类工程构件尺寸较小,应力数值较大,因此应力还常常采用k pa、M pa、Gpa等单位。
通常把垂直于截面的应力称为正应力,用符号δ表示,相切于截面的应力称为切应力,用符号η表示。
6.杆件轴向拉压可以作出平面假设:变形前为平面的横截面,变形后仍为平面且始终与杆的轴线垂直,由此可知,两个横截面之间所有原长相等的纵向线伸长或缩短量是相等的。
作者简介:郭志明,现在就读天津大学固体力学专业绪论基本概念材料力学得任务:载荷,弹性变形,塑性变形设计构件需要满足以下三个方面得要求:强度,刚度,稳定性强度:构件抵抗破坏得能力刚度:构件抵抗变形得能力稳定性:构件维持其原有平衡形式得能力基本假设:连续均匀性,各项同性,小变形研究对象及变形形式:杆:构件得某一方向得尺寸远大于其她两个方面得尺寸平板,壳,块体变形形式:拉伸(压缩),剪切,扭转,弯曲基本概念内力:构件内部相邻两部分之间由此产生得相互作用截面法:假象切开,建立平衡方程,求截面内力第一章:轴向拉伸,压缩与剪切基本概念轴力:截面内力FN及FN’得作用线与轴线重合,称为内力轴力图:表示轴力随横截面位置得变化应力:轴力FN均匀分布在杆得横截面上(正应力)圣维南原理斜截面上得应力:拉压杆得变形:(弹性范围内)EA 称为杆件得抗拉(压)刚度泊松比:弹性范围内。
横向应变与纵向应变之比得绝对值工程材料得力学性能:材料在外力作用下在强度与变形方面表现出得性能。
Eg:应力极限值,弹性模量,泊松比等。
力学性能决定于材料得成分与结构组织,与应力状态,温度与加载方式相关,力学性能,需要通过实验方法获得。
弹性变形:塑性变形:低碳钢拉伸实验四个阶段:弹性,屈服,强化,颈缩屈服:应力在应力-应变曲线上第一次出现下降,而后几乎不变,此时得应变却显著增加,这种现象叫做屈服冷作硬化:常温下经过塑性变形后材料强度提高,塑性降低得现象真应力应变:,(工程应变)其她材料得拉伸实验温度,时间及加载速率对材料力学性能得影响蠕滑现象:松弛现象:冲击韧性:材料抵抗冲击载荷得能力(可以通过冲击实验测定)许用应力:对于某种材料,应力得增长就是有限得,超过这一限度,材料就要破坏,应力可能达到得这个限度称为材料得极限应力。
通常把材料得极限应力/n作为许用应力[σ] ,强度条件:杆内得最大工作应力节点位移计算集中应力:由于试件截面尺寸急剧改变而引起得应力局部增大得现象应力集中系数:,σn就是指同一截面上认为应力均匀分布时得应力值超静定问题:未知力得数目超过独立得平衡方程得数目,因此只由平衡方程不能求出全部未知力,这类问题成为超静定问题。
材料力学实验-扭转扭转实验是材料力学实验中比较常见的实验之一,它是用来研究材料在扭转载荷作用下的性能及力学性质的实验。
在此实验中,通常需要制作一个实验样品,并通过试验测量夹持在两端的样品在扭力作用下的变形量及强度等参数。
下面我们将针对扭转实验的步骤、实验原理、实验装备及注意事项等方面进行详细介绍。
一、实验步骤1、制备试样。
在扭转实验中,常用的试样选择是圆棒,通常需要通过车床等机器加工加工成指定的直径和长度,注意要做好表面的处理和清洁,以保证试样表面无瑕疵、光滑等。
2、安装实验装置。
扭转实验的装置通常由电机、夹具、扭矩传感器、转角传感器等组成,需要将这些部件安装好,并将试样夹持在夹具两端,并调整好实验设备的参数及灵敏度,以确保实验设备的正常运转及测量精度。
3、进行实验。
在实验开始前,需要先进行一些预处理,如:校准设备、检查夹具固定度、检查电路连接等。
实验进行时,需要控制外加载荷及试样的转角,并及时记录实验数据等,直到试样达到所需的扭矩、载荷或损坏为止。
4、数据处理。
在实验结束后,需要对实验数据进行处理,并根据实验结果进行分析、比较及对比等操作,从而得出实验所要得到的结论及性能指标等。
二、实验原理扭转实验主要基于材料疲劳和塑性变形的原理,通过在试样两端施加扭矩和转角,在作用下可产生应变和变形等变量,并可通过实验数据加以测量及计算,进一步分析材料力学性质的好坏。
在扭转实验中,主要涉及到的参数有:扭转角度、扭转力矩、扭转角速度、应变及变形等参数,通过对这些参数的测量及分析,可以得出试样在扭转载荷作用下的抗扭强度及剪切模量等指标,这些指标是评估材料性能及强度的重要依据。
三、实验装备扭转实验需要用到的主要装备包括:电机、夹具、扭矩传感器、转角传感器、实验数据采集器等,下面我们将针对这些装备分别进行介绍。
1、电机:扭转实验的电机通常配备较高功率的电机,以保证能够提供足够的扭矩。
2、夹具:夹具是用来夹持试样的装置,要求夹具具有高度的稳定度并能够确保试样在扭转载荷下的平衡。
材料力学扭转材料力学是研究材料在外力作用下的变形和破坏规律的一门学科,而扭转则是材料力学中非常重要的一种变形形式。
在工程实践中,我们经常会遇到各种扭转现象,比如轴承、螺纹、螺栓等零部件的扭转变形。
因此,了解材料力学中的扭转现象对于工程设计和实际应用具有重要意义。
首先,我们来看一下什么是扭转。
扭转是指材料在外力作用下沿着一定轴线发生的旋转变形。
在扭转过程中,材料内部会受到剪切应力的作用,从而导致材料发生扭转变形。
扭转变形不仅会影响材料的外观和尺寸,还会对材料的力学性能产生影响。
在材料力学中,我们通常用剪切模量来描述材料的扭转性能。
剪切模量是指材料在扭转过程中所表现出的抗扭转能力。
剪切模量越大,材料的抗扭转能力就越强,反之则越弱。
因此,在工程设计中,我们需要根据材料的剪切模量来选择合适的材料,以满足工程的扭转性能要求。
除了剪切模量,材料的断裂韧性也是影响材料扭转性能的重要因素。
断裂韧性是指材料在扭转过程中抵抗断裂的能力。
材料的断裂韧性越大,其扭转性能就越好,能够更好地抵抗扭转变形和破坏。
因此,在工程设计中,我们还需要考虑材料的断裂韧性,以确保材料在扭转过程中不会发生过早的断裂。
此外,材料的微观结构也会对其扭转性能产生影响。
晶粒的大小、形状以及晶界的性质都会影响材料的扭转性能。
一般来说,晶粒越细小,晶界越强化,材料的扭转性能就会越好。
因此,在材料的制备过程中,我们需要通过控制材料的微观结构来提高其扭转性能。
总的来说,材料力学中的扭转现象是工程设计中不可忽视的重要问题。
了解材料的扭转性能,选择合适的材料,并通过控制材料的微观结构来提高其扭转性能,对于保证工程零部件的稳定性和可靠性具有重要意义。
希望本文能够对大家对材料力学中的扭转问题有所帮助。
工程力学材料力学(北京科技大学与东北大学)第一章轴向拉伸和压缩1-1:用截面法求下列各杆指定截面的内力解:(a):N1=0,N2=N3=P(b):N1=N2=2kN(c):N1=P,N2=2P,N3= -P(d):N1=-2P,N2=P(e):N1= -50N,N2= -90N(f):N1=0.896P,N2=-0.732P注(轴向拉伸为正,压缩为负)1-2:高炉装料器中的大钟拉杆如图a所示,拉杆下端以连接楔与大钟连接,连接处拉杆的横截面如图b所示;拉杆上端螺纹的内径d=175mm。
以知作用于拉杆上的静拉力P=850kN,试计算大钟拉杆的最大静应力。
解:σ1=2118504P kNS dπ==35.3Mpaσ2=2228504P kNS dπ==30.4MPa∴σmax=35.3Mpa1-3:试计算图a所示钢水包吊杆的最大应力。
以知钢水包及其所盛钢水共重90kN,吊杆的尺寸如图b所示。
解:下端螺孔截面:σ1=19020.065*0.045P S=15.4Mpa上端单螺孔截面:σ2=2P S =8.72MPa 上端双螺孔截面:σ3= 3P S =9.15Mpa∴σmax =15.4Mpa1-4:一桅杆起重机如图所示,起重杆AB为一钢管,其外径D=20mm,内径d=18mm;钢绳CB 的横截面面积为0.1cm2。
已知起重量P=2000N,试计算起重机杆和钢丝绳的应力。
解:受力分析得:F1*sin15=F2*sin45F1*cos15=P+F2*sin45∴σAB=11FS=-47.7MPaσBC=22FS=103.5 MPa1-5:图a所示为一斗式提升机.斗与斗之间用链条连接,链条的计算简图如图b 所示,每个料斗连同物料的总重量P=2000N.钢链又两层钢板构成,如c所示.每个链板厚t=4.5mm,宽h=40mm,H=65mm,钉孔直径d=30mm.试求链板的最大应力.解:F=6PS 1=h*t=40*4.5=180mm 2S2=(H-d)*t=(65-30)*4.5=157.5mm 2∴σmax=2F S =38.1MPa1-6:一长为30cm 的钢杆,其受力情况如图所示.已知杆截面面积A=10cm2,材料的弹性模量E=200Gpa,试求;(1) AC. CD DB 各段的应力和变形.(2) AB 杆的总变形.解: (1)σAC =-20MPa,σCD =0,σDB =-20MPa;△ l AC =NL EA =AC LEA σ=-0.01mm△l CD =CD LEA σ=0△L DB =DB LEA σ=-0.01mm(2) ∴ABl∆=-0.02mm1-7:一圆截面阶梯杆受力如图所示,已知材料的弹性模量E=200Gpa,试求各段的应力和应变.解:31.8127ACACCBCBPMPaSPMPaSσσ====ACACACLNLEA EAσε===1.59*104,CBCBCBLNLEA EAσε===6.36*1041-8:为测定轧钢机的轧制力,在压下螺旋与上轧辊轴承之间装置一测压用的压头.压头是一个钢制的圆筒,其外径D=50mm,内径d=40mm,在压头的外表面上沿纵向贴有测变形的电阻丝片.若测得轧辊两端两个压头的纵向应变均为ε=0.9*10-2,试求轧机的总轧制压力.压头材料的弹性模量E=200Gpa.解:QNllEAllε∆=∆=∴NEAε=62.54*10N EA Nε∴==1-9:用一板状试样进行拉伸试验,在试样表面贴上纵向和横向的电阻丝来测定试样的改变。