前馈反馈控制系统
- 格式:doc
- 大小:1.68 MB
- 文档页数:15
前馈反馈控制系统工作原理下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、前馈反馈控制系统工作原理1.1 前馈控制系统工作原理1.1.1 前馈控制是指在控制系统中,根据系统的预期输入和已知的系统模型,提前计算出控制作用,以抵消预期扰动对系统输出的影响。
升降膜式蒸发器的前馈反馈控制系统的设计升降膜式蒸发器是一种常用的热传递设备,广泛应用于化工、制药、食品等行业。
为了提高蒸发器的效率和稳定性,设计一个合理的前馈反馈控制系统是非常重要的。
一、升降膜式蒸发器的基本原理升降膜式蒸发器通过将液体送入设备中,利用加热源将液体加热并转化为气态,然后从设备顶部排出。
在这个过程中,液体在设备内形成了一层薄膜,并通过重力作用向下流动。
同时,气体通过设备底部进入,并与下降的液体接触进行传热和质量传递。
气体从设备顶部排出,并经过冷凝处理后得到所需产品。
二、前馈反馈控制系统的必要性升降膜式蒸发器的操作过程中可能会受到多种因素的影响,如进料流量、进料浓度、加热温度等。
这些因素对于设备的稳定运行和产品质量有着重要影响。
设计一个前馈反馈控制系统可以实时监测和调节这些因素,以保证蒸发器的稳定性和性能。
三、前馈反馈控制系统的设计要点1. 传感器选择:选择合适的传感器对蒸发器的关键参数进行监测,如进料流量、进料浓度、加热温度等。
常用的传感器包括流量计、浓度计和温度计等。
2. 控制算法选择:根据监测到的数据,设计合适的控制算法来实现对蒸发器的控制。
常用的控制算法有PID控制算法、模糊控制算法和模型预测控制算法等。
3. 控制信号输出:根据控制算法得出的结果,通过执行机构输出相应的控制信号。
执行机构可以是电动调节阀或变频调速装置等。
4. 反馈回路设计:为了提高系统的稳定性和鲁棒性,需要设计一个反馈回路来实时监测设备运行状态,并将反馈信息输入到控制系统中进行调节。
5. 控制系统参数整定:根据蒸发器的具体情况和要求,对控制系统参数进行整定,以达到最佳的控制效果。
参数整定包括比例系数、积分时间和微分时间等。
四、前馈反馈控制系统的工作流程1. 传感器实时监测蒸发器的关键参数,并将数据传输给控制系统。
2. 控制系统根据监测到的数据,通过控制算法计算出相应的控制信号。
3. 控制信号经过执行机构输出到蒸发器中,调节进料流量、进料浓度或加热温度等参数。
反馈前馈控制系统设计课题背景描述背景描述:反馈前馈控制系统是一种常用的控制系统设计方案。
它通过将反馈和前馈两种控制方式结合起来,能够实现更加精确、稳定和灵活的控制效果,被广泛应用于各种机电设备、自动化生产线等领域。
在实际应用中,反馈前馈控制系统的设计需要考虑多方面因素,包括被控对象的特性、控制器的性能要求、信号采集和处理方式等。
因此,如何有效地设计反馈前馈控制系统成为了一个重要的课题。
本文将从以下几个方面进行详细介绍和分析:反馈前馈控制系统的基本原理、设计流程和具体实现方法,以及在实际应用中需要注意的问题和解决方案。
一、反馈前馈控制系统基本原理1. 反馈控制原理反馈控制是指通过测量被控对象输出信号,并与期望输出信号进行比较,得到误差信号后再通过调节输入信号来使误差趋近于零的一种闭环控制方式。
其基本思想是根据被测量物理量与期望值之间的误差来调整控制量,以达到控制目标。
2. 前馈控制原理前馈控制是指在被控对象输入信号中加入一个预测信号,通过提前调节输入信号来消除误差,从而实现更加精确和稳定的控制效果。
其基本思想是在被测量物理量出现变化之前就对其进行预测,并通过预测结果来调整输入信号。
3. 反馈前馈控制原理反馈前馈控制是将反馈和前馈两种控制方式结合起来,通过同时考虑当前状态和未来趋势来实现更加精确、稳定和灵活的控制效果。
其基本思想是根据当前状态和未来趋势对被测量物理量进行预测,并通过反馈和前馈两种方式对输入信号进行调节,以达到最优的控制效果。
二、反馈前馈控制系统设计流程1. 系统建模系统建模是指将被控对象、传感器、执行器等各个部分组成一个完整的数学模型,以便于后续的仿真和分析。
在建模过程中需要考虑到系统的非线性特性、时变特性等因素,以保证模型的准确性和可靠性。
2. 控制器设计控制器设计是指根据系统模型和控制要求,设计出合适的控制算法和参数,以实现对被控对象的精确、稳定和灵活的控制。
在控制器设计过程中需要考虑到系统的动态响应特性、鲁棒性、抗干扰能力等因素。
前馈控制系统的基本原理前馈控制系统是一种控制系统,其中输入信号经过预先设计的控制器处理后,直接作用于被控对象,以实现对被控对象的控制。
该系统的基本原理是根据被控对象的数学模型和被控目标,设计适当的控制器,并通过对输入信号进行预先处理,以提前预测被控对象的响应,并消除或最小化干扰对被控对象的影响,从而实现精确控制。
前馈控制系统通常由以下几个主要组成部分构成:被控对象、传感器、控制器和执行器。
被控对象是指需要被控制的系统或设备,如机械臂、电机、飞机等。
传感器负责将被控对象的状态信息转换为电信号,以便输入到控制器中进行处理。
控制器根据输入信号和预先设计的控制算法,生成适当的输出信号,并将其发送到执行器。
执行器根据控制器的输出信号,对被控对象进行调节,从而实现控制目标。
前馈控制系统的基本原理是根据被控对象的数学模型和被控目标,设计适当的控制器,并通过对输入信号进行预先处理来实现精确控制。
在设计控制器时,需要考虑被控对象的动态响应特性、控制目标以及系统的稳定性、鲁棒性和性能要求等因素。
预处理器是前馈控制系统的重要组成部分,其作用是对输入信号进行预先处理,以消除或最小化干扰对被控对象的影响。
预处理器可以采用各种方法,如滤波、调幅、增益调整等,以实现对输入信号的改变。
在前馈控制系统中,控制器的设计是关键。
根据被控对象的数学模型和理想控制目标,可以选择合适的控制算法,如比例积分控制(PI控制)、比例微分控制(PD控制)、模糊控制、神经网络控制等。
控制器的设计要考虑稳定性、鲁棒性、性能要求等因素,以实现对被控对象的精确控制。
前馈控制系统的优点是能够减小被控对象对干扰的响应,提高系统的跟踪性能和鲁棒性。
通过预先预测被控对象的响应,并对控制器的输入信号进行合适的处理,可以消除或最小化干扰对被控对象的影响,从而实现更精确的控制。
人体内控制系统可分为非自动控制系统、反馈控制系统和前馈控制系统。
非自动控制系统在人体内并不多见,故而下面主要介绍反馈控制系统和前馈控制系统。
一、反馈控制系统:
1、定义及概述:反馈控制系统是由比较器、控制部分和受控部分组成的一个闭环系统;由于在该系统中反馈信号对控制部分的活动可发生不同的影响,所以可将其分为两种:负反馈和正反馈。
2、负反馈控制系统:(1)定义:来自受控部分的输出信息反馈调整控制部分的活动,最终使受控部分的活动向与其原先活动的相反方向改变。
(2)举例:①正常机体内,血糖浓度、PH、循环血量、渗透压的稳定②减张反射
3、正反馈控制系统:(1)定义:来自受控部分的输出信息反馈调整控制部分的活动,最终使受控部分的活动向与其原先活动的相同方向改变。
(2)举例:①排尿反射、排便反射②血液凝固过程③神经纤维膜上达到阈电位时Na+通道开放④分娩过程⑤胰蛋白酶原激活的过程
二、前馈控制系统:
1、定义:当控制部分发出信号,使受控部分进行某一活动时,受控部分不发出反馈信号,而是由某一监测装置在受到刺激后发出前馈信号,作用于控制部分,使其及早做出适应性反应,及时调控受控部分的活动。
2、意义:避免负反馈调节时矫枉过正产生的波动和反应的滞后现象,
使调节控制更快、更准确。
控制系统的反馈与前馈控制技术控制系统是现代工程中不可或缺的一部分,它可以用来控制各种各样的系统,从机械装置到电子设备。
控制系统的设计和实现涉及多种技术和方法。
其中,反馈与前馈控制技术是两种常用的控制策略,它们对于提高系统的稳定性和性能至关重要。
本文将介绍控制系统的反馈和前馈控制技术,以及它们的应用和优势。
一、反馈控制技术反馈控制技术是一种通过测量系统输出并与期望输出进行比较,然后对系统进行调整的控制策略。
反馈控制系统通常包括传感器、控制器和执行器。
传感器用于测量系统的输出,控制器根据输出和期望输出之间的差异来指导执行器的行为。
反馈控制技术的基本原理是根据系统的实际运行情况进行实时调整,以达到期望的控制效果。
反馈控制技术具有许多优势。
首先,它可以对系统的不确定性和外部干扰做出快速响应,并自动调整系统以适应环境变化。
其次,反馈控制技术可以提高系统的稳定性和鲁棒性,减少系统运行过程中的波动和振荡。
最后,反馈控制技术还可以实现对系统输出的精确控制,使系统在不同的工作条件下始终保持期望的性能。
二、前馈控制技术前馈控制技术是一种根据系统输入的参考信号预测系统输出,并根据预测结果进行控制的策略。
前馈控制系统通常包括传感器、预测器和执行器。
传感器用于测量输入信号和系统输出,预测器根据输入信号的特征和系统的数学模型来预测系统输出的未来变化,执行器根据预测结果来调整系统的控制策略。
前馈控制技术的主要优势在于它可以通过提前预测和调整系统来消除输入信号对系统性能的影响。
这种技术可以在系统遇到外部扰动或变化时快速响应,从而提高控制系统的性能。
此外,前馈控制技术还可以减少系统运行过程中的误差和稳态偏差,使系统更加可靠和精确。
三、反馈与前馈控制技术的综合应用在实际控制系统中,反馈与前馈控制技术通常会综合应用,以充分发挥各自的优势。
综合应用反馈与前馈控制技术可以实现更加精确和稳定的控制效果,提高系统的性能和鲁棒性。
在一些高精度、高稳定性要求的系统中,反馈控制技术可以提供及时的误差修正,使系统能够在快速变化的工作环境中保持稳定。
目录一、前馈控制系统设计1、前馈控制系统选择原则1.1 扰动量可测不可控原则......................................................... .. (2)1.2 控制系统精确辨识原则......................................................... .. (2)1.3被控系统自衡原则......................................................... .. (3)1.4 优先性原则......................................................... . (3)1.5 经济性原则......................................................... . (4)2、工程整定2.1 整定的总体原则2.1.1 稳定性......................................................... (4)2.1.2快速性......................................................... .. (5)2.1.3 反馈控制的静差......................................................... (5)3、前馈-反馈复合系统工程整定......................................................... (5)二、实例仿真................................................. .. (6)2.1前馈控制系统整定......................................................... .. (7)2.2反馈控制系统前向通道稳定性分析 (7)2.3、反馈控制系统整定......................................................... .. (8)2.4、系统仿真......................................................... (9)三、心得体会..................................................... . (11)四、参考文献..................................................... . (12)一、前馈控制系统设计1.1 前馈控制系统选择原则前馈控制系统的选择主要有一下原则:1.1.1 扰动量可测不可控原则扰动量的可测性是补偿的前提条件,不可测的扰动量无法设计前馈补偿器。
如果干扰可控,则可通过控制方法消除扰动对系统的影响,而没有必要采用前馈这种迂回的方式,在被控系统“腹中”消除干扰的影响了。
例如在很多过程控制中,温度是一个主要干扰源。
温度可以测量(直接测量或间接测量),满足可测条件。
而在某些环境如实验室中,温度可以通过空调等进行调节(不满足不可控条件),将温度对控制对象的影响降到最低,这时就没有必要对温度采取前馈控制方式消除影响了。
而在很多现场情况下(如被控对象在室外等),温度不易调节(满足不可控条件),这时应采取前馈控制方式消除由于温度对系统的影响。
1.1.2 控制系统精确辨识原则控制中的每一个环节的传递特性都应能精确辨识。
作为开环控制,构成前馈控制系统中的任何一个环节都应尽可能准确,因为开环控制系统中的任何一环节对系统的控制精确度都有一定影响。
相比之下,闭环控制对系统中环节的要求要“松”得多。
1.1.3被控系统自衡原则在非自衡系统中不能单独使用前馈控制。
前馈控制本身是开环控制系统,不改变被控系统的非自衡性,所以这样的系统应先构成自衡系统才能采用前馈控制。
1.1.4 优先性原则采用控制系统中的优先性依次是:反馈控制、静态前馈控制、动态前馈控制、前馈-反馈控制、前馈-串级控制。
由于反馈控制能时刻监控被控对象的被控参数,能保证在所有干扰下,将被控参数的变动控制在允许范围之内。
所以,系统应优先考虑采用反馈控制。
当存在反馈控制难以克服的频率高、幅值大、对被控参数影响显著、可测而不可控的扰动或控制系统通道时延较大、反馈控制又不能得到良好的控制效果时,为了改善和提高系统的控制质量,可以引入前馈控制。
在实际工业生产过程中,尤其当过程扰动通道与控制通道的时延相差不大时应用静态前馈控制可获得较高的控制精度。
静态前馈控制只能保证被控制参数的静态偏差接近或等于零,不考虑由于过程扰动通道的时间常数和控制通道的时间常数不同,不能消除过度过程中所产生的动态偏差。
当需要严格控制动态偏差时,就要采用动态前馈控制。
当被控对象的干扰较多,或不能精确辨识干扰对被控对象的影响时,可以采用前馈-反馈控制。
利用前馈控制对主要干扰对象进行控制,通过反馈控制抑制由于辨识不精确以及其他干扰引起的误差。
也就是说,前馈-反馈控制系统将干扰分成两个等级,对影响大的干扰采用前馈补偿,保证系统输出不会有过大的波动,对于影响小的干扰允许引起系统输出的偏差,通过偏差进行补偿。
当被控对象较复杂,干扰较多,要求控制较为精细时,应采用前馈-串级控制。
1.1.5 经济性原则静态前馈控制简单,一般采用比例调节器或比值器就能满足使用要求。
而通常动态前馈控制要采用专用的控制器,投资高于静态前馈控制,所以,若静态前馈能达到工艺要求时,则首先选用静态前馈控制。
2、工程整定2.1 整定的总体原则前馈控制系统整定主要涉及的问题是稳定性、快速性和反馈控制的静差问题。
2.1.1 稳定性稳定性是控制系统正常工作的首要条件。
对过程控制来说,稳定性问题不但涉及稳态情况,更涉及干扰扰动问题。
干扰对过程控制的影响主要体现在:系统模型识别精确性降低、系统模型参数离散性变大、系统远离原模型静态工作点、系统工作进入非线性区等。
干扰的主要后果是使控制系统处于不稳定,甚至处于不安全工作状态。
2.1.2快速性应保证系统响应的快速性。
2.1.3 反馈控制的静差在稳态时,反馈控制应能较好地反应系统的控制要求,应做到系统响应和控制要求的一致,故系统跟踪不应存在静差。
3、前馈-反馈复合系统工程整定前馈-反馈复合控制的工程整定方法主要有:前馈控制和反馈分别整定,确定各自参数,然后组合在一起。
首先整定反馈控制系统,然后再在反馈的基础上引入前馈控制系统,并对前馈控制系统进行整定。
二、实例仿真系统按结构分类,可分为:静态前馈控制、动态前馈控制、前馈-反馈复合控制系统、前馈-串级复合控制系统等。
其中,前馈-反馈复合控制系统的特点是利用前馈抑制对系统影响较大的干扰,利用反馈控制抑制其他干扰以及前馈所“遗留”部分干扰。
前馈调节器和反馈调节器的整定方法如前所述。
一般为了实现系统无静差,反馈调节器多选PI控制方式。
前馈反馈复合控制系统仿真主要包括:系统识别、控制系统整定和系统仿真等内容。
其中控制系统整定包括前馈控制系统整定和反馈控制系统整定两部分。
本例采用前馈、反馈分别整定的方法。
假设被控对象传递函数中各部分传递函数如下:e-10s干扰通道传递函数为:G f(s)G2(s)=15(81)(10s1)s++e-8s 系统被控部分传递函数为:G1(s)G2(s)=6s++(51)(10s1)给定部分传递函数为:Gc(s)=12.1前馈控制系统整定。
由于采用前馈反馈分别整定方法,所以,前馈整定参数为:K d=-2.5,T dl=8。
若系统采用PID控制,则系统结构框图如图:2.1.1前馈-反馈复合控制系统方框图2.2反馈控制系统前向通道稳定性分析。
系统稳定性分析是实验调试中正确把握试验方法、试验参数的基本依据。
对2.1.1所示系统反馈环节中开环稳定性分析(不含PID 调节器部分),为分析方便,取:不含PID调节器的开环传递函数可近视写成:6+++2(3s1)(10s1)(5s1)开环Bode图如图2.2.1所示,可见开环系统不稳定。
2.2.1反馈控制(不含控制器)开环Bode图2.3、反馈控制系统整定。
本例反馈控制器取为PI形式。
采用阶跃响应法整定PI参数。
开环阶跃响应Simulink框图如图所示。
单位阶跃响应曲线如图2.3.1所示。
2.3.1开环阶跃响应Simulink框图2.3.2开环系统单位阶跃响应其中阶跃输入控制量 u=1。
因此得:2.4、系统仿真。
利用各整定参数及系统模型辨识结果构建系统前馈-反馈复合控制Simulink框图2.4.1所示,其中各个模块的具体结构如2.4.2所示,仿真结果如2.4.3所示。
2.4.1 系统前馈-反馈复合控制Simulink框图2.4.2系统主要模块结构图2.4.3 系统前馈-反馈复合控制Simulink仿真结果采取前馈-反馈复合控制系统比单纯采取前馈控制提高了系统控制品质。
三、心得体会通过本例的仿真,我们认识到前馈-反馈复合控制方法相比传统PID控制,具有稳定性好、自适应性好、能显著提高系统控制品质等有点。
在这次仿真过程中,我们查阅了自动控制系统的相关材料,一定程度上对自动控制系统和其发展现状有了认识了解。
根据仿真要求,我们经过对系统参数进行分析和整定,得到了仿真结果并对结果进行分析,进一步了解到了,前馈-反馈复合控制系统的特点。
在做的过程中,我们遇到了问题都尽力通过查阅资料解决,不过还有一定的不足,促使我们在以后学习中努力补缺补漏加以解决。
总得来说,通过这次实例仿真,使我们对过程控制系统有了更深入的了解,进行理论与实践的结合,为我们以后的学习和工作打下了更好的基础,在今后的日子里,我们将理论与实践更深入结合,充分运用于工作中。
四:参考文献[1]孙优贤.工业过程控制技术-应用篇.北京:化学工业出版社,2006.1:79-135[2] 何衍庆.工业生产过程控制.北京:化学工业出版社,2004.3:77-88[3] 邵裕森.过程控制工程(第二版).北京:机械工业出版社,2004.8:45-90[4] 翁维勤.过程控制系统及工程. 北京:化学工业出版社,2002.7:42-62[5] 张毅刚.单片机原理及应用.北京:高等教育出版社,2003:126-135[6] 何希才.传感器及其应用电路.北京:电子工业出版社,2001.3:134-150。