控制理论lesson5§1.3由传递函数求状态空间表达式
- 格式:pptx
- 大小:418.99 KB
- 文档页数:18
第一章 控制系统的状态空间表达式Chapter 1 State space representation of control systems本章内容• 状态变量及状态空间表达式 • 状态空间表达式的模拟结构图 • 状态空间表达式的建立(1) • 状态空间表达式的建立(2) • 状态矢量的线性变换 • 由传递函数求状态方程• 由状态空间表达式求传递函数阵 • 离散系统的状态空间表达式• 时变系统和非线性系统的状态空间表达式系统的动态特性由状态变量构成的一阶微分方程组来描述,能同时给出系统全部独立变量的响应,因而能同时确定系统的全部内部运动状态。
1.1 状态变量及状态空间表达式1.1 State space representation of control systems 状态变量 (State variables)状态:表征系统运动的信息和行为状态变量:能完全表示系统运动状态的最小个数的一组变量x 1(t ), x 2(t ), …, x n (t ) 状态向量(State vectors)由状态变量构成的向量 x (t )T 123()(),(),()...()n x t x t x t x t x t =⎡⎤⎣⎦状态空间 (State space) • 以各状态变量x 1(t ),x 2(t ),…… x n (t )为坐标轴组的几维空间。
•状态轨迹:在特定时刻t ,状态向量可用状态空间的一个点来表示,随着时间的推移,x (t )将在状态空间描绘出一条轨迹线。
状态方程 (State equations)• 由系统的状态变量与输入变量之间的关系构成的一阶微分方程组。
例1.1 设有一质量弹簧阻尼系统。
试确定其状态变量和状态方程。
解:系统动态方程2()().()().()()()d yF t ky t f yt m dt my t f yt ky t F t ⎧--=⎪⎨⎪++=⎩ 设1()()y t x t =,2()()yt x t = 12()()............................................(1)1()()()()........(2)x t y t f k x t y t y t F t m m m =⎧⎪⎨=--+⎪⎩12212()()1()()()()xt x t k f x t x t x t F t m m m =⎧⎪⎨=--+⎪⎩1122010()()()1()()xt x t F t f k x t x t m m m ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥--⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ = 状态方程的标准形式:()()()xt Ax t Bu t =+ (A :系统矩阵 B :输入矩阵) 输出方程 (O u t p u t e q u a t i o n )系统的输出量与状态变量之间的关系[]112()()()10 ()x t y t x t x t ⎡⎤==⎢⎥⎣⎦()()y t Cx t =(C:输出矩阵)状态方程和输出方程的总和即称为状态空间表达式。
传递函数写状态空间表达式【导言】在工程学科领域中,状态空间方法是一种十分重要的工具,在控制系统和信号处理方面得到了广泛应用。
在此过程中,传递函数和状态空间表达式便成为了其中不可或缺的两个环节。
本文将从传递函数转化为状态空间表达式这一点入手,给读者详细介绍其操作方法和其中的一些要点。
【一、传递函数和状态空间表达式概述】首先我们需要了解一些基本概念。
传递函数(Transfer Function)指的是在时域和频域之间建立约束关系的函数。
它描述了系统输入与输出之间的关系,是刻画线性时不变系统的一种有效方式。
状态空间表达式(State-Space Representation)指的是在某些符号和运算法则下,将一个时不变系统的整个历史过程表示为一个有限元素向量和矩阵的函数。
它描述了系统在时域和状态空间中的变化、状态之间的相互关系和控制变量和系统状态之间的关联。
传递函数与状态空间模型是描述线性时不变系统常用的两种方法。
传递函数的优点是简单、直接,能够快速得到系统的频率特性,但是只能表达一阶系统。
状态空间模型能够表达高阶、非线性系统,可以更好地反映物理实际。
【二、传递函数转化为状态空间表达式】将传递函数转化为状态空间表达式,原则上可以采用多种方法,本文将以矩阵分式形式为例进行讲解。
假设系统的传递函数为G(s),那么我们可以按照以下步骤进行转化:1、设系统的状态变量为x,输出变量为y,则系统的状态方程可以表示为:x' = Ax + Buy = Cx + Du其中A、B、C和D是系统的状态矩阵、输入矩阵、输出矩阵和耦合矩阵。
2、用连分式的形式表示传递函数:G(s) = D + C(sI - A)⁻¹ B3、将上式展开,得到:G(s) = D + CB⁻¹(sI - A)⁻¹ B4、令P(s) = (sI - A),则:G(s) = D + CB⁻¹P⁻¹(s)B5、对P(s)进行分解:P(s) = (s - λ1)Q1(s) ... (s - λn)Qn(s)其中λ1,λ2,...,λn是P(s)的特征值,Q1(s),Q2(s),...,Qn(s)是与特征值相关的特征向量矩阵。
已知传递函数求状态空间表达式在控制系统理论中,常常需要将已知的传递函数转换为状态空间表达式。
这是因为状态空间形式更加直观,便于进行控制器设计和系统分析。
首先,我们需要将传递函数化简为标准形式:$$G(s) = frac{b_0 s^n + b_1 s^{n-1} + cdots + b_{n-1} s + b_n}{s^n + a_1 s^{n-1} + cdots + a_{n-1} s + a_n}$$其中 $n$ 为传递函数的阶数,$b_i$ 和 $a_i$ 是系数。
接下来,我们可以通过状态空间的基本方程来表示传递函数: $$begin{aligned}dot{x} &= Ax + Buy &= Cx + Duend{aligned}$$其中,$x$ 是 $n$ 维状态向量,$u$ 是 $m$ 维输入向量,$y$ 是$p$ 维输出向量。
$A$、$B$、$C$、$D$ 是系数矩阵,它们的维度分别为 $n times n$、$n times m$、$p times n$ 和 $p times m$。
我们可以通过下列步骤获得$A$、$B$、$C$ 和 $D$:1. 首先,将传递函数分解为零极点形式:$$G(s) =kfrac{(s-z_1)(s-z_2)cdots(s-z_n)}{(s-p_1)(s-p_2)cdots(s-p_n )}$$其中,$k$ 是比例系数,$z_i$ 和 $p_i$ 是零点和极点。
2. 利用零极点分解结果,构造传递函数的控制分式表达式:$$G(s) = kfrac{(s-z_1)}{(s-p_1)} cdot frac{(s-z_2)}{(s-p_2)} cdots frac{(s-z_n)}{(s-p_n)}$$3. 对每个控制分式,构造对应的状态空间模型:$$begin{aligned}dot{x_i} &= p_i x_i + uy_i &= z_i x_iend{aligned}$$其中,$i$ 取值为 $1$ 到 $n$。