(完整版)高等数学测试题及答案.docx
- 格式:docx
- 大小:19.50 KB
- 文档页数:3
完整)高等数学考试题库(附答案)高数》试卷1(上)一.选择题(将答案代号填入括号内,每题3分,共30分)。
1.下列各组函数中,是相同的函数的是()。
A)f(x)=ln(x^2)和g(x)=2lnxB)f(x)=|x|和g(x)=x^2C)f(x)=x和g(x)=x^2/xD)f(x)=2|x|和g(x)=1/x答案:A2.函数f(x)=ln(1+x)在x=0处连续,则a=()。
A)1B)0C)-1D)2答案:A3.曲线y=xlnx的平行于直线x-y+1=0的切线方程为()。
A)y=x-1B)y=-(x+1)C)y=(lnx-1)(x-1)D)y=x答案:C4.设函数f(x)=|x|,则函数在点x=0处()。
A)连续且可导B)连续且可微C)连续不可导D)不连续不可微答案:A5.点x=0是函数y=x的()。
A)驻点但非极值点B)拐点C)驻点且是拐点D)驻点且是极值点答案:A6.曲线y=4|x|/x的渐近线情况是()。
A)只有水平渐近线B)只有垂直渐近线C)既有水平渐近线又有垂直渐近线D)既无水平渐近线又无垂直渐近线答案:B7.∫f'(1/x^2)dx的结果是()。
A)f(1/x)+CB)-f(x)+CC)f(-1/x)+CD)-f(-x)+C答案:C8.∫ex+e^(-x)dx的结果是()。
A)arctan(e^x)+CB)arctan(e^(-x))+CC)ex-e^(-x)+CD)ln(ex+e^(-x))+C答案:D9.下列定积分为零的是()。
A)∫π/4^π/2 sinxdxB)∫0^π/2 xarcsinxdxC)∫-2^1 (4x+1)/(x^2+x+1)dxD)∫0^π (x^2+x)/(e^x+e^(-x))dx答案:A10.设f(x)为连续函数,则∫f'(2x)dx等于()。
A)f(1)-f(0)B)f(2)-f(0)C)f(1)-f(2)D)f(2)-f(1)答案:B二.填空题(每题4分,共20分)。
高等数学试题及答案word一、选择题(每题3分,共30分)1. 极限的定义中,当x趋近于a时,函数f(x)的极限为L,意味着:A. 对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<εB. 对于任意的正数ε,总存在正数δ,使得当|x-a|<δ时,|f(x)-L|<εC. 对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,|f(x)-L|<|ε|D. 对于任意的正数ε,总存在正数δ,使得当|x-a|<δ时,|f(x)-L|<|ε|答案:B2. 以下哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^5答案:B3. 函数f(x) = x^2在区间[0,1]上的定积分为:A. 0B. 1/3C. 1/2D. 1答案:C4. 以下哪个选项是洛必达法则的应用条件?A. 极限形式为0/0或∞/∞B. 极限形式为0*∞C. 极限形式为1^∞D. 极限形式为0^0答案:A5. 以下哪个选项是二阶导数的几何意义?A. 表示函数的增减性B. 表示函数的凹凸性C. 表示函数的极值点D. 表示函数的拐点答案:B6. 以下哪个选项是泰勒级数展开的条件?A. 函数在展开点处可导B. 函数在展开点处连续C. 函数在展开点处可积D. 函数在展开点处有界答案:A7. 以下哪个选项是多元函数偏导数的定义?A. 函数对自变量的一阶导数B. 函数对自变量的二阶导数C. 函数对自变量的无穷小变化率D. 函数对自变量的有限变化率答案:C8. 以下哪个选项是多元函数的极值存在的必要条件?A. 偏导数为0B. 偏导数不为0C. 偏导数不存在D. 偏导数为无穷大答案:A9. 以下哪个选项是格林定理的应用条件?A. 区域D为单连通区域B. 区域D为多连通区域C. 区域D为非封闭区域D. 区域D为封闭区域答案:A10. 以下哪个选项是定积分的性质?A. 积分区间可加性B. 积分区间可减性C. 积分区间可乘性D. 积分区间可除性答案:A二、填空题(每题2分,共20分)1. 函数f(x) = sin(x)在区间[0, π/2]上的定积分为________。
高等数学试题库及答案doc一、选择题1. 下列函数中,哪一个是偶函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = |x|D. f(x) = sin(x)答案:A2. 曲线 y = x^2 在点 (1,1) 处的切线斜率是多少?A. 0B. 1C. 2D. -2答案:C二、填空题1. 极限lim(x→0) (sin(x)/x) 的值是 __________。
答案:12. 函数 f(x) = x + 1 在 x = 2 处的导数是 __________。
答案:1三、计算题1. 求函数 f(x) = x^3 - 2x^2 + 3x 的导数。
解:f'(x) = 3x^2 - 4x + 32. 计算定积分∫(0 到 1) x^2 dx。
解:∫(0 到 1) x^2 dx = [1/3 * x^3] (从0到1) = 1/3四、证明题1. 证明函数 f(x) = e^x 是严格单调递增的。
证明:设任意 x1 < x2,则 f(x1) - f(x2) = e^x1 - e^x2。
由于e^x 是严格单调递增的,所以当 x1 < x2 时,e^x1 < e^x2,从而f(x1) < f(x2)。
因此,函数 f(x) 是严格单调递增的。
五、应用题1. 一个物体从静止开始,以初速度为零的匀加速直线运动,其加速度为 2 m/s²。
求物体在前 3 秒内的位移。
解:根据匀加速直线运动的位移公式 s = 1/2 * a * t²,代入 a = 2 m/s²和 t = 3 s,得到 s = 1/2 * 2 * 3² = 9 m。
六、论述题1. 论述微积分在物理学中的应用。
答案:微积分在物理学中有广泛的应用,例如在力学中计算物体的运动轨迹、在电磁学中分析电场和磁场的变化、在热力学中研究温度分布等。
微积分的基本原理—极限和导数,为物理学家提供了一种强大的工具,用以描述和预测物理现象的变化趋势。
完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。
+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。
2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。
高学试题及答案选择题(本大题共40 小题,每小题 2.5 分,共 100 分)1.设 f(x)=lnx,且函数 (x) 的反函数1(x)= 2(x+1) ,则 f(x)( B)x-2 x+22-xx-1 x+2lnlnlnlnA. x+2B.x-2C. x+2D. 2-xe t2 dt2. lime tx1 cosx(A )x 0A . 0B . 1C .-1D .3.设y f ( x 0 x) f ( x 0 ) 且函数 f (x) 在 x x 0 处可导,则必有( A)A. lim y 0B. y 0C.dy 0D. y dyx 04.设函数 f(x)=2x 2, x 1,则 f(x) 在点 x=1处( C)3x1,x 1A. 不连续B. 连续但左、右导数不存在C.连续但不可导D.可导5.设 xf(x)dx=e-x 2C ,则 f(x)= ( D)A.xe6. 设 I-x 2B.-xe -x 2C.2e -x 2D.-2e-x 2( x2y 2 ) dxdy,其中 D 由 x 2y 2 a 2 所围成,则 I =( B ).D(A)2 a 2rdra4(B)2 a 2rdr1 a4dadr22 a 2dr2 a 32a2adr2 a4(C)dr (D)da37. 若 L 是上半椭圆x a cost ,ydxxdy 的值为 ( C ).y 取顺时针方向 , 则b sin t ,L(A)0(B)ab (C)ab(D)28. 设 a 为非零常数 , 则当 ( B )时 , 级数a 收敛 .n 1 rnab(A) | r | | a |(B)| r | | a | (C) | r | 1(D)| r | 19. lim u n 0 是级数u n 收敛的 ( D )条件 .nn 1(A) 充分 (B) 必要 (C) 充分且必要 (D) 既非充分又非必要10. 微分方程 y y0 的通解为 ____B______.(A)y cos x c(B) y c 1 cos x c 2(C) y c 1 c 2 sin x(D) yc 1 cos x c 2 sin x11. 若 a , b 为共线的单位向量,则它们的数量积a b( D ).( A ) 1(B ) -1( C ) 0( D ) cos(a, b)12. 设平面方程为 Bx Cz D 0 ,且 B , C , D 0 , 则平面(C ).( A )平行于 x 轴( B )垂直于 x 轴( C )平行于 y 轴( D )垂直于 y 轴13. 设 f ( x, y)( x 2y 2 ) sin x 2 1 y 2,x 2 y 20 , 则在原点 (0,0) 处 f (x, y) ( D ).0, x 2y 2(A) 不连续 (B)偏导数不存在(C)连续但不可微 (D)可微14. 二元函数 z 3( x y)x 3 y 3 的极值点是 ( D ).(A) (1,2)(B) (1, -2 ) (C) (1,-1)(D) (-1,-1)15. 设 D 为 x 2y 2 1,则11 dxdy=(C ).Dx 2 y 2(A) 0(B)(C) 2(D) 416.1 1 x)0 dxf ( x, y ) dy =( C1 x 11 1 xf ( x , y ) dx (A)0 dyf ( x , y ) dx(B) 0dy11 y f ( x , y ) dx11f ( x , y ) dx(C)dy(D) dy17.x a cost ,ydxxdy 的值为 ( C ).若 L 是上半椭圆取顺时针方向 , 则Lyb sin t ,(A) 0(B)ab(C)ab(D)ab218. 下列级数中 , 收敛的是 ( B ).(A)(5 )n1(B)( 4 ) n 1(C)( 1) n 1( 5) n 1(D)(54)n 1n 1 4n 1 5n 1 4 n 1 4519. 若幂级数a n x n 的收敛半径为 R 1 : 0R 1,幂级数b n x n 的收敛半径为 R 2 : 0 R 2,n 0n 0则幂级数(a nb n ) x n 的收敛半径至少为 ( D )n 0(A) R1R2(B)R1 R2(C)max R1, R2(D)min R1 , R220.下列方程为线性微分方程的是( A )(A)y(sin x) y e x(B)y x sin y e x(C)y sin x e y(D)xy cos y11x21. a b a b 充分必要条件是( B )(A) a ×0(B) a b0(C)a b 0(D) a b 0 b22. 两平面x 4 y z50与 2x 2 y z 30的夹角是( C )(A)6(B)3(C)4(D)223. 若f y(a, b) 1 ,则 lim f a, b y f a,b y=( A )y 0y(A)2(B)1(C)4(D)024.若 f x ( x0 , y0 ) 和 f y ( x0 , y0 ) 都存在,则 f ( x, y) 在 (x 0 , y 0 ) 处( D )(A)连续且可微(C)可微但不一定连续(B)连续但不一定可微(D)不一定连续且不一定可微25.下列不等式正确的是( B )(A)(x3y3 )d0(B)(x2y2 ) d0x 2y 21x2 y 2 1(C)x 2y2(x y)d0(D)x2 y 2( x y)d0 1126.11xf (x, y)dy =( C) dx(A)1 xdy1(B)1 1 x f ( x, y) d x 0f ( x, y)d x dy0011y11f (x, y)d x(C)dy0f (x, y)d x(D)dy00027. 设区域 D 由分段光滑曲线L 所围成, L 取正向, A 为区域 D 的面积,则( B )(A)11 Aydx xdy(B) A xdy ydx2 L 2 L(C) A1xdy ydx(D) Axdy ydx2LLn28. 设a n 是正项级数,前 n 项和为 s na k ,则数列 s n 有界是a n 收敛的( C )n 1k 1n 1(A) 充分条件(B) 必要条件(C) 充分必要条件(D) 既非充分条件,也非必要条件29. 以下级数中,条件收敛的级数是( D )(A)( 1) Nn (B)( 1) n11N 12n10n 1n 3(C)( 1) n 1 ( 1 )n (D)( 1) n13 n12 n 1n30.设 xf(x)dx=e-x 2C ,则 f(x)= (D )A.xe -x 2B.-xe -x 2C.2e -x 2D.-2e-x 231、已知平面: x2 y z4 0 与直线 L :x1y2 z 1 的位置关系是( D )31 1( A )垂直(B )平行但直线不在平面上( C )不平行也不垂直 ( D )直线在平面上 32、 lim3xy( B)x 02xy 1 1y 0( A )不存在 ( B ) 3( C ) 6( D )33、函数 z2 z及2 zD 内f ( x, y) 的两个二阶混合偏导数在区域 D 内连续是这两个二阶混合偏导数在x y y x相等的( B )条件 .( A )必要条件( B )充分条件( C )充分必要条件 ( D )非充分且非必要条件34、设d4 ,这里 a0 ,则 a =( A)x 2y 2a( A ) 4( B )2 ( C ) 1( D ) 035、已知 xay dxydy为某函数的全微分,则 a ( C)x y 2( A ) -1 (B ) 0( C ) 2( D ) 136、曲线积分ds(C ),其中y 2 Lx 2 z 2( A )( B )2( C )x 2 y 2 z 210L :1.z3(D )4555537、数项级数a n 发散,则级数ka n ( k 为常数)( B)n 1n 1(A )发散( B )可能收敛也可能发散( C )收敛 ( D )无界38、微分方程xy y 的通解是( C )(A )y C1x C2(B )y x2C( C)y C1x2 C 2( D)y 1 x2C2。
《高等数学》专业 年级 学号 姓名一、判断题. 将√或×填入相应的括号内.(每题2分,共20分)( )1. 收敛的数列必有界.( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数.( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导.( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线.( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续.( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微.( )9. 微分方程的含有任意常数的解是该微分方程的通解.( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则)0(f 为)(x f 的一个极小值.二、填空题.(每题2分,共20分)1. 设2)1(x x f =-,则=+)1(x f .2. 若1212)(11+-=xxx f ,则=+→0lim x .3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则=')3(g .4. 设yxxy u +=, 则=du .5. 曲线326y y x -=在)2,2(-点切线的斜率为 .6. 设)(x f 为可导函数,)()1()(,1)1(2x f xf x F f +==',则=')1(F .7. 若),1(2)(02x x dt t x f +=⎰则=)2(f .8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分=-+∞⎰dx e x 20.10. 设D 为圆形区域=+≤+⎰⎰dxdy x y y x D5221,1 . 三、计算题(每题5分,共40分)1. 计算))2(1)1(11(lim 222n n n n ++++∞→Λ. 2. 求1032)10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数.3. 求不定积分dx x x ⎰-)1(1.4. 计算定积分dx x x ⎰-π53sin sin .5. 求函数22324),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y ==,围成,计算dxdy yyD⎰⎰sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积.8. 求微分方程yxy y 2-='的通解. 四、证明题(每题10分,共20分)1. 证明:2tan arcsin1x arc x x=+ )(+∞<<-∞x .2. 设)(x f 在闭区间[],b a 上连续,且,0)(>x fdt t f dt t f x F x xb⎰⎰+=0)(1)()( 证明:方程0)(=x F 在区间),(b a 内有且仅有一个实根.《高等数学》参考答案一、判断题. 将√或×填入相应的括号内(每题2分,共20分)1.√ ;2.× ;3.×;4.× ;5.×;6.× ;7.× ;8.× ;9.√ ;10.√.二、 填空题.(每题2分,共20分)1.442++x x ; 2. 1; 3. 1/2; 4.dy y x x dx y y )/()/1(2-++;5. 2/3 ;6. 1 ;7.336 ; 8. 8 ; 9. 1/2 ; 10. 0.三、计算题(每题5分,共40分)1.解:因为 21(2)n n +222111(1)(2)n n n <+++<+L 21n n+ 且 21lim 0(2)n n n →∞+=,21lim n n n →∞+=0由迫敛性定理知: ))2(1)1(11(lim 222n n n n ++++∞→Λ=0 2.解:先求对数)10ln(10)2ln(2)1ln(ln +++++=x x x y Λ101022111++++++='∴x x x y y Λ )(10()1(++='∴x x y Λ)10102211++++++x x x Λ 3.解:原式=⎰-x d x112=⎰-x d x 2)(112=2c x +arcsin4.解:原式=dx x x ⎰π23cos sin=⎰-2023sin cos πxdx x ⎰ππ223sin cos xdx x=⎰-2023sin sin πx xd ⎰ππ223sin sin x xd=2025][sin 52πx ππ225][sin 52x -=4/55.解: 02832=--='y x x f x 022=-='y x f y故 ⎩⎨⎧==00y x 或⎩⎨⎧==22y x当 ⎩⎨⎧==0y x 时8)0,0(-=''xxf ,2)0,0(-=''yy f ,2)0,0(=''xy f 02)2()8(2>--⨯-=∆Θ 且A=08<-∴ (0,0)为极大值点 且0)0,0(=f当 ⎩⎨⎧==22y x 时4)2,2(=''xxf , 2)2,2(-=''yy f ,2)2,2(=''xy f 02)2(42<--⨯=∆Θ ∴无法判断6.解:D={}y x y y y x ≤≤≤≤2,10),(⎰⎰⎰⎰=∴102sin sin y y Ddx y y dy dxdy y y=dy x y y y y 2][sin 10⎰=dy y y y )sin (sin 1⎰-=⎰+-110cos ]cos [y yd y=⎰-+-110cos ]cos [1cos 1ydy y y=1sin 1- 7.解:令xy u =,xyv =;则21≤≤u ,31≤≤v v vuu vv v uuv y y x x J v uvu 212221=-==∴ 3ln 212131===⎰⎰⎰⎰Ddv v du d A σ 8.解:令 u y =2,知x u u 42)(-=' 由微分公式知:)4(222c dx xe e y u dxdx+⎰-⎰==⎰-)4(22c dx xe e x x +-=⎰-)2(222c e xe e x x x ++=--四.证明题(每题10分,共20分)1.解:设 21arcsinarctan )(xx x x f +-=222222211111111)(xx x x x x xx f ++-+⋅+--+='Θ=0c x f =∴)( +∞<<∞-x令0=x 0000)0(=∴=-=c f Θ 即:原式成立。
高等数学(下册)试卷(一)一、填空题(每小题 3 分,共计24 分)1、z =log a ( x2y 2 )( a 0) 的定义域为D=。
2、二重积分ln( x2y 2 )dxdy 的符号为。
|x| |y| 13 、由曲线y ln x 及直线x y e 1 , y 1 所围图形的面积用二重积分表示为,其值为。
4L 的参数方程表示为x(t)(x),则弧长元素ds。
、设曲线y(t)5 、设曲面∑为x2y 29 介于z0 及 z 3 间的部分的外侧,则(x2y21)ds。
6、微分方程dyy tany的通解为。
dx x x7、方程y( 4) 4 y0 的通解为。
8、级数1的和为。
n1n(n1)二、选择题(每小题 2 分,共计16 分)1、二元函数z f ( x, y) 在 ( x0 , y0 ) 处可微的充分条件是()(A)f ( x, y)在(x0, y0)处连续;(B)f x( x, y),f y( x, y)在( x0, y0)的某邻域内存在;( C)z f x (x0 , y0 )x f y ( x0 , y0 ) y 当( x) 2(y) 20 时,是无穷小;( D)lim z f x ( x0 , y0 ) x f y ( x0 , y0 ) y0。
22x0(x)( y) y02、设u yf ( x)xf (y), 其中 f 具有二阶连续导数,则x2u y 2 u等于()y x x 2y 2(A)x y ;( B)x;(C) y;(D)0。
3、设: x 2y 2z21, z0, 则三重积分I zdV 等于()( A ) 4 2d2 d1 3sin cos dr ;r 02 dd 1 dr ;( B )r 2 sin0 022 d13sin cos dr ;( C )dr0 02d 13sin cos dr 。
( D )dr0 04、球面 x 2 y 2z 2 4a 2 与柱面 x 2 y 22ax 所围成的立体体积 V=()(A ) 4 2d2 a cos 4a2r 2dr ;(B ) 4 2d2 a cos r 4a2r 2dr ;(C ) 8 2d2 a cos r 4a2r 2dr ;(D )2d2a cos r 4a2r 2dr 。
《高等数学》专业 年级 学号 姓名一、判断题 . 将√或 ×填入相应的括号内 .(每题 2 分,共 20 分)( ) 1. 收敛的数列必有界 .( ) 2. 无穷大量与有界量之积是无穷大量. ( ) 3. 闭区间上的间断函数必无界 . ( ) 4. 单调函数的导函数也是单调函数.() 5. 若 f (x) 在 x 0 点可导,则 f (x ) 也在 x 0 点可导 . ( )6. 若连续函数 yf ( x) 在 x 0 点不可导,则曲线 yf ( x) 在 ( x 0 , f (x 0 )) 点没有切线 .( ) 7. 若 f (x) 在 [ a, b ] 上可积,则 f (x) 在 [ a,b ] 上连续 .() 8. 若 zf ( x, y) 在( x 0 , y 0 )处的两个一阶偏导数存在,则函数 z f ( x, y) 在( x 0 , y 0 )处可微 . ( ) 9. 微分方程的含有任意常数的解是该微分方程的通解.() 10. 设偶函数 f ( x) 在区间 (1,1 ) 内具有二阶导数,且f (0)f ( 0) 1 , 则f (0) 为 f ( x) 的一个极小值 .(每题 2 分,共 20 分)二、填空题 .1. 设 f (x 1)x 2 ,则 f (x 1) .1若 f (x)2x12. 1 ,则 lim.2 xx 013.设 单 调 可 微 函 数 f ( x) 的 反 函 数 为 g( x) , f (1)3, f(1) 2, f(3)6 则g (3).4. 设 ux , 则 du.xyy5. 曲线 x 26 y y 3 在 ( 2 , 2) 点切线的斜率为.6. 设 f (x) 为可导函数 , f (1)1, F ( x)f ( 1) f ( x 2 ) ,则 F (1).xf (x )x 2(1 x), 则 f (2)7. 若t2dt .8. f ( x) x 2 x 在 [0,4] 上的最大值为.9. 广义积分e 2 x dx.10. 设 D 为圆形区域 x 2y 21, y1 x 5 dxdy.D三、计算题 (每题 5 分,共 40 分)1. 计算 lim ( 121 2 1 2 ) .nn(n 1)(2n)2. 求 y ( x 1)(x2) 2 ( x 3) 3(x 10)10 在( 0,+)内的导数 .1 3. 求不定积分dx .x(1 x)4. 计算定积分sin 3 x sin 5 xdx .5. 求函数 f ( x, y)x 3 4x 2 2xy y 2 的极值 .6. 设平面区域 D 是由 yx, y x 围成,计算sin ydxdy .Dy7. 计算由曲线8. 求微分方程xy 1, xy 2, y x, y3x 围成的平面图形在第一象限的面积 .y2 x 的通解 .yy四、证明题 (每题 10分,共 20 分)1. 证明: arc tan xx (x) .arcsin1 x 22. 设 f (x) 在闭区间 [ a, b] 上连续,且f ( x) 0,xx1F ( x)f (t )dtdtbf (t )证明:方程 F ( x)0 在区间 (a, b) 内有且仅有一个实根 .《高等数学》参考答案一、判断题 . 将√或×填入相应的括号内(每题2 分,共 20 分)1.√ ;2.× ;3.×;4.× ;5.×;6.× ;7.× ;8.× ;9.√ ; 10.√.二、 填空题 . (每题 2 分,共 20 分)1. x 24x 4 ; 2. 1;3. 1/2;4. ( y 1/ y) dx ( x x / y 2 )dy ;5. 2/3 ;6. 1 ;7.336 ;8. 8 ;9.1/2 ; 10. 0.三、计算题(每题 5 分,共 40 分)1.解: 因为n 1 11L1n 1(2n)2n 2(n1)2(2n)2n2且lim n1n 120 , lim2 =0n(2 n)nn由迫敛性定理知:lim (12(n 121 2 )=0n n1)(2n)2.解: 先求对数 ln yln( x 1) 2 ln( x 2) 10ln( x10)1 y 11210 yx x 2 x 10y ( x1)(x 10)(1 210x1x 2x )103.解: 原式 = 21d x1x= 21d x1 ( x )2=2 arcsin x c4.解:原式 =sin 3 x cos2 xdx33=2 cos x sin 2xdx cosxsin 2xdx233=2 sin 2xd sin x sin 2xd sin x22525x] 02[sin2 x]=[sin 2552=4/55.解: f x3x 28x 2 y 0 f y2x 2 y 0故x0或x2 y0y2当x0时 f xx( 0,0)8 , f yy (0,0)2, f xy ( 0,0)2 y0( 8) ( 2) 220 且A=8 0( 0, 0)为极大值点且 f ( 0,0)0当x2时 f xx( 2,2) 4 , f yy (2,2)2, f xy ( 2,2)2 y24(2)220无法判断6.解: D= (x, y) 0y1, y2x ysin y dxdy dy21yD y0ysin y1 sin y ydydx =[ x]y2y y1= (sin y y sin y)dy= [ cos y]11yd cos y=1cos1[ ycos y]11cos ydy= 1 sin17.解: 令 uxy , vy;则 1 u2 , 1 v3xx ux v 1uJ2 uv2v v 1y uy vv u2v2 uvAd2 31 ln31du dvD12v8.解: 令y 2u ,知 (u)2u 4x由微分公式知: uy 22 dx2dxdxc)e ( 4xee 2 x ( 4xe 2 x dx c)e 2 x (2xe 2xe 2xc)四 . 证明题(每题 10 分,共 20 分)1.解: 设f ( x)arctan x x arcsinx 211 1 1 x 2x 2 2f ( x)1 x 1 x2x21x2=011 x2f (x)cx令 x 0f (0) 0 0 0 c0 即:原式成立。
n →∞⎰ x 高等数学试题一、单项选择题(本大题共 5 小题,每小题 2 分,共 10 分)1.设f ( x) =l nx ,且函数( x) 的反函数-1( x) = 2( x+1),则f [( x)] = ()x- 1A .l n x- 2B .l n x+2C .l n 2- xD .l n x+2x+2x- 2 x+2 2- x⎰0(e t + e -t - 2)dt2. lim xx →01- cos x= () A .0B .1C .-1D . ∞3. 设∆y =f (x 0 + ∆x ) - f (x 0 ) 且函数 f (x ) 在 x = x 0 处可导,则必有()A. lim ∆y = 0∆x →0B. ∆y = 0⎧ 2x 2, x ≤ 1C. dy = 0D. ∆y = dy4. 设函数f ( x) =⎨ ⎩3x -1, x > 1 ,则f ( x) 在点x=1处()A. 不连续B .连续但左、右导数不存在C .连续但不可导D . 可导5.设⎰xf ( x) dx=e - x 2+ C ,则f ( x) = ()A. xe - x 2B. - x e - x 2C. 2e - x 2D. - 2e - x 2二、填空题(本大题共 10 小题,每空 3 分,共 30 分) 请在每小题的空格中填上正确答案。
错填、不填均无分。
1 16.设函数 f(x)在区间[0,1]上有定义,则函数 f(x+ )+f(x- )的定义域是.4 47. lim (a + aq + aq 2 + + aq n )( q < 1) =8. lim arctan x =x →∞ xg29. 已知某产品产量为 g 时,总成本是C( g) =9+800,则生产 100 件产品时的边际成本M C g =100 =10.函数 f (x ) = x 3+ 2x 在区间[0,1]上满足拉格朗日中值定理的点ξ是 .11.函数 y = 2x 3 - 9x 2 +12x - 9 的单调减少区间是 .12.微分方程 xy '- y = 1+ x 3 的通解是.2ln 2dt13. 设 a,则a = .6 14. 设 z = cos x y则 dz= .15.设 D = {(x , y ) 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},则⎰⎰ xe -2 y dxdy =.D三、计算题(一)(本大题共 5 小题,每小题 5 分,共 25 分) ⎛ 1 ⎫x16.设 y = ⎪ ⎝ ⎭,求 dy.e t -1 =1+ x 2 ⎰x y x ⎢ ⎥ 17. 求极限 lim ln cot xx →0+ln x18. 求不定积分19. 计算定积分I= aa 2 - x 2 dx ..20.设方程 x 2 y - 2xz + e z= 1确定隐函数 z=z(x,y),求 z ' , z ' 。
高等数学测试试题
一、是非题( 3’× 6=18’)
1、 lim (1
x) x e.
(
)
x 0
2、函数 f ( x) 在点 x x 0 处连续,则它在该点处必可导 .
( )
3、函数的极大值一定是它的最大值.
( )
4、设 G ' x f ( x), 则 G( x) 为 f ( x) 的一个原函数 . ( )
1
0.
(
) 5、定积分
x cos xd x
1
6. 函数 y
x 2
是微分方程 x
d y
2 y 0 的解 .
(
)
d x
二、选择题( 4’× 5=20’)
7、函数 f ( x)
sin
1
是定义域内的(
)
x
A 、单调函数
B 、有界函数
C 、无界函数
D 、周期函数
8、设 y 1 2x ,则 d y
(
)
A 、 2 x d x
B 、 2 x ln 2
C 、 2x ln 2 d x
D 、( 1+ 2x ln 2) d x
9、设在区间 [ a, b] 上 f ' (x) 0, f " ( x) 0, 则曲线 y f ( x) 在该区间上沿着 x 轴正向(
)
A 、上升且为凹弧
B 、上升且为凸弧
C 、下降且为凹弧
D 、下降且为凸弧
10、下列等式正确的是(
)
A 、
C 、
f '( x) d x f ( x)
f '( x) d x f ( x) C
B 、
D 、
f ( x) d x f '( x)
f ( x) d x f '( x) C
2
2
2
11、 P
cos 2 x d x, Qsin 3x d x, R
sin 2 x d x, 则( )
2
A 、 P Q R
B 、 Q P R
C 、 P R Q
D 、 R Q P
三、选择题( 4’× 5=20’)
12.函数 f ( x)
x 2
的间断点为(
)
3
x 3
A 、 3
B 、 4
C 、 5
D 、6
13、设函数 f ( x) 在点 x
0处可导,且 lim
h
1
, 则 f ' (0) (
)
h 0
f ( h) f (0)
2
A 、 2
B 、 1
C 、 - 1
D 、 - 2
14、设函数 f ( x) x 2 ln x, 则 f " (1) (
)
A 、 2
B 、3
C 、 4
D 、5
d x 2
t ) d t
(
)
15、
ln(1
d x 0
A 、 ln(1 t)
B 、 ln(1
x 2 )
C 、 2x ln(1 x 2 )
D 、 x 2 ln(1 x 2 )
16、 f '(e x )e x d x ( )
A 、 f (e x )
B 、 f (e x )
C
C 、 f '(e x )
D 、 f ' (e x ) C
四、选择题( 7’× 6=42’)
17、 lim
x 2
x 6 (
).
x
2
x 2
A 、 5
B 、6
C 、 7
D 、8 18、函数 y x 3 3x 的单调减少区间为(
)
A 、 (
, 1)
B 、 ( ,1)
C 、 ( 1, )
D 、 [ 1,1] 19、已知曲线方程 y ln( 2
x) ,则点 M (0,ln 2) 处的切线方程为(
)
A 、 y
x
B 、 y
x 1
C 、 y
x
D 、 y x ln 2
2
ln 2
2
x
20、函数 f ( x)
ln t d t 的极值点与极值分别为(
)
1
2
A 、 x 2, 极小值 f (2) 1
B 、 x 1, 极小值
C 、 x
2, 极大值 f (2)
1
D 、 x 1, 极大值
f (1)
1
(ln 2 1)
2
f (1)
1 1)
(ln 2
2
21 y
4 x , x
[0,4]
与 x 轴, y 轴以及 x 4
所围的平面图形的面积值 S=
(
)
、曲线 2
A 、 4
B 、8
C 、 16
D 、 32
22、 微分方程
d y
e x 2 y 满足初始条件 y(0) 0 的特解为(
)
d x
A 、 ln y e x 1
B 、 e 2 y 2e x
1
C 、 e 2 y e x
1
D 、 e 2y
e 2 x
1
高等数学测试题答案:
一、 1、 N2、 N3、 N4、 Y5、 Y6.Y
二、 7、 B8、 C9、A10、 C11、 A
三、 12、 A13、D14、 B15、 C16、 B
四、 17、 A18、D19、 C20、 B21、 C22、 B。