填土物理力学参数
- 格式:doc
- 大小:26.50 KB
- 文档页数:1
设计参数和设计标准4.1 人工素填土物理力学参数取值1)素填土天然重度γ取20.00KN/m3,饱和重度γ取20.50KN/m3。
2)天然抗剪强度指标C取0kPa,φ取30°,饱和抗剪强度指标C取0kPa,φ取28°。
3)岩土交界面C取0kPa,φ取26°。
4.2 粉质粘土物理力学参数取值:1)粉质粘土天然重度γ取19.6KN/m3,饱和重度γ取19.90KN/m3。
2)天然抗剪强度指标C取30.61kPa,φ取12.36°,饱和抗剪强度指标C取22.27kPa,φ取8.96°。
3)粉质粘土压缩模量取4.52MPa。
4.3砂岩物理力学参数取值1)中等风化砂岩天然单轴抗压强度标准值40.6MPa,饱和单轴抗压强度标准值31.31MPa;2)砂岩天然重度取γ=24.00KN/m3,饱和重度取γ=24.50KN/m3。
3)砂岩岩体凝聚力C=2.363MPa;砂岩体内摩擦角φ=38.7°;4.4 泥岩物理力学参数取值1)中等风化泥岩天然抗压强度标准值6.62MPa,饱和抗压强度标准值4.19MPa;2)泥岩天然重度取γ=25.30KN/m 3,饱和重度取γ=25.60KN/m 3。
4.5 结构面(裂隙面)抗剪强度参数标准值:边坡岩体裂隙结构面抗剪强度粘聚力c=50 kPa ,内摩擦角φ=18°;岩体层面结合很差,岩层层面抗剪强度粘聚力c=45 kPa ,内摩擦角φ=16°。
4.6砂岩岩质边坡岩体类型为Ⅲ类,等效内摩擦角取58°。
4.7M30砂浆与砂岩的粘结强度特征值建议取400 kPa ,与泥岩的粘结强度特征值建议取250 kPa 。
4.8边坡破裂角取破裂角 64245=+ϕ和外倾结构面倾角的小值为64°;4.9工程安全等级为二级,重要性系数:γ0=1.0。
4.10坡顶均布荷载按30KN/m 2考虑。
5、设计方案采用分阶锚喷支护,上阶放坡+锚喷护面支护,放坡坡率1:0.3,下阶直立切坡+锚喷支护,直立切坡高度4.0m ,切坡位置与红线齐平。
基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值东向南向西向北向γφ CBC DE CD EF FA AB填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220常用岩土材料力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.37.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负); 3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服。
基坑各向平均厚度(m)重度内摩擦角凝聚力土体与锚固体极限摩阻力标准值东向南向西向北向γφ CBC DE CD EF FA AB填土8 5 9 4 5 10 19 10 13 18 粘土 5.5 7.5 2.5 8.5 6.5 2.5 18.5 12 15 30 圆砾0.5 0.5 0.5 1 1 0.5 20 35 / 120 粉质粘土0.5 0.5 0.5 0.5 0.5 0.5 19.5 19 25 60 强风化板岩 2.5 8.5 7.5 7 6.5 3.5 21.5 30 30 150 中风化板岩15 15 15 15 15 15 23.5 35 35 220常用岩土材料力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.37.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负); 3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服。
物理力学性质指标分层统计表工程名称:所街片区地下步行系统及配套设施工程层号①填土第1页说明:1.指标范围值及指标个数是指人工舍弃无代表性数据后的值。
范围值指用戈罗贝斯方法舍弃数据后的最小值~最大值。
用戈罗贝斯(Grubbs)方法(α=0.05)舍弃数据。
2.回归修正系数ψf应根据土类选用(粉土e、w 粘性土e、IL 淤泥和淤泥质土W 红粘土αw、Ir 素填土ES1-2),适合地方规范。
当ψf<0.75时应分析变异系数过大的原因。
3.αw=W/WL Ir=WL/WP 液隙比=WL/e。
c、φ标准值按GB 50007-2002附录E计算。
Es、qu标准值=平均值μ×(1-(1.704/√n+4.678/n^2)×δ)。
当n<6时,统计结果仅供参考。
4.c、Φ标准值=平均值μ×(1-(1.704/√n+4.678/n^2)×δ)。
当n<6时,统计结果仅供参考。
制表:校核:物理力学性质指标分层统计表工程名称: 所街片区地下步行系统及配套设施工程层号②-3淤泥质粉质粘土第2页说明:1.指标范围值及指标个数是指人工舍弃无代表性数据后的值。
范围值指用戈罗贝斯方法舍弃数据后的最小值~最大值。
用戈罗贝斯(Grubbs)方法(α=0.05)舍弃数据。
2.回归修正系数ψf应根据土类选用(粉土e、w 粘性土e、IL 淤泥和淤泥质土W 红粘土αw、Ir 素填土ES1-2),适合地方规范。
当ψf<0.75时应分析变异系数过大的原因。
3.αw=W/WL Ir=WL/WP 液隙比=WL/e。
c、φ标准值按GB 50007-2002附录E计算。
Es、qu标准值=平均值μ×(1-(1.704/√n+4.678/n^2)×δ)。
当n<6时,统计结果仅供参考。
4.c、Φ标准值=平均值μ×(1-(1.704/√n+4.678/n^2)×δ)。
土的物理力学实验指导书目录实验总则一、土的密度及含水率实验二、界限含水率实验三、固结实验实验总则一、土工试验成绩单独评定,占理论课比重大概在20%左右。
二、实验注意事项:1、实验前学生必须预习实验原理实验指导书及实验报告的具体内容,准备思考题,编写实验提纲,不预习者,不准进行实验。
不计实验成绩。
2、实验过程中学员应独立操作,认真思考,培养严格的科学作风。
3、实验过程中应注意技术安全,不得任意使用与本次实验无关的仪器设备,或任意搬动电门开关,以免造成事故。
4、爱护仪器,节约用水用电,注意实验室整洁。
实验完毕应清理仪器设备,打扫卫生。
5、原始记录不要随便涂改,试验报告要文字工整,计算正确,图表清晰,按要求写出分析说明,按时上交。
1、《土工试验规程》(SD128-88)2、《土工实验方法标准》(GB/T50123-1999)一、土的密度实验及含水率实验1.1 土的密度实验(一)实验目的测定土的密度,以了解土的疏密和干湿状态,供换算土的其他物理性质指标和工程设计以及控制施工质量之用。
(二)实验方法常用的测试方法有环刀法、蜡封法、灌砂法等。
环刀法操作简便而准确,在室内和野外普遍应用。
对易碎裂或含有粗颗粒、难以切削的土样可用蜡封法——取一块试样称其质量后浸入融化的石蜡中,使试样表面包上一层蜡膜,分别称蜡加土在空气中及水中的质量,已知蜡的比重,通过计算便可求得土的密度。
对难取原状试样的砂土、砂砾土和砾质土在现场可用灌砂法或灌水法求土的密度。
(三)仪器及工具1.环刀:内径6.18厘米,高2厘米,体积为60立方厘米。
2.天平:感量0.1克。
3.其它工具:钢丝锯、刮土刀、玻璃片、凡士林油等。
(四)实验步骤(环刀法)1.将环刀内壁涂一薄层凡士林油,并将其刃口向下放在土样上;2.切土时用钢丝锯(硬土用刮土刀),沿环刀外壁将土样削成略大于环刀外径的土柱,然后将环刀垂直下压,边压边削,直至试样凸出环刀为止;3.用钢丝锯将环刀两端余土削去,再用刮土刀刮平两端,将试样两端余土留作含水率实验用;4.擦净环刀外壁,称环刀和试样合质量,准确至0.1克;5.按下式计算土的湿度和干密度:ρ=V m d ρ=ωρ01.01+ 计算至0.013/g cm 。
一、岩土体分类及工程地质特征根据评估区岩石建造以及岩土体物理力学性质特征,将区内岩土体划分软质岩类二大类,其工程地质特征分述如下:(一)松散土类工程地质岩组包括第四系人工填土层、冲积层、坡积层以及残积层。
1、人工填土层(Q ml,层号①)根据土性及成因,人工填土主要为素填土:(1)素填土(层序号①):场地局部分布,揭露层厚 1.20~9.10m、平均厚度4.70m。
层面标高为81.70~92.70m。
其特征为:浅黄色,为平整场地期间从附近开挖山体回填,主要成分为砂质粘性土,未完成自重固结及分层碾压,松散状。
本层采土工试样2件(原报告:1件),结果是:压缩系数0.09~0.64MPa-1,平均值为0.37MPa-1(原报告:0.48 MPa-1),压缩模量2.79~19.20MPa,平均值为6.46MPa(原报告:4.01 MPa)。
本层作标贯试验4次,剔除异常值后修正击数N范围值为4.7~8.3击,平均6.0击。
2、冲积层(Q al,层号②)根据颗粒大小可划分为两个亚层。
含淤泥质粘土(层序号②-1):含淤泥质粘土层:场地局部分布,揭露层厚0.80~3.10米、平均厚度1.88米。
层顶标高80.95~85.10米。
其特征为:灰黑色,饱和,软塑状。
主要成分为粘粒,含较多砂砾(原报告:砂粒)。
见于ZK12、ZK14、ZK15、ZK18、ZK19、ZK22、ZK23、ZK30、ZK31、ZK32中。
本层作标贯试验7次,剔除异常值后修正击数N范围值为3.3~3.5击,平均3.5击,标准差0.077,变异系数0.22(原报告:0.022),标准值3.4击。
本场地取土样6件,主要的物理力学性质指标标准值:含水率w=41.5%,孔隙比e=1.150,液性指数I L=0.97,压缩系数a1-2=0.66MPa-1,压缩模量Es=3.29MPa。
粉质粘土(层序号②-2):粉质粘土层:场地局部分布,揭露层厚0.50~6.60米,平均厚度2.22米。
常用岩土材料力学参数(E, ν) 与(K, G)的转换关系如下:)21(3ν-=EK)1(2ν+=EG (7.2)当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。
最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。
表7.1和7.2分别给出了岩土体的一些典型弹性特性值。
岩石的弹性(实验室值)(Goodman,1980) 表7.1土的弹性特性值(实验室值)(Das,1980) 表7.2各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。
这些常量的定义见理论篇。
均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。
一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。
表3.7给出了各向异性岩石的一些典型的特性值。
横切各向同性弹性岩石的弹性常数(实验室) 表7.37.3 固有的强度特性在FLAC 3D 中,描述材料破坏的基本准则是摩尔-库仑准则,这一准则把剪切破坏面看作直线破坏面:s 13N f φσσ=-+ (7.7)其中 )sin 1/()sin 1(N φφφ-+=1σ——最大主应力 (压缩应力为负);3σ——最小主应力φ——摩擦角c ——粘聚力当0f s <时进入剪切屈服。
这里的两个强度常数φ和c 是由实验室的三轴实验获得的。
当主应力变为拉力时,摩尔-库仑准则就将失去其物理意义。
简单情况下,当表面的在拉应力区域发展到3σ等于单轴抗拉强度的点时,tσ ,这个次主应力不会达到拉伸强度—例如;t 3t f σσ-= (7.8)当0f t >时进入拉伸屈服。
岩石和混凝土的抗拉强度通常有由西实验获得。