北京科技大学2006-2007学年度第1学期高等数学A试题及标准答案
- 格式:doc
- 大小:485.00 KB
- 文档页数:10
北京科技大学2009--2010学年第一学期高 等 数 学A(I) 试卷(A 卷)院(系) 班级 学号 姓名 考场说明: 1、要求正确地写出主要计算或推导过程, 过程有错或只写答案者不得分; 2、考场、学院、班、学号、姓名均需写全, 不写全的试卷为废卷; 3、涂改学号及姓名的试卷为废卷;4、请在试卷上答题,在其它纸张上的解答一律无效.一、填空题(本题共15分,每小题3分)1.设方程y x y =确定y 是x 函数,则d y = .2.设曲线()n f x x =在点(1,1)处的切线与x 轴的交点为(,0)n ξ,则l i m ()n n f ξ→∞= .3.111n n n n -∞=⎛⎫= ⎪⎝⎭∑ .4.设()d arcsin xf x x x C =+⎰,则1d ()x f x =⎰ .5. 2111limnn k nk →∞==∑ .二、选择题(本题共15分,每小题3分)6.设函数21()lim1nn x f x x→∞+=-,讨论函数()f x 的间断点,其结论为( ).()A 不存在间断点 ()B存在间断点是1x=()C存在间断点是0x = ()D存在间断点是1x =-装 订 线 内 不 得 答 题 自觉 遵 守 考 试 规 则,诚 信 考 试,绝 不 作 弊7.设函数561cos 2()sin , ()56x xxf x t dtg x -==+⎰,则当0x →时,()f x 是()g x 的( )()A 低阶无穷小 ()B高阶无穷小()C等价无穷小 ()D同价但不等价的无穷小8.设01,0,()0,0, ()()1,0,x x f x x F x f t dt x >⎧⎪===⎨⎪-<⎩⎰,下列结论正确的是( ).()A ()F x 在0x =处不连续()B ()F x 在(,)-∞+∞内连续,在0x =点不可导()C()F x 在(,)-∞+∞内可导,且()()F x f x '=()D()F x 在(,)-∞+∞内可导,但不一定满足()()F x f x '=9.设函数(),()f x g x 为恒大于0的可导函数,且()()()()0f x g x f x g x ''-<, 则当a x b <<时有( ).()A ()()()()f x g b f b g x < ()B ()()()(f x g a f a g x > ()C()()()()f x g x f b g b >()D ()()()(f x g x f a g a> 10.下列各选项正确的是( ).()A 若级数21nn u ∞=∑与级数21nn v ∞=∑都收敛,则级数21()n n n u v ∞=+∑收敛;()B 若级数1n nn u v ∞=∑收敛,则级数21nn u ∞=∑与21n n v ∞=∑都收敛;()C若正项级数21n n u ∞=∑发散,则1nu n≥;()D若正项级数21nn u ∞=∑收敛,且(1,2,)nn u v n ≥= , 则级数21n n v ∞=∑收敛.三、(本题共63分,每小题7分)11(7分). 设22e sin()xy x y y +=,求(0)y '。
2006-2007高等数学A (一)B 试卷大题 一二三四五六七八成绩一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) (本大题分5小题, 每小题3分, 共15分)[][][]上的定积分,.在 差上的积分与一个常数之,.在 .一个原函数 .原函数一般表示式 的是,则 连续,,在、设b a D b a C B A x f x F b x a t x f x F b a x f b x)( )()( )()()()(d )()()(1≤-≤=⎰-().11)(;)1(21arctan )(;1ln arctan )(;1ln arctan )(,d arctan22222C xD C x x x C C x x x B C x x x A I x x I +++++++-++-==⎰ 则、设 ()2112212121)()()()()(,,3s s D s s C s s B s s A dx x f s s ba---+=⎰ 则如图表示的面积和、123)30(01343. . . . )内的实根的个数为( ,在、方程D C B A x x =+-()4)(2)(1)(0)()cos1)x 1ln(x 52222 (、 D C B A dx x ⎰-=-+++ππ二、填空题(将正确答案填在横线上) (本大题分2小题, 每小题5分, 共10分)1、.________________ln cot ln lim的值等于xx x +→2、,)(cos 的一个原函数是已知x f xx =⋅⎰x xx x f d cos )(则___________.三、解答下列各题 ( 本 大 题8分 )在求过)3,2,4(0-P 与平面010:=-++z y x π平行且与直线⎩⎨⎧=-=--+010052:1z z y x l垂直的直线方程。
四、解答下列各题(本大题共3小题,总计18分) 1、(本小题6分)⎰.d )(ln 2x x 求 2、(本小题6分).求⎰-10221dx x x3、(本小题6分)设非零向量a b ,满足b a b a b a b a 532,52-⊥+-⊥+,求(,)a b ∧。
2007-2008学年第一学期2007级电气、电子、工程管理、机制、教技、土木工程、计算机、农机、网络工程、物理专业高等数学Ⅰ 试卷A 参考答案一、填空题(填对每空得2分,填错或不填每空得0分,计20分) 1.982442424++++x x x x .2.3-e.3. 3 . 4. 3 . 5. ( 0 ,-1 ). 6.21.7.0144=++y x .8.51.9. 0 . 10.14.二、选择题(选对每题得2分,不选、选错或多选每题得0分,计10分) 1.( D ) 2.( B ) 3.( C ) 4.( A ) 5.( B )三、计算题(每小题5分,计20分)1.解: xx x x x x x x sin )sin 21(1lim sin 2cos 1lim 200--=-→→…………………………2分xx xx sin sin 2lim 20→= …………………………………3分 x xx sin 2lim0→=..........................................4分 2=. (5)分2.解:应用洛必达法则得xxx xtd t t x xx 2arctan limarctan lim20-=∞-→∞-→⎰………………………3分x x a r c t a nlim 21∞-→-= ………………………4分 4)2(21ππ=-⨯-=. ………………………5分3.解: ⎰dx xx2sin ⎰-=x xd cot ……………………………………1分 ⎰+-=xdx x x cot cot , …………………………2分 ⎰+-=dx x x x x sin cos cot ……………………………3分 ⎰+-=x d x x x s i n s i n1c o t ………………………4分c x x x ++-=|s i n |ln cot .………………………5分4.解: ⎰-+1021xx dx ⎰+=20cos sin cos sin πtt tdt tx ……………………………1分⎰++=202)cos (sin )cos (sin cos πt t dt t t t (2)分⎰+++=202sin 112cos 2sin 21πdttt t……………………3分⎰⎪⎭⎫ ⎝⎛++=202sin 12cos 121πdt t t ………………………4分 4)2sin 1ln(212120ππ=⎥⎦⎤⎢⎣⎡++=t t .………………5分四、解答题(每小题5分,计20分) 1.解:)sin ()cos 1(t t ad t ad dxdy --= (1)分ttcos 1sin -=. …………………………………………2分)sin (cos 1sin 22t t ad t t d dxy d -⎪⎭⎫ ⎝⎛-= ………………………………………3分)cos 1()cos 1(sin )cos 1(cos 22t a t t t t ----=……………………………4分23)cos 1(1)cos 1(1cos t a t a t --=--=. …………………5分 2.解: 方程两边同时微分得)()(y x e d xy d += ………………………1分即 )(dy dx e xdy ydx y x +=++ ……………………3分 整理得 ydx dx e dy e xdy y x y x -=-++, …………………4分 从而得 dx ex yedy yx yx ++--=.……………………………5分3.解:令u e x=可得u x ln =,代入已知式得 ……………………………1分 u u f ln )(=', c u u u udu +-=⎰ln ln …………………2分 从而有 0ln )(c u u u u f +-= ……………………………………3分 由0)1(=f 得 10=c ……………………………………………4分 因此 1ln )(+-=x x x x f . ……………………………………5分4.解:设所求平面的法线向量为0),,(≠=C B A n ,两个已知平面的法线向量分别为)4,2,1(,)2,5,3(21-=-=n n, ……………………………………1分则有n n n n⊥⊥21, 即有 ⎩⎨⎧=+-=-+0420253C B A C B A ………………………2分得 A C A B 1611,87-=-=,0≠A ……………………………………3分 所以所求平面的方程为 0)3(161187)2(=+---z A Ay x A ,………4分整理得所求平面的方程为 065111416=---z y x . …………………5分五、证明题(6分×2题=12分) 1.证明:由题设有hx f h x f x f h )()(lim)(0000-+='→,所以…………………1分hx f h x f x f h x f hh x f h x f h h )]()5([)()3(lim)5()3(lim 00000000----+=--+→→……………2分⎥⎦⎤⎢⎣⎡----+=→h x f h x f h x f h x f h )()5()()3(lim 00000…………3分hx f h x f h x f h x f h h 5)()5(lim53)()3(lim3000000---+-+=→→……5分)(8)(5)(3000x f x f x f '='+'=. (6)分2.证:设x x x x f -++=)1ln()1()(,则0)0(=f ,………………………1分 又 )1l n ()(x x f +='. ……………………………………………2分 当0>x 时, 0)(>'x f ,函数单调增加, ……………………3分当01<<-x 时, 0)(<'x f ,函数单调减少.………………………4分 从而,当01≠<-x 时有0)(>x f ,且0)0(=f , ………………………5分因此,当1->x 时,x x x ≥++)1ln()1(. ……………………………6分六、综合应用题(6分×3题=18分)解:由⎩⎨⎧=+-=022y x x y 得两曲线交点为)4,2(),1,1(-, …………………1分1.图形面积为 ⎰--+=212)2(dx x x A …………………………3分 29312212132=⎥⎦⎤⎢⎣⎡-+=-x x x , …………………6分2.图形绕x 轴旋转一周所得旋转体的体积为⎰--+=21222])()2[(dx x x V x π……………………………9分 57251)2(312153ππ=⎥⎦⎤⎢⎣⎡-+=-x x ……………………12分3.曲线2x y =交y 轴于点)0,0(,直线02=+-y x 与y 交于点)2,0( ……………………………13分图形绕y 轴旋转一周所得旋转体的体积为⎰⎰--=4422)2(dy y ydy V y ππ, (15)分 316)2(32423402πππ=--=y y ; ………………………18分。
华东交通大学2006—2007学年第一学期考试卷承诺:我将严格遵守考场纪律,知道考试违纪、作弊的严重性,还知道请他人代考或代他人考者将被开除学籍和因作弊受到记过及以上处分将不授予学士学位,愿承担由此引起的一切后果。
专业 班级 学号 学生签名:试卷编号: (A )卷《高等数学(A)Ⅰ》 课程 (工科本科06级) 课程类别:必闭卷(√) 考试日期:2007.1.15 题号 一 二三四 五 总分 12 3 4 5 6 7 1 2分值 10 15 7777777998阅卷人 (全名)考生注意事项:1、本试卷共 6 页,总分 100 分,考试时间 120 分钟。
2、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。
一、填空题(每题2分,共10分)______)1(34)( 122=-+-=x x x x x x f 第一类间断点为设函数、___________ 11 2 02=+=⎰dy dt t y x则,设、_______)1 1(1 3==K xy 处的曲率,在点等边双曲线、_________141=+⎰dx x x、__________ } 3 2{}2 1 1{ 5==-=λλ则垂直,,,与,,已知向量、b a二、选择题(每题 3分,共15分)∞=--+∞→ D. 2 C. 1 B. 0 . A )B ()sin 11( 122limx x x x x 、22222221 D. )1(2 C. 12 B. 2 A.) C ( )()1ln(arctan 2t t t dxy d x y y t y t x -++==⎩⎨⎧+==则,确定设、 得分 评阅人得分 评阅人1dx x211+222ln 1-21xx ex e x x x e x xxsin D. C. )ln(1 B. 1 A.)D (0 3><>++<>时成立的是当下列各式中,、1cos D. 1cos C. 1sin B. 1sinA.) A ()1(1sin )( 42C x C x C x C x dx xf xx x f ++-++-='=⎰则,设、⎩⎨⎧==-+⎩⎨⎧==-+⎩⎨⎧==-+=-+⎩⎨⎧=+=++822 D. 0 822 C.0 822 B. 822 A.)D ( 19522222222222z y y x y y y x x y y x y y x xoy z y z y x 为平面上的投影曲线方程在曲线、三、计算题(每题 7分,共49分)x x x ex x 222sin 112lim--→、21 42 21422 1 2222limlimlimlim23042==-=-=--=→→→→xxe xe x xxe x x ex x xx x x xx 原式解:)22(2lim n n n n n --+∞→、 2 21214 224 limlim=-++=-++=∞→∞→nn nn n n nn n 原式解:得分 评阅人得分评阅人y e e y xx '++=求,设、 )1ln( 32 xx x x xxxx x x x e ee e e e e e e ee y 222122221 ]2)1(21[11 )1(11+=⋅++++='++++='-解:dxx x ⎰-2214、Cx x xCt t dtt tdttdttttdt dx t x +---=+--=-=====⎰⎰⎰arcsin 1 cot )1(csccot cos sincos cos sin 2222原式则,令解:dxx x ⎰1arctan 5、)1(arctan 121+=⎰x d x 原式解:得分 评阅人得分 评阅人得分 评阅人分扣缺1C。
2006-2007(1)高等数学试题(A 卷)(54)解答第 2 页 共 6页学院领导 审批并签名A 卷广州大学2006-2007学年第一学期考试卷高等数学(54学时)参考解答与评分标准题 次 一 二 三 四 五 六 七 八 总分 分 数 15 15 18 12 24 10 6 100 得分 评卷人一.填空题 (每小题3分, 本大题满分15分)1. 10lim(1)xx x →-= 1-e2.=++∞→x x x x cos 122lim 20 3. 曲线2x y =在点)4,2(处的切线方程为440y x -+=学院专业班级姓名学号第 3 页 共 6页4. 函数2x e y -=的渐近线为 0=y5. 曲线233x x y -=的拐点坐标为 (1,-2)二.选择题 (每小题3分, 本大题满分15分)1.下列函数为偶函数的是( C ).(A) x x cos ; (B) 1+x ; (C) 12+x; (D)xx cos +.2. 当0→x 时,11-+x 是2x 的( B )无穷小.(A) 高阶; (B) 低阶; (C) 同阶但不等价; (D) 等价.3.函数)(x f 在点0x 处有定义,是函数)(x f 在点0x处连续的( A ).(A) 必要条件; (B) 充分条件; (C) 充要条件; (D) 无关条件.4. 函数||y x =在点0=x 处( B ).(A) 不连续; (B) 连续但不可导; (C) 可导; (D) 可微.5. 设⎰+-=C x dx x f sin )(, 则=')(x f ( D ).(A) cos x -; (B) x sin -; (C) x cos ; (D) sin x .第 4 页共 6页第 5 页 共 6页求0|=x dxdy . 解:方程 2=+-x ye xy e(*)两端同时对x 求导,得0=+'--'x y e y x y y e (**) 3分 在(*)式中令0=x ,得 0)0(=y 在(**)式中令0=x ,得 1)0(-='y 6分即 0|=x dxdy =-1第 6 页 共 6页四.计算下列极限(每小题6分,本大题满分12分)1. 0sin lim (1cos )x x xx x →--. 解:原式=3021sin limx xx x -→2分=2023cos 1limx x x -→4分=xxx 3sin lim 0→ =316分 2.xx xln 12)1(lim ++∞→. 解:原式=x x x eln )1ln(lim2++∞→2分 =2212limxx x e ++∞→4分 =2e装 订 线 内 不 要答 题第 7 页 共 6页6分五.计算下列积分(每小题6分,本大题满分24分)1. dx x x )3(-⎰.解: 原式=dxx dx x ⎰⎰-2/12/333分=C x x +-2/32/52526分 2. ⎰dxx x )1(sin 2+.解:原式=⎰⎰+xdxdx xx 2sin2分 =22221)(sin 21x x d x +⎰4分 =C x x +--)(cos 21226分第 8 页 共 6页3. 22ln(1)x dxx +⎰. 解:原式=)1()1ln(2⎰-+xd x2分=)1ln(1)1ln(122+++-⎰x d xxx=dx xx x ⎰+++-2212)1ln(14分 =C x x x+++-arctan 2)1ln(126分 4. dxxx ⎰+31.解: 令6u x =,则du u dx 56= ∴dxxx ⎰+31=duu u u ⎰+2356=du uu ⎰+1633分=duuu ⎰+-+11)1(63第 9 页 共 6页=du udu u u ⎰⎰+-+-11)1([62]=Cu u u u ++-+-)1ln(663223=Cx x x x ++-+-)1ln(6626636分第 10 页 共 6页六.(本题满分10分)某厂生产x件产品的成本为 21()2500020040C x x x =++(元). 问(1) 若使平均成本最小, 应生产多少件产品?(2) 若产品以每件500元售出, 要使利润最大, 应生产多少件产品?解: (1)依题意, 平均成本为x x x x C x C 40120025000)()(++== 2分所以 40125000)(2+-='xx C 令0)(='x C ,得1000=x5分故要使平均成本最小, 应生产1000件产品; (2) 依题意, 利润)40120025000(500)(2x x x x L ++-==240125000300x x --7分装 订 线 内 不 要答 题第 11 页 共 6页则 x x L 201300)(-='令0)(='x L ,得6000=x10分 故若产品以每件500元售出, 要使利润最大, 应生产6000件产品.七.(本题满分6分)证明: 当0x >时,221)1ln(1x x x x +>+++. 证明: 令221)1ln(1)(x x x x x f +-+++= 2分 则有 22221111)1ln()(x xx x x x x x x x f +-+++++++=' =)1ln(2x x ++>0(当0>x 时)第 12 页 共 6页 4分故函数)(x f 在(0,+∞)内是单调增加函数,所以 当0x >时,)0()(f x f >=0, 即 221)1ln(1x x x x +>+++. 6分。
姓名 班级 学号装 订 线安徽工业大学高等数学A1期末试卷(甲卷)参考答案与评分标准一、 单项选择题(本题共8小题,每小题3分,共24分)二、 填空题(本题共8小题,每小题2分,共16分) 说明:①第10题和第16题每一小空1分 ②第16题中点b a ,,0的端点开闭均可9.45 10. 2009- ,小 11. 3234πa 12.0 13. 20092 14. 1 15. )()!1(!232n n x o n x x x x +-++++ 16. ),0(),(b a 及 -∞,0四、解答题(本题共6小题,满分44分,解答应写出文字说明、证明过程和演算步骤.) 25. (本题满分8分)解:2cos 10x x -→时, ~2)(22x , ------------------------------------ 2分2sin x ~2x --------------------------------------------------3分原式22402lim x x x x ⋅=→21= ---------------------------------------------- 8分说明:本题解法较多,可参照上述标准给分,如等价无穷小代换与洛必达法则结合使用。
26. (本题满分10分) 解:1)(-='n nxx f ,n f k ='=)1( -----------------------------------2分切线方程 )1(--=n nx y -----------------------------------4分令0=y 得n n x 1-=故nn n 1-=ξ ---------------------------6分 )(lim n n f ξ∞→nn n n ⎪⎭⎫ ⎝⎛-=∞→1lim )1(11lim -⋅-∞→⎪⎭⎫⎝⎛-=n n n 1-=e ----------10分27. (本题满分8分)解: θθx y dx dy ''= ---------------------------------------------------------------- 2分2212111θθθ++-=------------------------------------------------------- 5分2θ=---------------------------------------------------------------- 6分00==θ时,x ,------------------------------------------------- 7分 ==0x dxdy 02=θθ0=-----------------------------------------------8分说明:没有注明00==θ时,x 的扣1分 28.(本题满分8分)解: dx x x ⎰3sin +dx x x x ⎰++)1(21222---------- -----------------------1分 ⎰-=x xd 3cos 31dx x x )111(22⎰+++ )3cos 3cos (31⎰--=xdx x x x x arctan 1+-)]3(3cos 313cos [31⎰--=x xd x x x x arctan 1+--------------6分)3sin 313cos (31x x x --=c x x++-arctan 1--------------- - 8分说明:两个积分对一个给3分,丢了积分常数c 的扣2分29.(本题满分5分) 解:)1(21x xy -=' --------------------------------------------------- 1分 dx y s ⎰'+=3121-----------------------------------------------------3分dx x x⎰++=31)21(41 dx x x⎰+=31)1(21 ----------------------------------------------4分 3123)31(x x +=3432-=--------------------------------------5分30.(本题满分5分)证明:令 )()(x xf x F =,------------------------------------------------1分 则)(x F 在]2008,0[上连续,在)2008,0(内可导,-----------------3分 且0)2008()0(==F F ,由罗尔定理得 ------------------------------4分 至少存在一点c ,使0)('=c F ,即0)()('=+c f c c f , 也即cc f c f )()('-= 得证。
北京科技大学2004 — 2005学年度第二学期高等数学(A 卷) 试题 (时间120分钟)学院 考场 班级 学号 姓名一、填空 (每小题3分,共15分)1.设函数22y x z +=,则函数在点)1,1(处的梯度为 j i 22+ 2. 将三次积分)0(),sin ,cos (002022>⎰⎰⎰-a dz z r r f rdr d ar a θθθπ化为球面坐标系下的三次积分(函数),,(z y x f 在已知区域上连续)dr r r r r f d d aφφφθφθφθππsin )cos ,sin sin ,sin cos (22020⋅⎰⎰⎰3. 曲面12-=+z ye x x 在点(0,1,-1)处的切平面与xoy 平面的夹角为a r c =ψ4. 光滑曲面),(y x f z =在坐标平面xoy 的投影区域为D ,那么该曲面的面积可以用二重积分表示为d x d y Z Z Dy x ⎰⎰++2215. 设级数∑∞=+-11)(n n n a a 收敛,且和为s ,则n n a ∞→lims a -1 二、选择 (每小题3分,共15分) 1. 已知函数22),(y x y x y x f -=-+,则=∂∂+∂∂yy x f x y x f ),(),( ( C ) (A ) y x 22-; (B) y x 22+; (C) y x +; (C) y x -2. 设常数k>0, 则级数∑∞=+-12)()1(n n n n k 是 (C ) (A) 发散; (B) 绝对收敛; (C) 条件收敛; (D) 发散与收敛与k 的取值无关3. 微分方程02'=-y xy 的通解是 ( B )(A) Cx y =; (B) 2Cx y =; (C) 3Cx y =; (D) 4Cx y = 4. 二元函数33)(3y x y x z --+=的极大值点是 ( A )(A)(1,1); (B)(1,-1); (C)(-1,1); (D)(-1,-1) 5. 若L 是上半椭圆⎩⎨⎧==tb y ta x sin cos ,取顺时针方向,则⎰-L xdy ydx 的值为 (C )(A) 0 ; (B) 2abπ; (C) ab π; (D) ab π-三、计算 (共70分)1.(6分)设)(x y 是04=+'+''y y y 的解,2)0(,41)0(='=y y计算dx x y AA ⎰∞→0)(lim解:特征方程21,2441002r r r -±++=⇒=< )(0)(2121+∞→→+=x e C e C x y x r x r (3分))(0)(212211'+∞→→+=x e r C e r C x y x r x r32414)()(4)4()(lim0'00'''0=+⨯=--=--=∞+∞++∞+∞→⎰⎰x y x y dx y y dx x y AA (6分) (先求通解,定出常数,再进行积分也可以) 2.(8分)计算二次积分dy e dx x y ⎰⎰-1102解:211100110222-----===⎰⎰⎰⎰⎰⎰e dx dy edxdy e dy e dx Dyy y x y3.(6分)在过点)0,0(O 和)0,(πA 的曲线族)0(sin >=a x a y 中,求一条曲线L ,使沿该曲线从O 到A 的积分dy y x dx y L )2()1(3+++⎰的值最小. 解:344]cos )sin 2()sin 1[()(333a a dx x a x a x x a a f +-=+++=⎰ππ(4分)1,044)(2'==+-=a a a f 唯一驻点,所以 : 所求曲线x y L sin :=使38)1(-=πf 为最小。
院(系) ________ 班级________ 学号________ 姓名________ 考试教室_______9 、 函数u xy 2z 在点P 1, 1,2处最大方向导数的值为______________________.二、单项选择题10、已知f x , y ex 2 y 4则【 】(B) f x 0,0不存在,f y 0,0 存在说明: 1 、要求正确的写出主要的计算或推倒过程, 过程有错或只写答案者不得分;2 、考场、学院、班级、学号、姓名均需全写,不写全的试卷为废卷;3 、涂改学号以及姓名的试卷为废卷;4 、请在试卷上作答,在其它纸上解答一律无效. 得分4 分,共 24 分)1 、 二次积分dxx e 2dy 的值等于______________.2 、 设 A zi x 2j y 3k ,则A (2,1,3) ________________.3 、 设f x , y 具有一阶连续偏导数,且u f xy , yz ,则du _______________________________.4 、 设有D :x2 y 2a 2 ,则 e x2y 2dxdy _______________________.D5 、 曲面x2 y2z 214在点 1,2,3 的法线方程为________________________________.6 、 设 a i j , b 2j k , 则以a , b 为邻边的平行四边形的面积为__________________________.7 、 平面x y z 1到两定点A 1,0,1和B 2,0,1 的距离平方之和为最小的点是________________.8 、 设函数f x , y , z x 2 y 2 z 2 ,则gradf 1, 1,2 ___________________________.(C) f x 0,0存在,f y 0,0 不存在 (D) f x 0,0 , f y 0,0都不存在x 2 2zx 2 y 2 dxdydz 的值等于【 】3(A) 1024 (B)1024 (C)73 (D)12 、设f 具有二阶连续偏导数,且u f x y z , xyz ,则 【 】(A) f 1yf 2 xy 2zf 22 y x z f 1(C) xf 2 2xy 3f 1x yf 322 x 2y 2f 1x 1 y 5 z 6 x y 6(A)(B)(C)5(D)14 、设1: x 2 y 2 z 2 R 2 , z 0,2: x 2 y 2 z 2 R 2 ,x 0,y 0,z 0, 则【 】(A)xdxdydz 4xdxdydz .12(C) zdxdydz 4zdxdydz .12(B)ydxdydz 4ydxdydz . 12(D) xyzdxdydz 4xyzdxdydz .12(D) xf 2 2xy 3f 1xyf 22 x 2y 2f 1y (A) f x 0,0 , f y 0,0都存在(B) yf 1 2xf 1x 3yf 22 x 2y 2f 1x z2u2234836, 11、设 为平面曲线 绕z 轴旋转一周形成的曲面与平面z 8所围区域,则y 0】13 、设有直线L 1 : , L 2 : ,则两直线的夹角为【1 2 1 2y z 315 、设函数f x , y 连续,(A) dysin xf x , y dx 则二次积分dxs n xf x , y dy 等于【 】 (B) dy arcsin yf x , y dx(C)dyarcsin xf x , y dx216 、设u x , y 具有二阶连续偏导数, 则u 2 x ,2x 【 】 2(A) x 4 (B) x (D) dyarcsinyf x , y dx2x 2 y 24 (C) x5 (D) x 17 、由曲面z 2 x 2 y 2 和曲面z x 2 +y 2 所围成的立体的体积为【 】(A) 2 1. x 1 18 、若两直线 1 (A)1三、解答题4 (B) . y 1 z 122 (B)(C) 2 1. (D) 2 1. 与x 1 y 1 z 相交,则 【 】 5 5(C) (D)19、抛物面z x 2y 2被平面x y z 1截成一椭圆,求原点到这椭圆的最长与最短距离。