高二数学 强化训练 排列组合
- 格式:docx
- 大小:111.62 KB
- 文档页数:7
高二数学“排列组合”专题训练(一)班级 姓名 学号一.选择填空题1.从编号分别为1,2,3,4,5,6,7,8,9,10,11的11个球中,取出5个小球,使这5个小球的编号之和为奇数,其方法总数为 ( C )(A )200 (B )230 (C )236 (D )2062. 从{1、2、3、4、…、20}中任选3个不同的数,使这三个数成等差数列,这样的等差数列最多有( B )(A )90个 (B )180个 (C )200个 (D )120个3兰州某车队有装有A ,B ,C ,D ,E ,F 六种货物的卡车各一辆,把这些货物运到西安,要求装A 种货物,B 种货物与E 种货物的车,到达西安的顺序必须是A ,B ,E (可以不相邻,且先发的车先到),则这六辆车发车的顺序有几种不同的方案 ( B )(A )80 (B )120 (C )240 (D )3604. 用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数的个数是( C )(A )48 (B )36 (C )28 (D )125. 某药品研究所研制了5种消炎药,,,,,54321a a a a a 4种退烧药,,,,4321b b b b 现从中取出两种消炎药和一种退烧药同时使用进行疗效实验,但又知,,21a a 两种药必须同时使用,且43,b a 两种药不能同时使用,则不同的实验方案有 ( D )(A )27种 (B )26种 (C )16种 (D )14种6. 某池塘有A ,B ,C 三只小船,A 船可乘3人,B 船可乘2 人,C 船可乘1 人,今天3个成人和2 个儿童分乘这些船只,为安全起见,儿童必须由成人陪同方能乘船,他们分乘这些船只的方法共有( D )(A )120种 (B )81种 (C )72种 (D )27种7. 将5枚相同的纪念邮票和8张相同的明信片作为礼品送给甲、乙两名学生,全部分完且每人至少有一件礼品,不同的分法是 ( A )(A )52 (B )40 (C )38 (D )118. 用1、2、3、4、5、6六个数字组成没有重复数字的四位数中,是9的倍数的共有( D )A.360个B.180个C.120个D.24个解:因为3+4+5+6=18能被9整除,所以共有44A =24个.9. 4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有 ( A )(A )2880 (B )3080 (C )3200 (D )360010. 在5付不同手套中任取4只,4只手套中至少有2只手套原来是同一付的可能取法有( C )(A) 190 (B) 140 (C )130 (D )3011.将某城市分为四个区(如图),需要绘制一幅城市分区地图,现有5种不同颜色,图中①②③④,每区只涂一色,且相邻两区必涂不同的颜色(不相邻两区所涂颜色不限),则不同的涂色方式有( A )A.240种B.180种C.120种D.60种12.圆周上有16个点,过任何两点连结一弦,这些弦在圆内的交点个数最多有( C )A.A 164B.A 162A 142C.C 164D.C 162C 14213.20个不同的小球平均分装到10个格子中,现从中拿出5个球,要求没有两个球取自同一格子中,则不同的取法一共有 ( B )A.C 510B.C 520 C.C 510C 12 D.A 210A 12 14.从6双不同的手套中任取4只,其中恰好有两只是一双的取法有 ( B )A.120种B.240种C.255种D.300种15.某人练习射击,射击8枪命中4枪,这4枪中恰好有3枪连在一起的不同种数为 ( D )A.72B.48C.24D.2016.某博物馆要在20天内接待8所学校的学生前去参观,其中一所学校因人数较多要连续参观3天,其余学校只需要1天,在这20天内不同的安排方法为 ( C )A.C 320A 717B.A 820C.C 118A 717D.A 1818种二. 填空题17.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有__33_种不同的选法;要买上衣、裤子各一件,共有_270_种不同的选法.18.将1,2,3,4,5,6,7,8,9这九个数排成三横三纵的方阵,要求每一竖列的三个数从前到后都是由从小到大排列,则不同的排法种数是_1680 _19.过正方体的每三个顶点都可确定一个平面,其中能与这个正方体的12条棱所成的角都相等的不同平面的个数为 8 个 20.3名老师带领6名学生平均分成三个小组到三个工厂进行社会调查,每小组有1名老师和2名学生组成,不同的分配方法有 540 种。
专题强化训练(一) 排列、组合的综合应用(建议用时:40分钟)一、选择题1.设4名学生报名参加同一时间安排的3项课外活动方案有a 种,这4名学生在运动会上共同争夺100米、跳远、铅球3项比赛的冠军的可能结果有b 种,则(a ,b )为( )A .(34,34)B .(43,34)C .(34,43)D .(A 34,A 34)C [由题意知本题是一个分步乘法问题,首先每名学生报名有3种选择,根据分步乘法计数原理知4名学生共有34种选择,每项冠军有4种可能结果,根据分步乘法计数原理知3项冠军共有43种可能结果.故选C.]2.若C 3n =C 4n ,则n !3!(n -3)!的值为( ) A .1B .20C .35D .7 C [若C 3n =C 4n ,则n (n -1)(n -2)3×2×1=n (n -1)(n -2)(n -3)4×3×2×1,可得n =7, 所以n !3!(n -3)!=7!3!4!=7×6×53×2×1=35.] 3.在100件产品中,有3件是次品,现从中任意抽取5件,其中至少有2件次品的取法种数为( )A .C 23C 397B .C 23C 397+C 33C 297 C .C 5100-C 13C 497D .C 5100-C 597 B [根据题意,“至少有2件次品”可分为“有2件次品”与“有3件次品”两种情况,“有2件次品”的抽取方法有C 23C 397种,“有3件次品”的抽取方法有C 33C 297种,则共有C 23C 397+C 33C 297种不同的抽取方法,故选B.]4.若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种D [和为偶数共有3种情况:取4个数均为偶数有C 44=1种取法;取2奇数2偶数有C 24·C 25=60种取法;取4个数均为奇数有C 45=5种取法,故共有1+60+5=66种不同的取法.]5.登山运动员10人,平均分为两组,其中熟悉道路的有4人,每组都需要2人,那么不同的分配方法种数是( )A .60B .120C .240D .480A [先将4个熟悉道路的人平均分成两组有C 24·C 22A 22种.再将余下的6人平均分成两组有C 36·C 33A 22种.然后这四个组自由搭配还有A 22种,故最终分配方法有12C 24·C 36=60(种).] 二、填空题6.有8名男生和3名女生,从中选出4人分别担任语文、数学、英语、物理学科的课代表,若某女生必须担任语文课代表,则不同的选法共有________种.(用数字作答)720 [由题意知,从剩余10人中选出3人担任3个学科课代表,有A 310=720种.]7.两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有________种.20 [分三种情况:恰好打3局,有2种情形;恰好打4局(一人前3局中赢2局,输1局,第4局赢),共有2C 23=6种情形;恰好打5局(一人前4局中赢2局,输2局,第5局赢),共有2C 24=12种情形.所有可能出现的情形共有2+6+12=20(种).]8.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方法共有________种.(用数字作答)96 [甲传第一棒,乙传最后一棒,共有A 44种方法.乙传第一棒,甲传最后一棒,共有A 44种方法.丙传第一棒,共有C 12·A 44种方法.由分类计数原理得,共有A 44+A 44+C 12·A 44=96(种)方法.]三、解答题9.现有5名教师要带3个不同的兴趣小组外出学习考察,要求每个兴趣小组的带队教师至多2人,但其中甲教师和乙教师均不能单独带队,求不同的带队方案有多少种?[解] 第一类,把甲、乙看做一个复合元素,和另外的3人分配到3个小组中,有C 23A 33=18(种),第二类,先把另外的3人分配到 3个小组,再把甲、乙分配到其中2个小组,有A 33A 23=36(种),根据分类加法计数原理可得,共有18+36=54(种).10.已知10件不同产品中有4件是次品,现对它们进行一一测试,直至找出所有4件次品为止.(1)若恰在第5次测试,才测试到第一件次品,第10次才找到最后一件次品,则这样的不同测试方法数是多少?(2)若恰在第5次测试后,就找出了所有4件次品,则这样的不同测试方法数是多少?[解](1)先排前4次测试,只能取正品,有A46种不同测试方法,再从4件次品中选2件排在第5和第10的位置上测试,有C24A22=A24种测法,再排余下4件的测试位置,有A44种测法.所以共有不同测试方法A46·A24·A44=103 680种.(2)第5次测试恰为最后一件次品,另3件在前4次中出现,从而前4次有一件正品出现,所以共有不同测试方法C16·C34·A44=576种.1.从0,1,2,3,4,5这六个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A.300B.216 C.180D.162C[分两类:第一类,不取0,即从1,2,3,4,5中任取两个奇数和两个偶数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C23·C22·A44=72(个)符合要求的四位数;第二类,取0,此时2和4只能取一个,再取两个奇数,组成没有重复数字的四位数,根据分步乘法计数原理可知,共有C12·C23·(A44-A33)=108(个)符合要求的四位数.根据分类加法计数原理可知,满足题意的四位数共有72+108=180(个),故选C.]2.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加,当甲、乙同时参加时,他们两人的发言不能相邻,那么不同发言顺序的排法种数为() A.360 B.520C.600 D.720C[根据题意,可分两种情况讨论:①甲、乙两人中只有一人参加,有C12·C35·A44=480(种)情况;②甲、乙两人都参加,有C22·C25·A44=240(种)情况,其中甲、乙两人的发言相邻的情况有C22·C25·A33·A22=120(种).故不同发言顺序的排法种数为480+240-120=600.] 3.将10个运动员名额分给7个班,每班至少1个,则不同的分配方案的种数为________.84[因为10个名额没有差别,把它们排成一排,相邻名额之间形成9个空隙.在9个空隙中选6个位置插隔板,可把名额分成7份,对应地分给7个班.每一种插板方法对应一种分配方案,则共有C69=C39=9×8×73×2×1=84种分配方案.] 4.某科技小组有六名学生,现从中选出三人去参观展览,至少有一名女生入选的不同选法有16种,则该小组中的女生人数为________.2[设男生人数为x,则女生有(6-x)人.依题意C36-C3x=16,即6×5×4=x(x-1)(x-2)+16×6,所以x(x-1)(x-2)=2×3×4,解得x=4,即女生有2人.]5.有4个不同的球,4个不同的盒子,把球全部放入盒子内.(1)共有几种放法?(2)恰有2个盒子不放球,有几种放法?[解](1)44=256(种).(2)恰有2个盒子不放球,也就是把4个不同的小球只放入2个盒子中,有两类放法;第一类,1个盒子放3个小球,1个盒子放1个小球,先把小球分组,有C34种,再放到2个小盒中有A24种放法,共有C34A24种方法;第二类,2个盒子中各放2个小球有C24C24种放法,故恰有2个盒子不放球的方法共有C34A24+C24C24=84种放法.。
高二排列组合专题训练(优秀经典练习及答案详解)概述本文档为高二排列组合专题训练提供了一系列优秀的经典练题目及其答案详解。
通过这些练题的研究和复,学生们可以加深对排列组合问题的理解,并提升解题能力。
练题目及答案详解题目一问题:有5名学生A、B、C、D、E,从中选出3名学生组成一支代表队,要求队伍中至少要包含学生C,有多少种不同的选队方式?答案详解:我们可以将问题拆分为两种情况:1. 学生C在队伍中:在剩下的4名学生中选出2名学生,共有C(4, 2) = 6种选队方式。
2. 学生C不在队伍中:在剩下的4名学生中选出3名学生,共有C(4, 3) = 4种选队方式。
因此,总共有6 + 4 = 10种不同的选队方式。
题目二问题:某班级有10名学生,其中4名男生和6名女生。
选出3名学生组成一支代表队,要求队伍中至少要包含1名男生和1名女生,有多少种不同的选队方式?答案详解:我们可以将问题拆分为三种情况:1. 选出1名男生和2名女生:在4名男生中选出1名男生,共有C(4, 1) = 4种选男生方式。
在6名女生中选出2名女生,共有C(6, 2) = 15种选女生方式。
因此,共有4 * 15 = 60种选队方式。
2. 选出2名男生和1名女生:在4名男生中选出2名男生,共有C(4, 2) = 6种选男生方式。
在6名女生中选出1名女生,共有C(6, 1) = 6种选女生方式。
因此,共有6 * 6 = 36种选队方式。
3. 选出3名男生和0名女生:在4名男生中选出3名男生,共有C(4, 3) = 4种选男生方式。
因此,共有4种选队方式。
综上所述,总共有60 + 36 + 4 = 100种不同的选队方式。
结论本文档提供了高二排列组合专题训练的优秀经典练习题目及其答案详解。
通过完成这些题目,学生们可以加深对排列组合问题的理解和掌握,提高解题能力,并为应对考试做好准备。
高中数学排列组合专题练习题一、选择题1、从 5 名男同学和 4 名女同学中选出 3 名男同学和 2 名女同学,分别担任 5 种不同的职务,不同的选法共有()A 5400 种B 18000 种C 7200 种D 14400 种解析:第一步,从 5 名男同学中选出 3 名,有\(C_{5}^3\)种选法;第二步,从 4 名女同学中选出 2 名,有\(C_{4}^2\)种选法;第三步,将选出的 5 名同学进行排列,有\(A_{5}^5\)种排法。
所以不同的选法共有\(C_{5}^3 × C_{4}^2 × A_{5}^5 = 10×6×120 =7200\)种,故选 C。
2、有 5 本不同的书,其中语文书 2 本,数学书 2 本,物理书 1 本。
若将其并排摆放在书架的同一层上,则同一科目书都不相邻的放法种数是()A 24B 48C 72D 96解析:先排语文书有\(A_{2}^2 = 2\)种排法,再在语文书的间隔(含两端)处插数学书有\(A_{3}^2 = 6\)种插法,最后将物理书插入 4 个间隔中的一个有 4 种方法。
所以共有\(2×6×4 = 48\)种排法,故选 B。
3、从 0,1,2,3,4,5 这 6 个数字中,任取两个奇数和两个偶数,组成没有重复数字的四位数的个数为()A 300B 216C 180D 162解析:分两类情况讨论:第一类:取出的偶数含 0。
偶数 0 和另外一个偶数的取法有\(C_{2}^1\)种,奇数的取法有\(C_{3}^2\)种。
0 在个位时,其他三个数字全排列,有\(A_{3}^3\)种;0 不在个位时,0 有 2 种位置,其他三个数字全排列,有\(2×A_{2}^1×A_{2}^2\)种。
此时共有\(C_{2}^1×C_{3}^2×(A_{3}^3 + 2×A_{2}^1×A_{2}^2) = 108\)种。
高二数学23—排列、组合、二项式定理及概率练习题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高二数学23—排列、组合、二项式定理及概率练习题1.若从集合P 到集合Q={a,b,c}所有不同的映射共有81个,则从集合Q 到集合P 可作的不同的映射共有( )A .32个B .27个C .81个D .64个2.某班举行联欢会,原定的五个节目已排出节目单,演出前又增加了两个节目,若将这两 个节目插入原节目单中,则不同的插法总数为( )A .42B .36C .30D .123.全班48名学生坐成6排,每排8人,排法总数为P ,排成前后两排,每排24人,排法 总数为Q,则有( )A .P>QB .P=QC .P<QD .不能确定4.从正方体的六个面中选取3个面,其中有2个面不相邻的选法共有( )种A .8B .12C .16D .205.12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配 方案共有( )A .4448412C C C B .44484123C C C C .334448412A C C C D .334448412A C C C 6.某单位准备用不同花色的装饰石材分别装饰办公楼中的办公室、走廊、大厅的地面及楼 的外墙,现有编号为1~6的六种不同花色的装饰石材可选择,其中1号石材有微量的放射性,不可用于办公室内,则不同的装饰效果有( )种A .350B .300C .65D .507.有8人已站成一排,现在要求其中4人不动,其余4人重新站位,则有( )种 重新站位的方法A .1680B .256C .360D .2808.一排九个坐位有六个人坐,若每个空位两边都坐有人,共有( )种不同的坐法A .7200B .3600C .2400D .1200 9.在(311xx +)n 的展开式中,所有奇数项二项式系数之和等于1024,则中间项 的二项式系数是 ( )A. 462B. 330C.682D.79210.在(1+a x )7的展开式中,x 3项的系数是x 2项系数与x 5项系数的等比中项,则a 的值为( ) A.510 B.35 C.925 D.32511.袋内放有2个5分硬币,3个2分硬币,5个1分硬币,任意抓取其中5个,则总币值超过1角的概率是( )A. 0.4B. 0.5C. 0.6D. 0.712.卖水果的某个个体户,在不下雨的日子可赚100元,在下雨天则要损失10元,该地区每年下雨的日子约有130天,则该个体户每天获利的期望是(1年按365天计算)( )A. 90元B. 45元C. 55元D. 60.82 元13.10颗骰子同时掷出,共掷5次,至少有一次全部出现一个点的概率是( ) A.510)65(1⎥⎦⎤⎢⎣⎡- B. 106)65(1⎥⎦⎤⎢⎣⎡- C. 105)61(11⎥⎦⎤⎢⎣⎡-- D.510)61(11⎥⎦⎤⎢⎣⎡-- 14.甲口袋内装有大小相等的8个红球和4个白球,乙口袋内装有大小相等的9个红球和3个白球,从两个口袋内各摸1个球,那么125等于( ) A .2个球都是白球的概率 B .2个球中恰好有1个是白球的概率C .2个球都不是白球的概率D .2个球不都是白球的概率15.设每门高射炮命中飞机的概率为0.6 ,今有一飞机来犯,问需要( )门高射炮射击,才能以至少0.99的概率命中它。
伊川县实验高中2013—2014学年第二学期限时训练高二年级数学试卷(理科)一.选择题:(12×5=60分)1.两个实习生每人加工一个零件,加工为一等品的概率分别为32和43,两个零件是否加工为一等品相互独立,则这两个零件中恰好有一个一等品的概率为( ) A.21 B.125 C.41 D.51 2.某单位邀请10位教师中的6人参加一个研讨会,其中甲、乙两位教师不能同时参加,则邀请的不同方法有( )A .84种B .98种C .112种D .140种 3. nx x ⎪⎪⎭⎫ ⎝⎛1-3的展开式中各项系数之和为64,则展开式的常数项为( ) A.-540 B.-162 C.162 D.5404.抛掷红、蓝两个骰子,事件A=“红骰子出现4点”,事件B=“蓝骰子出现的点数是偶数”,则(|)P A B 为( ) A.12 B.536 C.112 D.165.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,不同的选派方法共有( )A .60种B .96种C .120种D .48种6.一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的三只球中的最小号码, 则P (ξ=2)=( )A .103B . 53C .101D .51 7.随机变量X 的概率分布规律为)()(1+==n n a n X P ,),,,4321=n (其中a 是常数,则)(25<<21X P 的值为( )A.32B.43C.54D.65 8.三张卡片的正反面上分别写有数字0与2,3与4,5与6,把这三张卡片拼在一起表示一个三位数,则三位数的个数为 ( )A . 36B .40C .44D .489. 某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有 ( )A .4种B .10种C .18种D .20种10.一排七个座位,甲、乙两人就座,要求甲与乙之间至少有一个空位,则不同的坐法种数是 ( )A .30B .28C .42D .1611.有4名男生3名女生排成一排,若3名女生中有2名站在一起,但3名女生不能全排在一起,则不同的排法种数有 ( )A 、2880B 、3080C 、3200D 、360012.某省举行的一次民歌大赛中,全省六个地区各选送两名歌手参赛,现从这12名歌手中选出4名优胜者,则选出的4名优胜者中恰有两人是同一地区送来的歌手的概率是()A.838 B.16564 C. 3316 D.116 二.填空题(4×5=20分)13.210(1)(1)x x x ++-展开式中4x 的系数为________14.将4名志愿者分配到A 、B 、C 三个亚运场馆服务,每个场馆至少1人,不同的分配方案有________种(用数字作答)。
高二数学摆列组合同步练习一、选择题(本大题共12 个小题,每题 5 分,共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.)1.4 名男歌手和 2 名女歌手结合举行一场音乐会,出场次序要求两名女歌手之间恰有一名男歌手,共有出场方案的种数是()A . 6A 33B . 3A 3 3 C. 2A 3 3 D. A 2 2 A 4 1 A 4 42.编号为 1,2, 3, 4,5, 6 的六个人分别去坐编号为1, 2, 3,4, 5, 6 的六个座位,此中有且只有两个人的编号与座位编号一致的坐法有()A . 15 种 B.90 种C. 135 种D. 150 种3.从 6 位男学生和 3 位女学生中选出 4 名代表,代表中一定有女学生,则不一样的选法有()A . 168B . 45 C. 60 D. 1114.氨基酸的摆列次序是决定蛋白质多样性的原由之一,某肽链由7 种不一样的氨基酸构成,若只改变其中 3 种氨基酸的地点,其余 4 种不变,则不一样的改变方法共有()A . 210 种B . 126 种C. 70 种D. 35 种5.某校刊设有9 门文化课专栏 ,由甲 ,乙 ,丙三位同学每人负责 3 个专栏 ,此中数学专栏由甲负责,则不一样的分工方法有()A . 1680 种B . 560 种C. 280 种D. 140 种6.电话号码盘上有10 个号码,采纳八位号码制比采纳七位号码制可多装机的门数是()A .A108 A107 B.C 108 -C 10 7C. 10 8 10 7 D.C108A887.已知会合 A={1 ,2,3,4} ,会合 B={ ﹣ 1,﹣ 2} ,设映照 f: A →B ,若会合 B 中的元素都是 A 中元素在 f 下的象,那么这样的映照 f 有()A . 16 个B . 14 个C. 12 个D. 8 个8.从图中的 12 个点中任取 3 个点作为一组,此中可构成三角形的组数是()A . 208B . 204C. 200 D .1969.由 0, 1, 2, 3 这四个数字能够构成没有重复数字且不可以被 5 整除的四位数的个数是()A . 24 个B . 12 个C. 6 个D. 4 个10.假定 200 件产品中有 3 件次品,此刻从中任取 5 件,此中起码有 2 件次品的抽法有()A .C32C1983种B. ( C32C1973 C 33C1972 )种C.(C5200 - C1974 ) 种D.(C2005 C13C 1974 ) 种11.把 10 个同样的小球放入编号为1, 2,3 的三个不一样盒子中,使盒子里的球的个数不小于它的编号数,则不一样的放法种数是()A .C 3B .C 2 C.C 3 D. 1 C 26 6 9 2 912.下边是高考第一批录取的一份志愿表:志愿学校专业第一志愿 1 第 1 专业第 2 专业第二志愿 2 第 1 专业第 2 专业第三志愿 3 第 1 专业第 2 专业现有 4 所要点院校,每所院校有 3 个专业是你较为满意的选择,假如表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有不一样的填写方法的种数是()A .43( A32 ) 3B .43(C32 )3C.A43(C32 ) 3 D .A43( A32 )3二、填空题(本大题满分16 分,每题 4 分,各题只需求直接写出结果.)13.由数字1、 2、 3、4、 5 构成没有重复数字,且数字 1 与 2 不相邻的五位数有_____个.14.一电路图以下图,从 A 到 B共有条不一样的线路可通电.15 .在x 1 x 3 6 x 212 x8 3的展开式中,含x5项的系数是_________.16.8名世界网球顶级选手在上海大师赛上分红两组,每组各4人 ,分别进行单循环赛,每组决出前两名, 再由每组的第一名与此外一组的第二名进行裁减赛,获胜者角逐冠亚军,败者角逐第三,第四名 ,则该大师赛共有 ____场竞赛.三、解答题(本大题满分 74分 .)17.( 12 分)某餐厅供给客饭,每位顾客能够在餐厅供给的菜肴中任选 2 荤 2 素共 4 种不一样的品种,现在餐厅准备了 5 种不一样的荤菜,若要保证每位顾客有200 种以上的不一样选择,则餐厅起码还需准备不一样的素菜品种多少种?18.( 12 分)一些棋手进行单循环制的围棋竞赛,即每个棋手均要与其余棋手各赛一场,现有两名棋手各竞赛 3 场退后出了竞赛,且这两名棋手之间未进行竞赛,最后竞赛共进行了 72 场,问一开始共有多少人参加竞赛?19.( 12 分)用红、黄、蓝、绿、黑 5 种颜色给如图的 a、b、 c、d 四个地区染色,若相邻的地区不可以用同样的颜色,试问:不一样的染色方法的种数是多少?20.( 12 分) 7 名身高互不相等的学生,分别按以下要求摆列,各有多少种不一样的排法?(1)7 人站成一排,要求较高的 3 个学生站在一起;(2)7 人站成一排,要求最高的站在中间,并向左、右两边看,身高逐一递减; (3) 任取 6 名学生,排成二排三列,使每一列的前排学生比后排学生矮.21.( 12 分) 4 位学生与 2 位教师并坐合影纪念,针对以下各样坐法,试问:各有多少种不一样的坐法? (1)教师一定坐在中间;(2) 教师不可以坐在两头,但要坐在一起;(3) 教师不可以坐在两头,且不可以相邻.参照答1.D2. C3. D4. C5.C6.C7. A8.B9.B10.B11.D 12. D5 解: C 82C 63C 33 / C 22 2808 解: C 123 4 3C 432049 解 : C 31 C 21 A 22 1 2.二、填空题13 解: A 55A 44 A 2272.14 解: (C 21C 22 )(C 21 C 22 ) 1 (C 31 C 32 C 33 ) 17.15 解: 2016. 16 解: C 42C 42 2 115.三、解答题17 解:设还需准备不一样的素菜x 种, x 是自然数,则C 52C x 2200,即x2x 40 0, x N,得x 7.18 解:设这两名棋手以外有 n 名棋手,他们之间相互赛了72-2× 3=66 场,C n 2 66 ,解得: n=12.故一开始共有 14人参加竞赛. 19 解: 18020 解:(1) A 44 A 33 144;(2) A 21 A 21 A 218; (3) C 76C 63 C 33=140.21(1) 解法1 固定法:从元素着眼,把受限制的元素先固定下来.ⅰ) 教师先坐中间,有 A 22种方法;ⅱ ) 学生再坐其余地点,有A 44种方法.∴共有 A 22 A 44=48种坐法.解法2 排挤法:从地点着眼,把受限制的元素予先排挤掉.ⅰ) 学生坐中间以外的地点:A 44;ⅱ ) 教师坐中间地点:A22.解法3插空法:从元素着眼,让不受限制的元素先排好(无条件),再让受限制元素按题意插入到同意的地点上.ⅰ)学生并坐照相有 A 44种坐法;ⅱ )教师插入中间: A 22.解法4裁减法(间接解法):先求无条件限制的排法总数,再求不知足限制条件的排法数,而后作差.即“=全体 -非 A ”.Aⅰ) 6人并坐合影有 A 66种坐法;ⅱ)两位教师都不坐中间: A 24(先固定法)A 44;ⅲ)两位教师中仅一人坐中间; A 12(甲坐中间) A 14(再固定乙不坐中间) A 442(甲、乙交换);ⅳ)作差:A 66 -(A24A44 +2A12A14A44)解法5等机率法:假如每一个元素被排入,被选入的时机是均等的,就能够利用等机率法来解.将教师看作 1 人(捆绑法),问题变为 5 人并坐照相,共有A 55种坐法,而每一个人坐中间地点的时机是均等的,应占全部坐法的1/5,即教师1 人坐中间的坐法有1A 55 A 22即2A 55种.5 5(2)将教师看作 1 人,问题变为 5 人并坐照相.解法1从地点着眼,排挤元素——教师 . 先从 4 位学生中选 2 人坐两头地点:A42 ;其余人再坐余下的 3 个地点: A 33;教师内部又有 A 22种坐法 . ∴共有A42A33 A22= 144 种坐法.解法 2 从元素着眼 ,固定地点 . 先将教师定位:A13A22 ;再排学生: A 44 . ∴共有 A 22 A 44 A 13种坐法.A 44 A 32 (教师插空 ).(3) 解插空法:(先排学生)22 解:(1)若 CAC U B ,则这样的会合C 共有C3=56 个;8(2)若 C A B ,则这样的会合 C 共有C 43 4 个;(3)若 CA 且 C a,则这样的会合 C 共有C 42 C 18 C 14 C 82 =160 个.综合( 1),( 2),(3)得:知足条件的会合 C 一共有 56+4+160=220 个.A ---8B -----84C解答摆列组合问题,第一一定仔细审题,明确是属于摆列问题仍是组合问题,或许属于摆列与组合的混淆问题,其次要抓住问题的实质特点,灵巧运用基来源理和公式进行剖析解答。
排列组合排列组合问题的解题思路和解题方法解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。
下面介绍几种常用解题方法和策略。
一、合理分类与准确分步法(利用计数原理)解含有约束条件的排列组合问题,应按元素性质进行分类,按事情发生的连续过程分步,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。
例1、五个人排成一排,其中甲不在排头,乙不在排尾,不同的排法有( )A.120种B.96种C.78种D.72种分析:由题意可先安排甲,并按其分类讨论:1)若甲在末尾,剩下四人可自由排,有A 44=24种排法;2)若甲在第二,三,四位上,则有3*3*3*2*1=54种排法,由分类计数原理,排法共有24+54=78种,选C。
解排列与组合并存的问题时,一般采用先选(组合)后排(排列)的方法解答。
二、特殊元素与特殊位置优待法对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。
例2、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有()(A) 280种(B)240种(C)180种(D)96种分析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有14C种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有35A种不同的选法,所以不同的选派方案共有14C35A=240种,选B。
三、插空法、捆绑法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。
例3、7人站成一排照相,若要求甲、乙、丙不相邻,则有多少种不同的排法?分析:先将其余四人排好有A 44=24种排法,再在这些人之间及两端的5个“空”中选三个位置让甲乙丙插入,则有C 35=10种方法,这样共有24*10=240种不同排法。
排列组合复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同3. 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种 四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高二数学排列组合练习题1. 某班共有6个男生和5个女生,现从中选出3名男生和2名女生组成一个团队。
问有多少种不同的组队方式?解析:根据排列组合的知识,我们可以使用组合的方式求解。
选取3名男生可以有C(6,3)种选择,选取2名女生可以有C(5,2)种选择。
根据乘法原理,两者的选择方式相互独立,所以总的组队方式数量为C(6,3) * C(5,2) = 20 * 10 = 200种。
2. 某电影院有8个座位,现有8名观众前往观看电影。
其中3对观众是夫妻关系,要求夫妻不能坐在相邻的座位上。
问有多少种不同的座位安排方式?解析:对于夫妻关系的观众,他们不能坐在相邻的座位上,相邻的座位可以看作是一对座位。
首先,我们把3对夫妻的座位看作是3个座位,这样就有6个单独的座位。
对于这6个单独的座位,可以有6!种不同的座位安排方式。
而夫妻关系的座位本身可以有3!种不同安排方式。
根据乘法原理,总的座位安排方式为6! * 3! = 720 * 6 = 4320种。
3. 某商店有8本不同的书和4个不同的笔记本,现要从中选取3本书和2个笔记本作为一份礼品赠送给顾客。
问有多少种不同的礼品组合方式?解析:选取3本书可以有C(8,3)种选择,选取2个笔记本可以有C(4,2)种选择。
根据乘法原理,总的礼品组合方式为C(8,3) * C(4,2) =56 * 6 = 336种。
4. 某个数字锁的密码是由4位数字组成,每位数字可以使用0-9之间的任意数字且可重复。
问共有多少种不同的密码组合方式?解析:对于每一位数字,有10种选择(0-9)。
因此,对于4位数字组成的密码,一共有10^4种不同的组合方式,即10000种。
5. 某班级里有10个学生,其中5个人喜欢足球,2个人喜欢篮球,3个人喜欢乒乓球。
现从中选取4个学生组成一支球队,要求至少有1名喜欢足球、至少有1名喜欢篮球、至少有1名喜欢乒乓球。
问有多少种不同的球队组合方式?解析:可以分为几种情况讨论:情况一:选取1名足球爱好者、1名篮球爱好者和2名乒乓球爱好者。
高二数学强化训练排列组合
一、单选题(共25题;共50分)
1.四名同学报名参加三项课外活动,每人限报其中一项,不同报名方法共有()
A. 12
B. 64
C. 81
D. 7
2.6名同学安排到3个社区,,参加志愿者服务,每个社区安排两名同学,其中甲同学必须到社区,乙和丙同学均不能到社区,则不同的安排方法种数为()
A. 5
B. 6
C. 9
D. 12
3.从3名男生和4名女生中随机选取3名学生去参加一项活动,则至少有一名女生的抽法共多少种()
A. 34
B. 30
C. 31
D. 32
4.在8×8棋盘的64个方格中,共有由整数个小方格组成的大小或位置不同的正方形的个数为( )
A. 64
B. 128
C. 204
D. 408
5.将3个不同的小球放入4个盒子中,则不同放法种数有()
A. 81
B. 64
C. 14
D. 12
6.从5名志愿者中选派4人在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有一人参加,星期六有两人参加,星期日有一人参加,则不同的选派方法共有( )
A. 120种
B. 96种
C. 60种
D. 48种
7.的展开式中,含的项的系数是()
A. -40
B. -25
C. 25
D. 55
8.3男3女共6名同学从左至右排成一排合影,要求左端排男同学,右端排女同学,且女同学至多有2人排在一起,则不同的排法种数为()
A. 144
B. 160
C. 180
D. 240
9.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()
A. 24
B. 48
C. 60
D. 72
10.如图,一只蚂蚁从点出发沿着水平面的线条爬行到点,再由点沿着置于水平面的长方体的棱爬行至顶点,则它可以爬行的不同的最短路径有()条
A. 40
B. 60
C. 80
D. 120
11.从6个正方形拼成的12个顶点(如图)中任取3个顶点作为一组,其中可以构成三角形的组数为( )
A. 208
B. 204
C. 200
D. 196
12.某校有六间不同的电脑室,每天晚上至少开放两间,欲求不同安排方案的种数,现有3位同学分别给出了下列三个结果:① ;②26-7;③ ,其中正确的结论是()
A. 仅有①
B. 仅有②
C. ②与③
D. 仅有③
13.的展开式中的常数项为()
A. B. 6 C. 12 D. 18
14.若,则=()
A. 2009
B. 2010
C. 2011
D. 2012
15.5个人排队,其中甲、乙、丙3人按甲、乙、丙的顺序排队的方法有()
A. 12
B. 20
C. 16
D. 120
16.已知A n2=132,则n=()
A. 11
B. 12
C. 13
D. 14
17.如图所示,使电路接通,开关不同的开闭方式有()
A. 11种
B. 20种
C. 21种
D. 12种
18.某市拟从4个重点项目和6个一般项目中各选2个项目作为本年度启动的项目,则重点项目A和一般项目B至少有一个被选中的不同选法种数是()
A. 15
B. 45
C. 60
D. 75
19.设a∈Z,且0≤a≤13,若512016﹣a能被13整除,则a=()
A. 1
B. 2
C. 11
D. 12
20.某学校为了弘扬中华传统“孝”文化,共评选出2位男生和2位女生为校园“孝”之星,现将他们的照片展示在宣传栏中,要求同性别的同学不能相邻,不同的排法种数为()
A. 4
B. 8
C. 12
D. 24
21.六张卡片上分别写有数字1,1,2,3,4,5,从中取四张排成一排,可以组成不同的四位奇数的个数为()
A. 180
B. 126
C. 93
D. 60
22.的展开式中,各项系数之和为,各项的二项式系数之和为,且,则展开式中常数项为()
A. 6
B. 9
C. 12
D. 18
23.将1,2,3,…,9这9个数字填在如图的9个空格中,要求每一行从左到右,每一列从上到下分别依次增大.当3,4固定在图中的位置时,填写空格的方法为()
A. 6种
B. 12种
C. 18种
D. 24种
24.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3、4中的任何一个,允许重复.若填入A方格的数字大于B方格的数字,则不同的填法共有()
A. 192种
B. 128种
C. 96种
D. 12种
25.从1,3,5,7,9这5个奇数中选取3个数字,从2,4,6,8这4个偶数中选取2个数字,再将这5个数字组成没有重复数字的五位数,且奇数数字与偶数数字相间排列.这样的五位数的个数是()
A. 180
B. 360
C. 480
D. 720
二、填空题(共25题;共26分)
26.展开式中第三项为________.
27.则=________
28.用1,2,3,4,5,6组成没有重复数字,且至少有一个数字是奇数的三位偶数,这样的三位数一共有________个.
29.二项式(x+ )8的展开式中含x项的系数为________
30.(x﹣y)(x+y)8的展开式中x2y7的系数为________.(用数字填写答案)
31.在二项式的展开式中,含x5的项的系数是________.
32.如图,将网格中的三条线段沿网格线上下或左右平移,组成一个首尾相连的三角形,则三条线段一共至少需要移动________ 格
33.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有________种.
34.(+1)n的展开式按x升幂排列,若前三项的系数成等差数列,则n=________.
35.的二次展开式中,所有项的二项式系数之和为256,则展开式中x4项的系数为________.
36.从0,1,2,3,4,5,6这7个数字中选出4个不同的数字构成四位数,不大于3410的个数是________.
37.若(x+ )n的展开式所有的系数之和为81,则直线y=nx与曲线y=x2所围成的封闭区域面积为________.
38.若(1+x)n=1+a1x+a2x2+a3x3+…+x n(n∈N*),且a1:a3=1:2,则n=________.
39.在的展开式中的系数为________.
40.(+ )9的展开式中常数项是________.
41.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1、2、3中的任何一个,允许重复.若填入A 方格的数字大于B方格的数字,则不同的填法共有________种(用数字作答).
42.展开(1+2x)3=1+6x+mx2+8x3,则m=________.
43.某种型号的机器人组装由四道工序,完成它们需要的时间依次为小时,已知完成这四道工序先后顺序及相互关系是:① 可以同时开工;②只有在完成后才能开工;③只有在都完成后
才能开工.若完成该型号的机器人组装总时间为9小时,则完成工序需要的时间的最大值为________.
44.的展开式中常数项为________.
45.从4名男同学和3名女同学组成的团队中选出3人,男女都有的情况有________种.
46.某城市街区如下图所示,其中实线表示马路,如果只能在马路上行走,则从点到点的最短路径的走法有
________种.
47.记为的任意一个排列,则为偶数的排列的个数共有________.
48.在二项式(+ )n的展开式中只有第五项的二项式系数最大,把展开式中所有的项重新排成一列,则有理项都互不相邻的概率为________.
49.若,则________,________.
50.( N*)展开式中不含的项的系数和为________ .
答案解析部分
一、单选题
1.【答案】C
2.【答案】C
3.【答案】A
4.【答案】C
5.【答案】B
6.【答案】C
7.【答案】B
8.【答案】C
9.【答案】D
10.【答案】B
11.【答案】C
12.【答案】C
13.【答案】D
14.【答案】A
15.【答案】B
16.【答案】B
17.【答案】C
18.【答案】C
19.【答案】A
20.【答案】B
21.【答案】B
22.【答案】B
23.【答案】A
24.【答案】C
25.【答案】D
二、填空题
26.【答案】60
27.【答案】0
28.【答案】54
29.【答案】28
30.【答案】-20
31.【答案】10
32.【答案】9
33.【答案】36
34.【答案】8
35.【答案】1
36.【答案】305
37.【答案】
38.【答案】5
39.【答案】160
40.【答案】2268
41.【答案】27
42.【答案】12
43.【答案】3
44.【答案】10
45.【答案】30
46.【答案】7
47.【答案】432
48.【答案】
49.【答案】–2;–154
50.【答案】1。