光电码盘的原理
- 格式:doc
- 大小:131.00 KB
- 文档页数:5
码盘的工作原理
码盘是一种用于测量角度的装置,主要包括图案码盘和光电码盘两种类型。
1. 图案码盘(或磁性码盘)工作原理:
- 图案码盘一般由圆盘和固定在旋转轴上的光电检测器构成。
圆盘上通常有一系列等间隔排列的透明和不透明的图案或磁性标记。
- 当盘子随着旋转轴旋转时,光电检测器通过光源照射在图案
码盘上。
当光探测器检测到从透明图案到不透明图案的变化时,它会产生一个电脉冲信号。
- 通过监测和计数电脉冲的数量,可以确定旋转的角度。
计数
单位的数量取决于图案或磁性标记的数量和图案码盘的分辨率。
2.光电码盘的工作原理:
- 光电码盘与图案码盘的原理类似,也由圆盘和光电检测器组成。
- 光电码盘的圆盘表面有一系列等间隔排列的光电栅格或槽,
其中光电栅格是由透明和不透明的纹理组成。
- 当光源照射在光电栅格上时,光电检测器将会通过检测到透
过和阻挡所产生的电位差来测量光的强度变化。
- 当盘子旋转时,光电栅格的纹理会导致光的透过和阻挡发生
变化,从而引起光电检测器输出电位差的周期性变化。
- 通过分析和计数光电检测器输出信号的周期变化数,可以确
定盘子的旋转角度。
无论是图案码盘还是光电码盘,都需要配合相关的信号处理和计数电路来实现精确的角度测量和转换。
光电编码器原理与安装光电编码器是一种常用于测量角度和位置的传感器设备。
它通过使用光电传感器和编码盘来监测物体的运动并转化为数字量,在自动化设备、机械加工、机器人等领域有着广泛的应用。
下面将介绍光电编码器的工作原理和安装方法。
光电编码器由一个光线发射器和一个光电传感器组成。
光线发射器通常发射一束红外光线,而光电传感器则用来接收光线并生成电信号。
编码盘是位于物体上的一个圆盘,上面有一系列的开关器件。
当物体运动时,编码盘上的开关器件会遮挡或透过光线,从而使得光电传感器接收到的光强发生变化。
1.增量式光电编码器:增量式光电编码器通过不断变化的光信号来测量运动轴的位置和速度。
它通常具有两个信号输出通道:一个是增量通道,用来测量速度,另一个是基准通道,用来确定位置。
2.绝对式光电编码器:绝对式光电编码器具有多个输出通道,可直接输出角度或位置信息。
它包含多个编码盘,每个编码盘上都有一个独立的编码器。
利用每个编码器的输出信号,可以直接确定物体的绝对角度或位置。
1.确定安装位置:根据实际需要确定光电编码器的安装位置。
通常情况下,光电编码器应尽量靠近被测物体,以减小误差。
2.安装固定支架:根据光电编码器的具体型号和要求,选择合适的固定支架,并将其固定在安装位置上。
确保固定支架稳固并与被测物体保持一定的距离。
3.安装光线发射器和光电传感器:将光线发射器和光电传感器固定在安装支架上。
通常情况下,光电传感器应与编码盘的光栅之间保持一定的距离,以确保准确测量。
4.安装编码盘:将编码盘安装在被测物体上,并与光电传感器对应位置对准。
注意安装时要保持编码盘与光电传感器之间的间隙适当。
5.连接电源和信号线:根据光电编码器的具体要求,将其连接到适当的电源和接收设备上。
确保电源和信号线连接正确,并进行必要的防护措施。
6.测试和校准:在安装完成后,进行必要的测试和校准。
检查光电编码器是否正常工作,并确认测量结果准确可靠。
总结:光电编码器是一种常用的测量角度和位置的传感器设备。
光电码盘的工作原理
光电码盘,又称光栅码盘,是一种可以捕捉和计算传动轴的位置、速度和角度位置的装置,它是由光源、编码盘和光电传感器组成的。
其工作原理是,当编码盘旋转时,光源把形成的照射到反光条纹上,光电传感器会通过检测折射到电路板上的光信号来捕捉到反光条纹
上的编码信息,从而得到传动轴的位置和转速信息。
编码盘可以由各种编码器制成,最常见的是分别有分离式编码器、电子编码器、激光编码器和涡轮编码器。
其中,分离式编码器采用光学原理,通过光源和光电传感器的交替照射到反光条码上,从而实现位置的检测;而电子编码器是在编码盘上用电磁磁珠和磁铁组成激励电路,利用传感器原理,得到编码盘的信号;激光编码器是在编码盘上安装激光发射器,从而利用激光发射出的条纹反射到反光板上,采集反射的信号;涡轮编码器是通过安装在轴上的涡轮来获取信号,以保证轴自转时可以产生信号;最后,有些编码器可以实现磁铁检测,从而得到编码信号。
光电码盘可以为智能机器、工业机器和家用电器提供位置、速度和角度数据,使它们能够根据预设的程序进行精确操作。
- 1 -。
光码盘的结构作用原理光码盘是一种常见的光电传感器,它的主要作用是将物体的运动转化为电信号,从而实现对物体运动的监测和控制。
光码盘的结构和作用原理非常简单,但是它在工业自动化、机器人控制、医疗设备等领域都有广泛的应用。
光码盘的结构光码盘通常由两部分组成:光学部分和编码部分。
光学部分由光源、光电二极管和光学透镜组成,它的作用是产生光束并将其聚焦到编码部分。
编码部分由透明和不透明的条纹组成,这些条纹被称为编码带。
编码带通常是环形的,它们被固定在旋转轴上,当物体旋转时,编码带也会随之旋转。
光电二极管通过检测编码带上的透明和不透明条纹来产生电信号,这些信号可以被用来计算物体的旋转速度和方向。
光码盘的作用原理光码盘的作用原理非常简单,它利用光电二极管检测编码带上的透明和不透明条纹来产生电信号。
当物体旋转时,编码带也会随之旋转,光电二极管通过检测编码带上的透明和不透明条纹来产生电信号。
这些信号可以被用来计算物体的旋转速度和方向。
光码盘的应用光码盘在工业自动化、机器人控制、医疗设备等领域都有广泛的应用。
在工业自动化中,光码盘通常被用来监测机器的旋转速度和方向,从而实现对机器的控制。
在机器人控制中,光码盘通常被用来监测机器人的关节角度和位置,从而实现对机器人的控制。
在医疗设备中,光码盘通常被用来监测医疗设备的旋转速度和方向,从而实现对医疗设备的控制。
总结光码盘是一种常见的光电传感器,它的主要作用是将物体的运动转化为电信号,从而实现对物体运动的监测和控制。
光码盘的结构和作用原理非常简单,但是它在工业自动化、机器人控制、医疗设备等领域都有广泛的应用。
光电码盘的工作原理一、光电码盘的定义和作用光电码盘是一种用于测量角度和位置的装置,它通过光电传感器和码盘相互配合,能够将角度或位置信息转换为电信号输出。
在许多机械设备和自动化系统中,光电码盘被广泛应用于位置控制、导航和测量等方面。
二、光电码盘的组成结构光电码盘主要由光电传感器和码盘两部分组成。
2.1 光电传感器光电传感器是光电码盘的核心组件,它能够将光信号转换为电信号。
光电传感器通常由发光二极管(LED)和光敏二极管(Photodiode)组成。
发光二极管负责发射光信号,而光敏二极管则负责接收光信号,并将其转换为电信号输出。
2.2 码盘码盘是光电码盘的另一个重要组成部分,它通常由光栅、编码圆盘和标尺组成。
光栅是由透光和不透光的条纹交错排列而成,通过光栅的运动来改变光敏二极管接收到的光信号。
编码圆盘是固定在光电传感器上的圆形盘片,上面刻有一系列的条纹,用于与光栅配合,产生特定的光信号。
标尺是固定在被测量物体上的刻度尺,用于测量角度或位置。
三、光电码盘的工作原理光电码盘的工作原理可以分为以下几个步骤:3.1 发光二极管发射光信号当电流通过发光二极管时,发光二极管会发射出可见光信号。
这些光信号通过光栅和编码圆盘的相互配合,在光栅上产生一系列的光斑。
3.2 光栅与编码圆盘的运动被测量物体的运动会带动光栅和编码圆盘的运动。
光栅和编码圆盘之间的相对运动会改变光斑的位置和形状。
3.3 光敏二极管接收光信号光栅上的光斑会被光敏二极管接收到。
光敏二极管的光敏区域会根据光斑的位置和形状产生不同的电信号。
3.4 电信号转换和处理光敏二极管产生的电信号会经过放大、滤波和数字化处理等步骤,最终转换为可供计算机或控制器读取和处理的数字信号。
四、光电码盘的优势和应用领域光电码盘具有以下几个优势:1.高精度:光电码盘能够实现高精度的位置测量,通常精度可达到几个角秒。
2.高速度:光电码盘的测量速度非常快,能够满足高速运动的要求。
1.光电编码器原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90旱牧铰仿龀逍藕拧根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90海佣煞奖愕嘏卸铣鲂较颍鳽相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。
目前国内已有16位的绝对编码器产品。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
光电编码器的工作原理和应用电路1 光电编码器的工作原理光电编码器(Optical Encoder)俗称“单键飞梭”,其外观好像一个电位器,因其外部有一个可以左右旋转同时又可按下的旋钮,很多设备(如显示器、示波器等)用它作为人机交互接口。
下面以美国Greyhill公司生产的光电编码器为例,介绍其工作原理及使用方法。
光电编码器的内部电路如图1所示,其内部有1个发光二极管和2个光敏三极管。
当左右旋转旋钮时,中间的遮光板会随旋钮一起转动,光敏三极管就会被遮光板有次序地遮挡,A、B相就会输出图2所示的波形;当按下旋钮时,2、3两脚接通,其用法同一般按键。
当顺时针旋转时,光电编码器的A相相位会比B相超前半个周期;反之,A相会比B相滞后半个周期。
通过检测A、B两相的相位就可以判断旋钮是顺时针还是逆时针旋转,通过记录A或B相变化的次数,就可以得出旋钮旋转的次数,通过检测2、3脚是否接通就可以判断旋钮是否按下。
其具体的鉴相规则如下:1.A为上升沿,B=0时,旋钮右旋;2.B为上升沿,A=l时,旋钮右旋;3.A为下降沿,B=1时,旋钮右旋;4.B为下降沿,A=O时,旋钮右旋;5.B为上升沿,A=0时,旋钮左旋;6.A为上升沿,B=1时,旋钮左旋;7.B为下降沿,A=l时,旋钮左旋;8.A为下降沿,B=0时,旋钮左旋。
通过上述方法,可以很简单地判断旋钮的旋转方向。
在判断时添加适当的延时程序,以消除抖动干扰。
2 WinCE提供的驱动模型WinCE操作系统支持两种类型的驱动程序。
一种为本地驱动程序,是把设备驱动程序作为独立的任务实现的,直接在顶层任务中实现硬件操作,因此都有明确和专一的目的。
本地设备驱动程序适合于那些集成到Windows CE平台的设备,诸如键盘、触摸屏、音频等设备。
另一种是具有定制接口的流接口驱动程序。
它是一般类型的设备驱动程序。
流接口驱动程序的形式为用户一级的动态链接库(DLL)文件,用来实现一组固定的函数称为“流接口函数”,这些流接口函数使得应用程序可以通过文件系统访问这些驱动程序。
1)、光电码盘:主要用来测量机器人小车车轮的转速,构成机器人速度的闭环反馈。
2)、组成:光发射器,光探测器
3)、原理:在光源led照射下,通过光电码盘的盘缝,不断地输出光电脉冲信号。
光电码盘固定在电机轴上,输出两路正交脉冲,通过两路的正交脉冲,从而可以向微控制器提供速度大小及方向的反馈。
(通过一路光电脉冲可测得转速,通过两路正交脉冲可实现测得转向)比如当电机顺时针转动时,A相脉冲超前B相;当电机逆时针转动时,B相脉冲超前A相。
4)、测速方法
M测速法:在T时间内,脉冲发生器每转动一周产生的脉冲数为P,测得的脉冲数为M。
则电机每分钟的转速为:
N=60*M/P*T
这种方法只适用于转速较高的场合,当转速较低时误差比较大。
为了弥补M法测低速误差比较大的问题进行改进:
分两路光电脉冲输入:一路是四倍频电路(因此可实现测低速误差较小);另一路是正交编码脉冲(用于鉴相,并加了一个清零信号,实现变相清零)。
编码器的工作原理介绍一、光电编码器的工作原理光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90°的两路脉冲信号。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
(一)增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90o,从而可方便地判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
(二)绝对式编码器绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。
目前国内已有16位的绝对编码器产品。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
1.光电编码器原理
光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。
这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。
光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。
由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。
此外,为判断旋转方向,码盘还可提供相位相差90旱牧铰仿龀逍藕拧
根据检测原理,编码器可分为光学式、磁式、感应式和电容式。
根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1增量式编码器
增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90海佣煞奖愕嘏卸铣鲂较颍鳽相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2绝对式编码器
绝对编码器是直接输出数字量的传感器,在它的圆形码盘上沿径向有若干同心码道,每条道上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。
显然,码道越多,分辨率就越高,对于一个具有 N位二进制分辨率的编码器,其码盘必须有N条码道。
目前国内已有16位的绝对编码器产品。
绝对式编码器是利用自然二进制或循环二进制(葛莱码)方式进行光电转换的。
绝对式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,绝对编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。
编码的设计可采用二进制码、循环码、二进制补码等。
它的特点是:
1.2.1可以直接读出角度坐标的绝对值;
1.2.2没有累积误差;
1.2.3电源切除后位置信息不会丢失。
但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数,目前有10位、14位等多种。
1.3混合式绝对值编码器
混合式绝对值编码器,它输出两组信息:一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
光电编码器是一种角度(角速度)检测装置,它将输入给轴的角度量,利用光电转换原理转换成相应的电脉冲或数字量,具有体积小,精度高,工作可靠,接口数字化等优点。
它广泛应用于数控机床、回转台、伺服传动、机器人、雷达、军事目标测定等需要检测角度的装置和设备中。
2. 光电编码器的应用电路
2.1 EPC-755A光电编码器的应用
EPC-755A光电编码器具备良好的使用性能,在角度测量、位移测量时抗干扰能力很强,并具有稳定可靠的输出脉冲信号,且该脉冲信号经计数后可得到被测量的数字信号。
因此,我们在研制汽车驾驶模拟器时,对方向盘旋转角度的测量选用EPC-755A光电编码器作为传感器,其输出电路选用集电极开路型,输出分辨率选用360个脉冲/圈,考虑到汽车方向盘转动是双向的,既可顺时针旋转,也可逆时针旋转,需要对编码器的输出信号鉴相后才能计数。
图2给出了光电编码器实际使用的鉴相与双向计数电路,鉴相电路用1个D触发器和2个与非门组成,计数电路用3片74LS193组成。
当光电编码器顺时针旋转时,通道A输出波形超前通道B输出波形90°,D触发器输出Q(波形W1)为高电平,Q(波形W2)为低电平,上面与非门打开,计数脉冲通过(波形W3),送至双向计数器74LS193的加脉冲输入端CU,进行加法计数;此时,下面与非门关闭,其输出为高电平(波形W4)。
当光电编码器逆时针旋转时,通道A输出波形比通道B输出波形延迟90°,D触发器输出Q(波形W1)为低电平,Q(波形W2)为高电平,上面与非门关闭,其输出为高电平(波形W3);此时,下面与非门打开,计数脉冲通过(波形W4),送至双向计数器74LS193的减脉冲输入端CD,进行减法计数。
汽车方向盘顺时针和逆时针旋转时,其最大旋转角度均为两圈半,选用分辨率为360个脉冲/圈的编码器,其最大输出脉冲数为900个;实际使用的计数电路用3片74LS193组成,在系统上电初始化时,先对其进行复位(CLR信号),再将其初值设为800H,即2048(LD信号);如此,当方向盘顺时针旋转时,计数电路的输出范围为2048~2948,当方向盘逆时针旋转时,计数电路的输出范围为2048~1148;计数电路的数据输出D0~D11送至数据处理电路。
实际使用时,方向盘频繁地进行顺时针和逆时针转动,由于存在量化误差,工作较长一段时间后,方向盘回中时计数电路输出可能不是2048,而是有几个字的偏差;为解决这一问题,我们增加了一个方向盘回中检测电路,系统工作后,数据处理电路在模拟器处于非操作状态时,系统检测回中检测电路,若方向盘处于回中状态,而计数电路的数据输出不是2048,可对计数电路进行复位,并重新设置初值。
2.2 光电编码器在重力测量仪中的应用
采用旋转式光电编码器,把它的转轴与重力测量仪中补偿旋钮轴相连。
重力测量仪中补偿旋钮的角位移量转化为某种电信号量;旋转式光电编码器分两种,绝对编码器和增量编码器。
增量编码器是以脉冲形式输出的传感器,其码盘比绝对编码器码盘要简单得多且分辨率更高。
一般只需要三条码道,这里的码道实际上已不具有绝对编码器码道的意义,而是产生计数脉冲。
它的码盘的外道和中间道有数目相同均匀分布的透光和不透光的扇形区(光栅),但是两道扇区相互错开半个区。
当码盘转动时,它的输出信号是相位差为90°的A相和B相脉冲信号以及只有一条透光狭缝的第三码道所产生的脉冲信号(它作为码盘的基准位置,给计数系统提供一个初始的零位信号)。
从A,B两个输出信号的相位关系(超前或滞后)可判断旋转的方向。
由图3(a)可见,当码盘正转时,A道脉冲波形比B道超前π/2,而反转时,A道脉冲比B道滞后π/2。
图3(b)是一实际电路,用A道整形波的下沿触发单稳态产生的正脉冲与B道整形波相‘与’,当码盘正转时只有正向口脉冲输出,反之,只有逆向口脉冲输出。
因此,增量编码器是根据输出脉冲源和脉冲计数来确定码盘的转动方向和相对角位移量。
通常,若编码器有N个(码道)输出信号,其相位差为π/ N,可计数脉冲为2N倍光栅数,现在N=2。
图3电路的缺点是有时会产生误记脉冲造成误差,这种情况出现在当某一道信号处于‘高’或‘低’电平状态,而另一道信号正处于‘高’和‘低’之间的往返变化状态,此时码盘虽然未产生位移,但是会产生单方向的输出脉冲。
例如,码盘发
生抖动或手动对准位置时(下面可以看到,在重力仪测量时就会有这种情况)。
图4是一个既能防止误脉冲又能提高分辨率的四倍频细分电路。
在这里,采用了有记忆功能的D型触发器和时钟发生电路。
由图4可见,每一道有两个D触发器串接,这样,在时钟脉冲的间隔中,两个Q端(如对应B道的74LS175的第2、7引脚)保持前两个时钟期的输入状态,若两者相同,则表示时钟间隔中无变化;否则,可以根据两者关系判断出它的变化方向,从而产生‘正向’或‘反向’输出脉冲。
当某道由于振动在‘高’、‘低’间往复变化时,将交替产生‘正向’和‘反向’脉冲,这在对两个计数器取代数和时就可消除它们的影响(下面仪器的读数也将涉及这点)。
由此可见,时钟发生器的频率应大于振动频率的可能最大值。
由图4还可看出,在原一个脉冲信号的周期内,得到了四个计数脉冲。
例如,原每圈脉冲数为1000的编码器可产生4倍频的脉冲数是4000个,其分辨率为0.09°。
实际上,目前这类传感器产品都将光敏元件输出信号的放大整形等电路与传感检测元件封装在一起,所以只要加上细分与计数电路就可以组成一个角位移测量系统(74159是4-16译码器)。