物理竞赛静电场分析
- 格式:ppt
- 大小:469.00 KB
- 文档页数:59
11.4静电场的能量一、电容器的静电能研究电容器的充电过程。
一开始电容器的电势差很小,搬运电荷需要做的功也很小,充电后两板间电势差增加,搬运电荷越来越困难,需要做的功变多。
可以看成是一个变力(变电势差)做功问题。
图像法用面积表示做功。
画Q -U 图像还是U -Q 图像?22111222Q E QU CU C=== 电容器充电过程中,电荷和能量均由电源提供。
在电源内部,可以看成是正电荷从负极移动到正极。
由于电源电动势(即电压)不变,克服电场力做功为:W QU =在电容器充电过程中电源消耗的能量和电容器增加的静电能不相等!思考:两者是否一定是两倍的关系?多余的电能消耗在电路中(定性解释)例1、极板相同的两个平行板电容器充以相同的电量,第一个电容器两极板间的距离是第二个电容器的两倍。
如果将第二个电容器插在第一个电容器的两极板间,并使所有极板都相互平行,问系统的静电能如何改变。
例2、平行板电容器C 接在如图所示电路中,接通电源充电,当电压达到稳定值U 0时,就下列两种情况回答,将电容C 的两极板的距离从d 拉到2d ,电容器的能量变化为多少?外力做功各是多少?并说明做功的正负(1)断开电源开关.(2)闭合电源开关.例3、图中所示ad为一平行板电容器的两个极板,bc是一块长宽都与a 板相同的厚导体板,平行地插在a、d之间,导体板的厚度bc=ab=cd.极板a、d与内阻可忽略电动势为E的蓄电池以及电阻R相连如图.已知在没有导体板bc时电容器a、d的电容为C0 ,现将导体板bc抽走,设已知抽走导体板bc的过程中所做的功为A,求该过程中电阻R上消耗的电能.例4、如图所示,电容器C可用两种不同的方法使其充电到电压U=NE。
(1)开关倒向B位置,依次由1至2至3∙∙∙∙∙∙至N。
(2)开关倒向A位置一次充电使电容C的电压达到NE。
试求两种方式充电的电容器最后储能和电路上损失的总能量。
(电源内阻不计)例5、在图所示电路中,三个电容器C 1、C 2、C 3,的电容值均为C ,电源的电动势为E,R 1、R 2为电阻,S 为双掷开关.开始时,三个电容器都不带电,先接通S a .再接通S b .再接通S a ,再接通S b ……如此多次换向,并使每次接通前都已达到静电平衡.试求:(1)当S 第n 次接通b 并达到平衡后,每个电容器两端的电压各是多少?(2)当反复换向的次数无限增多时,在所有电阻上消耗的总电能是多少?二、能量与能量密度注意:电能是分布在空间中的电场所具有的,而不是带电体具有的。
物理真空中的静电场基 本 要 求一、理解电场强度和电势这两个基本概念和它们之间的联系。
二、掌握反映静电场性质的两个基本定理——高斯定理和环流定理的重要意义及其应用。
三、掌握从已知的电荷分布求场强和电势分布的方法。
内 容 提 要一、真空中的库仑定律)(412210rr q q rF ⋅=πε 库仑定律的适用条件:1. 点电荷;2. 电荷静止(或低速)。
二、电场和电场强度电场 电荷能够产生电场。
电场是一种客观存在的物质形态。
电场对外表现的性质:1. 对处于电场中的其他带电体有作用力;2. 在电场中移动其他带电体时,电场力要对它做功,这也表明电场具有能量。
电场强度的定义式q F E = 点电荷场强公式)(4120rr q r E ⋅⋅=πε场强叠加原理 电场中某点的场强等于每个电荷单独在该点产生的场强的叠加(矢量和)。
物理几种常见带电体的场强1、电荷线密度为λ的无限长均匀带电直线外一点的场强a λE 02πε=2、电荷面密度为σ的无限大均匀带电平面外一点的场强2εσE = 方向垂直于带电平面。
3、带电Q 、半径为R 的均匀带电导体球面或导体球的场强分布r<R 时, E =0r>R 时,0204r E r Qπε=4、带电Q 、体密度为ρ的均匀带电球体场强分布r<R 时,r E 304RQπε= r>R 时,0204r E r Q πε=三、电通量 高斯定理电场线(电力线)画法 1. 电场线上某点的切线方向和该点场强方向一致;2. 通过垂直于E 的单位面积的电场线的条数等于该点E 的大小。
电场线的性质 1. 两条电场线不能相交;2. 电场线起自正电荷(或无穷远处),止于负电荷(或无穷远处),电场线有头有尾,不是闭合曲线。
电场强度通量 ⎰⎰⋅=se d ΦS E电场强度通量也可形象地说成是通过该面积S 的电场线的条物理数。
高斯定理 真空中静电场内,通过任意闭合曲面的电场强度通量等于该曲面所包围的电量的代数和的1/ε 0倍。
第八部分 静电场第一讲 基本知识介绍在奥赛考纲中,静电学知识点数目不算多,总数和高考考纲基本相同,但在个别知识点上,奥赛的要求显然更加深化了:如非匀强电场中电势的计算、电容器的连接和静电能计算、电介质的极化等。
在处理物理问题的方法上,对无限分割和叠加原理提出了更高的要求。
如果把静电场的问题分为两部分,那就是电场本身的问题、和对场中带电体的研究,高考考纲比较注重第二部分中带电粒子的运动问题,而奥赛考纲更注重第一部分和第二部分中的静态问题。
也就是说,奥赛关注的是电场中更本质的内容,关注的是纵向的深化和而非横向的综合。
一、电场强度1、实验定律 a 、库仑定律 内容;条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。
事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k 进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k ′= k /εr )。
只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。
b 、电荷守恒定律c 、叠加原理 2、电场强度a 、电场强度的定义电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。
b 、不同电场中场强的计算决定电场强弱的因素有两个:场源(带电量和带电体的形状)和空间位置。
这可以从不同电场的场强决定式看出——⑴点电荷:E = k2r Q 结合点电荷的场强和叠加原理,我们可以求出任何电场的场强,如——⑵均匀带电环,垂直环面轴线上的某点P :E =2322)R r (kQr ,其中r 和R 的意义见图7-1。
⑶均匀带电球壳 内部:E 内 = 0外部:E 外 = k2r Q,其中r 指考察点到球心的距离 如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2):E =2313r R r k 34-πρ ,其中ρ为电荷体密度。
精品文档真空中的静电场基 本 要 求一、理解电场强度和电势这两个基本概念和它们之间的联系。
二、掌握反映静电场性质的两个基本定理——高斯定理和环流定理的重要意义及其应用。
三、掌握从已知的电荷分布求场强和电势分布的方法。
内 容 提 要一、真空中的库仑定律)(412210r rq q r F ⋅=πε 库仑定律的适用条件:1. 点电荷;2. 电荷静止(或低速)。
二、电场和电场强度电场 电荷能够产生电场。
电场是一种客观存在的物质形态。
电场对外表现的性质:1. 对处于电场中的其他带电体有作用力;2. 在电场中移动其他带电体时,电场力要对它做功,这也表明电场具有能量。
电场强度的定义式q F E = 点电荷场强公式)(4120rr q r E ⋅⋅=πε 场强叠加原理 电场中某点的场强等于每个电荷单独在该点产生的场强的叠加(矢量和)。
精品文档几种常见带电体的场强1、电荷线密度为λ的无限长均匀带电直线外一点的场强aλE 02πε= 2、电荷面密度为σ的无限大均匀带电平面外一点的场强2εσE = 方向垂直于带电平面。
3、带电Q 、半径为R 的均匀带电导体球面或导体球的场强分布r<R 时, E =0r>R 时,0204r E rQ πε= 4、带电Q 、体密度为ρ的均匀带电球体场强分布r<R 时,r E 304R Q πε= r>R 时,0204r E r Qπε=三、电通量 高斯定理电场线(电力线)画法 1. 电场线上某点的切线方向和该点场强方向一致;2. 通过垂直于E 的单位面积的电场线的条数等于该点E 的大小。
电场线的性质 1. 两条电场线不能相交;2. 电场线起自正电荷(或无穷远处),止于负电荷(或无穷远处),电场线有头有尾,不是闭合曲线。
电场强度通量 ⎰⎰⋅=se d ΦS E电场强度通量也可形象地说成是通过该面积S 的电场线的条精品文档数。
高斯定理 真空中静电场内,通过任意闭合曲面的电场强度通量等于该曲面所包围的电量的代数和的1/ε 0倍。
《静电场》【全国物理竞赛知识要点2003】库仑定律、电荷守恒定律、电场强度、电场线、点电荷的场强、场强叠加原理、均匀带电球壳壳内的场强和壳外的场强公式(不要求导出)、匀强电场、电场中的导体、静电屏蔽、电势和电势差、等势面、点电荷电场的电势公式(不要求导出)、电势叠加原理、均匀带电球壳壳内的电势和壳外的电势公式(不要求导出)、电容、电容器的连接、平行板电容器的电容公式(不要求导出)、电容器充电后的电能、电介质的极化、介电常数 【内容讲解】(一) 场强、电势的计算 1、点电荷的电场2、均匀线分布电荷产生的场强净电荷均匀分布在一条线上,在空间某点产生的场强,通常可用微积分的方法进行定量计算,但运用微积分的方法进行定量计算,必须确定场强的方向才能方便可行。
下面将介绍一种等效方法来求解均匀线分布电荷的场强问题。
如图所示,线段AB 上均匀分布着线电荷密度为ρ的正电荷,其旁边有一点P ,P 点到直线AB 的距离为R ,则P 点的电场强度大小、方向如何确定?现以P 点为圆心以R 为半径做一个与直线AB 相切的圆弧,认为圆弧上也均匀分布着线电荷密度为ρ的正电荷,今在AB 上C 点取一微元△L ,在圆弧上对应取下微元△L /(取法如图),令PC=r ,则微元△L 在P 点产生的场强是:2.rLkE i ∆=ρ 而θθsin ∆=∆r L ,rR =θsin 所以:RkE iθρ∆=./l∆在P 点产生的场强是:22//...R R kR L kE i θρρ∆=∆=所以:RkE iθρ∆=./由以上论证可知:/iiE E =,且二者方向也相同。
可见L ∆在P 点产生的场强可由/L ∆在P 点产生的场强代替,不难得出,AB直线上的电荷在P点产生的场强,可由图中MEN弧在P点产生的场强来代替。
下面将介绍均匀分布在圆弧上的电荷在圆心处产生的场强的计算公式。
如图所示,半径为R的圆弧AB,其圆心角为θ,其上均匀分布着线电荷密度为ρ的正电荷,圆心O 点的场强设为E o,由对称性可得,E o的方向一定沿AB的连线的中垂线向右,即图中x方向,取圆弧上一微元△L i,它在O点的场强为2.RLkE ii∆=ρ,所以:∑∑∑∆=∆==αραραcoscos.cos22iiioLRkRLkEE而∑=∆ABLiαcos.则:2sin2.22θρρRRkABRkE==所以:2sin2θρRkE=---------------------------------------------------------①若对于无限长均匀带电直线,在距离直线为R的一点(相当于①式中θ=π),场强为RkEρ2=---------------------------------------------------------②若在均匀带电线段的延长线上一点,场强公式又如何?如图所时,在线段AB上均匀分布着线电荷密度为ρ的正电荷,其旁边有一点P,P点到线段AB的A、B两点的距离分别为d1、d2,点P到线段AB的垂直距离为R,线段AB的长为L,点P与A、B两点的连线之间的夹角为θ,则由公式①得,P点的场强为:2sin2θρRkE=LRdd21sin2121=θ∴LddRθsin21=代入P点的场强公式整理得:2cos21θρddLkE=若在长为L的均匀带电(线电荷密度为ρ)线段AB的延长线上一点P,P点距离线段AB较近的一点的距离为d ,则根据上述表达式,d d =1L d d +=2 0=θ,代入得:)(L d d Lk E +=ρ即Ld k d k E +-=ρρ-----------------------------------------------------③3、均匀面分布电荷的场强 (1)无限大的带电平面的场强(2)均匀带电球面的场强参考均匀带电圆弧在圆心处产生的场强公式的推导,同样可推出面电荷密度为σ的均匀带电球冠在球心处产生的场强为:S Rk E 2σ=式中S 为球冠的底面积,R 为球面半径。