高2018级高三(上)11月月考数学试题(理科)【含答案】
- 格式:pdf
- 大小:693.02 KB
- 文档页数:10
2018年11月高三年级月考 理科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.1. 在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅= ( ) (A )1 (B )2 (C )i - (D )i2. 已知tan 2((0,))ααπ=∈,则5cos(2)2πα+=( )( A) .35(B).45 (C). 35-(D). 45-3.已知数列{}n a 中,12a =,120n n a a +-=,2log n n b a =,那么数列{}n b 的前10项和等于( )(A).130(B).120(C).55(D).504. 已知,则按照从大到小....排列为 ( ) (A ) (B ) (C ) (D )5.下列说法中① 命题“存在,20x x R ∈≤” 的否定是“对任意的,20xx R ∈>”; ②既是奇函数又是增函数; ③ 关于的不等式恒成立,则的取值范围是;其中正确的个数是( ) (A).3 (B).2 (C).1 (D).0 6. 已知函数)32sin(3)(π-=x x f ,则下列结论正确的是( )(A).导函数为)32cos(3)('π-=x x f(B).函数)(x f 的图象关于直线2π=x 对称(C).函数)(x f 在区间)125,12(ππ-上是增函数 1211ln ,sin ,222a b c -===,,a b c b a c <<a b c <<c b a <<c a b <<||y x x =x 222sin sin a x x<+a 3a <(D).函数)(x f 的图象可由函数x y 2sin 3=的图象向右平移3π个单位长度得到 7. 公元263年左右,我国数学刘徽发现当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了割圆术.利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名是徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 为( )(参考数据:1305.05.7sin ,2588.015sin ,732.13≈≈≈)(A).12 (B).24 (C).36 (D).488.已知函数()f x 满足:①定义域为R ;②x R ∀∈,都有)()2(x f x f =+; ③当[1,1]x ∈-时,()||1f x x =-+,则方程x x f 2log 21)(=在区间[3,5]-内解的个数是 ( )(A).5 (B).6 (C).7 (D).8 9.已知数列{a n }满足331log 1log ()n n a a nN 且2469a a a ,则15793log ()a a a 的值是( )(A).-5 (B).-15 (C).5 (D).1510.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,且b a B c +=2cos 2,若ABC ∆的面积c S 123=,则ab 的最小值为( ) (A).21 (B).31 (C).61(D).3 11. 设向量,,a b c 满足1||||1,,,602a b a b a c b c ==⋅=-<-->=,则||c 的最大值等于( )(A)2 (B)3 (C )2 (D)112. 已知函数||)(xxe x f =,方程)(01)()(2R t x tf x f ∈=+-有四个实数根,则t 的取值范围为 ( )(A).),1(2+∞+e e (B).)1,(2e e +--∞ (C).2),1(2-+-e e (D).)1,2(2ee +二、填空题(每题5分,满分20分,将答案填在答题纸上) 13. 已知向量)1,(t a =与),4(t b =共线且方向相同,则=t . 14. 若31044=+-x x ,则=4log 3x . 15. 在△ABC 中, 2AB =,3AC =,0AB AC ⋅<,且△ABC 的面积为32,则BAC ∠等 . 16. 已知G 点为ABC ∆的重心,且满足BG CG ⊥, 若11tan tan tan B C Aλ+=则实数λ= . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数.(Ⅰ)求的最小正周期及单调递减区间;(Ⅱ)若在区间上的最大值与最小值的和为,求的值.18.(本小题满分12分)已知:为数列的前项和,且满足;数列满足.(1)数列是等比数列吗?请说明理由;(2)若,求数列的前项和.2()cos cos f x x x x a =++()f x ()f x [,]63ππ-32a n S {}n a n 122(2)n n a S n -=+≥{}n b 2123n b b b b n n ++++=+{}n a 11a b ={}n n a b •n n T19、如图,四棱锥P -ABCD 中,底面ABCD 是菱形,∠ABC =60°,平面PAB ⊥平面ABCD , PA =PB =2AB . (1)证明:PC ⊥AB ;(2)求二面角B -PC -D 的余弦值.20. (本小题满分12分) 已知椭圆M :13222=+y a x (0>a )的一个焦点为)0,1(-F ,左右顶点分别为B A ,,经过点F 的直线l 与椭圆M 交于D C ,两点. (1)求椭圆方程;(2)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求||21S S -的最大值.21.已知函数.(Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-4:坐标系与参数方程已知直线1:x tl y =⎧⎪⎨=⎪⎩(t 为参数),圆221:((2)1C x y +-=,以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系.(1)求圆1C 的极坐标方程,直线1l 的极坐标方程;1()()2ln ()f x a x x a x=--∈R 2a =()y f x =(1,(1))f ()f x ()ag x x=-0[1,e]x ∈00()()f x g x >a(2)设1l 与1C 的交点为,M N ,求1C MN ∆的面积.23. (本小题满分10分)选修4-5:不等式选讲已知函数|3|)(--=x m x f ,不等式2)(>x f 的解集为)4,2(. (1)求实数m 的值;(2)若关于x 的不等式)(||x f a x ≥-恒成立,求实数a 的取值范围桂林中学2017年11月高三月考理科数学试题一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 在复平面内,复数1z 的对应点是1(1,1)Z ,2z 的对应点是2(1,1)Z -,则12z z ⋅= ( B ) (A )1 (B )2 (C )i - (D )i 2. 已知tan 2((0,))ααπ=∈,则5cos(2)2πα+=( D )A.35B.45C. 35-D. 45-3.已知数列{}n a 中,12a =,120n n a a +-=,2log n n b a =,那么数列{}n b 的前10项和等于 ( C )A .130B .120C .55D .504. 已知,则按照从大到小....排列为 ( B ) (A ) (B ) (C ) (D )5.下列说法中 ① 命题“存在02,≤∈xR x ” 的否定是“对任意的02,>∈xR x ”; ②既是奇函数又是增函数; ③ 关于的不等式恒成立,则的取值范围是; 其中正确的个数是( A )A .3B .2C .1D .0 6. 已知函数)32sin(3)(π-=x x f ,则下列结论正确的是( C ) A .导函数为)32cos(3)('π-=x x fB .函数)(x f 的图象关于直线2π=x 对称C .函数)(x f 在区间)125,12(ππ-上是增函数D .函数)(x f 的图象可由函数x y 2sin 3=的图象向右平移3π个单位长度得到7. 公元263年左右,我国数学刘徽发现当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了割圆术.利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名是徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n 为( B )(参考数据:1305.05.7sin ,2588.015sin ,732.13≈≈≈)1211ln ,sin ,222a b c -===,,a b c b a c <<a b c <<c b a <<c a b <<||y x x =x 222sin sin a x x<+a 3a <A .12B .24C .36D .488.已知函数()f x 满足:①定义域为R ;②x R ∀∈,都有)()2(x f x f =+; ③当[1,1]x ∈-时,()||1f x x =-+,则方程在区间[3,5]-内解的个数是 ( A ) A.5 B.6 C.7 D.8 9.已知数列{a n }满足331log 1log ()n n a a n N 且2469a a a ,则15793log ()a a a 的值是( A )A .-5B .-15C .5D .1510.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,且b a B c +=2cos 2,若ABC ∆的面积c S 123=, 则ab 的最小值为( B ) A .21 B .31 C .61D .3 11. 设向量,,a b c 满足1||||1,,,602a b a b a c b c ==⋅=-<-->=,则||c 的最大值等于( A )(A)2 (D)112. 已知函数||)(xxe x f =,方程)(01)()(2R t x tf x f ∈=+-有四个实数根,则t 的取值范围为( A )A .),1(2+∞+e eB .)1,(2e e +--∞C .2),1(2-+-e eD .)1,2(2ee +二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量)1,(t a =与),4(t b =共线且方向相同,则=t .答案:2 14. 若31044=+-x x ,则=4log 3x . 答案:1±; 15. 在△ABC 中, 2AB =,3AC =,0AB AC ⋅<,且△ABC 的面积为32,则BAC ∠等于 .答案:15016. 已知G 点为ABC ∆的重心,且满足BG CG ⊥, 若11tan tan tan B C Aλ+=则实数λ= . 答案.0BG CE BG CG ⊥⇒⋅=11()()033BA BC CA CB ∴+⋅+=()(2)0BA BC BA BC ∴+⋅-=2220BA BC BA BC --⋅= 22222202a c b C a ac ac +-∴--⋅=2225a b c ∴=+ 而tan tan tan tan A A B C λ=+sin sin()cos sin sin A B C A B C+=⋅⋅2222222222221422a a a b c a b c a a bc bc====+-+-⋅三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知函数.(Ⅰ)求的最小正周期及单调递减区间;(Ⅱ)若在区间上的最大值与最小值的和为,求的值.【答案】(Ⅰ).………………………2分 所以.……………………………………………………………4分由,得.…………………5分 故函数的单调递减区间是().…………………6分2()cos cos f x x x x a =++()f x ()f x [,]63ππ-32a 1cos 2()22x f x x a +=++1sin(2)62x a π=+++T =π3222262k x k πππ+π≤+≤+π263k x k ππ+π≤≤+π()f x 2[,]63k k ππ+π+πk ∈Z(Ⅱ)因为,所以.…………………7分 所以.…………………………………………………………8分 因为函数在上的最大值与最小值的和,所以.…………………………………………………………………………12分18.(本小题满分12分)已知:为数列的前项和,且满足;数列满足.(1)数列是等比数列吗?请说明理由; (2)若,求数列的前项和.∵,,∴.∴. 63x ππ-≤≤52666x πππ-≤+≤1sin(2)126x π-≤+≤()f x [,]63ππ-1113(1)()2222a a +++-++=0a =n S {}n a n 122(2)n n a S n -=+≥{}n b 2123n b b b b n n ++++=+{}n a 11a b ={}n n a b •n n T 2122a S =+11S a =2122a a =+211122a a a a +=∴时,,是公比为3的等比数列.时,,不是等比数列.19、如图,四棱锥P -ABCD 中,底面ABCD 是菱形,∠ABC =60°,平面PAB ⊥平面ABCD ,PA =PB =2AB .(1)证明:PC ⊥AB ;(2)求二面角B -PC -D 的余弦值.答案:12a =1213nn a a a a +=={}n a 12a ≠121n n a a a a +≠{}na20. (本小题满分12分) 已知椭圆M :13222=+y a x (0>a )的一个焦点为)0,1(-F ,左右顶点分别为B A ,,经过点F 的直线l 与椭圆M 交于D C ,两点.(1)求椭圆方程;(2)记ABD ∆与ABC ∆的面积分别为1S 和2S ,求||21S S -的最大值.解:(1) ∵点)0,1(-F 为椭圆的一个焦点,∴1=c ,又32=b ,∴4222=+=c b a , ∴椭圆方程为13422=+y x .……………………………………………4分(2)当直线l 斜率不存在时,直线方程为1-=x , 此时)23,1(-D ,)23,1(--C ,ABD ∆与ABC ∆的面积相等,0||21=-S S ……………5分当直线l 斜率存在时,设直线方程为)1(+=x k y (0≠k ),……………………………6分 设),(11y x C ,),(22y x D 显然21,y y 异号. 由⎪⎩⎪⎨⎧+==+)1(13422x k y y x 得01248)43(2222=-+++k x k x k , (7)分显然0>∆,方程有实根,且2221438k k x x +-=+,222143124k k x x +-=,…………………………8分 此时2121212122143||12|2)(|2|)1()1(|2||2||||||2||k k k x x k x k x k y y y y S S +=++=+++=+=-=-, …………………………10分由0≠k 可得3||4||3212||4||31243||122=⋅≤+=+k k k k k k ,当且仅当23±=k 时等号成立.∴||21S S -的最大值为3…………………………12分【考向】(1)椭圆的标准方程的求法;(2)用韦达定理及均值不等式求面积最值问题.21.已知函数. (Ⅰ)若,求曲线在点处的切线方程;(Ⅱ)求函数的单调区间;(Ⅲ)设函数.若至少存在一个,使得成立,求实数的取值范围. 【答案】函数的定义域为,. …………………………………………………1分(Ⅰ)当时,函数,,.所以曲线在点处的切线方程为,即.………………………………………………………………………3分(Ⅱ)函数的定义域为.(1)当时,在上恒成立,则在上恒成立,此时在上单调递减. ……………4分(2)当时,,(ⅰ)若,由,即,得或; ………………5分由,即.………………………6分所以函数的单调递增区间为和,1()()2ln ()f x a x x a x=--∈R 2a =()y f x =(1,(1))f ()fx ()a g x x=-0[1,e]x ∈00()()f x g x >a ()0,+∞222122()(1)ax x af x a x x x -+'=+-=2a =1()2()2ln f x x x x =--(1)0f =(1)2f '=()y f x =(1,(1))f 02(1)y x -=-220x y --=()f x (0,)+∞0a ≤2()20h x ax x a =-+<(0,)+∞()0f x '<(0,)+∞()f x (0,)+∞0a >244a ∆=-01a <<()0f x '>()0h x >x <x >()0f x '<()0h x <x <<()f x )+∞单调递减区间为. ……………………………………7分 (ⅱ)若,在上恒成立,则在上恒成立,此时 在上单调递增. ………………………………………………………………8分(Ⅲ))因为存在一个使得,则,等价于.…………………………………………………9分令,等价于“当 时,”.对求导,得. ……………………………………………10分因为当时,,所以在上单调递增. ……………11分所以,因此. …………………………………………12分另解:设,定义域为,.依题意,至少存在一个,使得成立,等价于当 时,. ………………………………………8分(1)当时,在恒成立,所以在单调递减,只要,1a ≥()0h x ≥(0,)+∞()0f x '≥(0,)+∞()f x (0,)+∞0[1,e]x ∈00()()f x g x >002ln ax x >02ln x a x >2ln ()xF x x =[]1,e x ∈()min a F x >()F x 22(1ln )()x F x x -'=[1,e]x ∈()0F x '≥()F x [1,e]min ()(1)0F x F ==0a >()()()2ln F x f x g x ax x =-=-()0,+∞()22ax F x a x x -'=-=0[1,e]x ∈00()()f x g x >[]1,e x ∈()max 0F x >0a ≤()0F x '<[]1,e ()F x []1,e ()()max 10F x F a ==>则不满足题意. ……………………………………………………………………9分(2)当时,令得.(ⅰ)当,即时,在上,所以在上单调递增,所以,由得,,所以. ……………………………………………………………………10分(ⅱ)当,即时,在上,所以在单调递减,所以,由得.…………………………………………………………………11分(ⅲ)当,即时,在上,在上,所以在单调递减,在单调递增,0a >()0F x '=2x a =201a <≤2a ≥[]1,e ()0F x '≥()F x []1,e ()()max e e 2F x F a ==-e 20a ->2e a >2a ≥2e a ≥20e a <≤[]1,e ()0F x '≤()F x []1,e ()()max 1F x F a ==0a >20e a <≤21e a <<22e a <<2[1,)a ()0F x '<2(,e]a ()0F x '>()F x 2[1,)a 2(,e]a,等价于或,解得,所以,. 综上所述,实数的取值范围为. ………………………………………12分请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程已知直线1:x t l y =⎧⎪⎨=⎪⎩(t 为参数),圆221:((2)1C x y +-=,以坐标原点为极点,x 轴的正半轴为极轴建立直角坐标系.(1)求圆1C 的极坐标方程,直线1l 的极坐标方程;(2)设1l 与1C 的交点为,M N ,求1C MN ∆的面积.解:(1)因为cos sin x y ρθρθ=⎧⎨=⎩,将其代入1C展开整理得:2cos 4sin 60ρθρθ--+=, ∴圆1C的极坐标方程为:2cos 4sin 60ρθρθ--+=.……………………3分1l消参得tan 3πθθ=⇒=(R ρ∈)∴直线1l 的极坐标方程为:3πθ⇒=(R ρ∈).……………………5分(2)2323cos 4sin 60πθρρθρθ⎧=⎪⎨⎪--+=⎩⇒33360ρρ-+=⇒123ρρ-=…………8分∴11122C MN S ∆==……………………10分 23. (本小题满分10分)选修4-5:不等式选讲已知函数|3|)(--=x m x f ,不等式2)(>x f 的解集为)4,2(.()max 0F x >()10F >()e 0F >0a >22e a <<a (0,)+∞(1)求实数m 的值;(2)若关于x 的不等式)(||x f a x ≥-恒成立,求实数a 的取值范围.23.解:(1)∵|3|)(--=x m x f ,∴不等式2)(>x f ,即2|3|>--x m ,∴15+<<-m x m , 而不等式2)(>x f 的解集为)4,2(,∴25=-m 且41=+m ,解得3=m .(2)由(1),|3|3)(--=x x f ,关于x 的不等式)(||x f a x ≥-恒成立⇔关于x 的不等式|3|3||--≥-x a x 恒成立⇔ 3|3|||≥-+-x a x 恒成立,而|3||)3()(||3|||-=---≥-+-a x a x x a x ,∴只需3|3|≥-a ,则33≥-a 或33-≤-a ,解得6≥a 或0≤a .故实数a 的取值范围为),6[]0,(+∞-∞ .【考向】(1)绝对值不等式解集的逆向求参;(2)用绝对值不等式的性质解决不等式恒成立问题.。
贵定县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1.在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .2. 执行如图所示的程序,若输入的,则输出的所有的值的和为( )3x x A .243 B .363 C .729 D .1092【命题意图】本题考查程序框图的识别和运算,意在考查识图能力、简单的计算能力.3. 若实数x ,y 满足,则(x ﹣3)2+y 2的最小值是()班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A .B .8C .20D .24. ,分别为双曲线(,)的左、右焦点,点在双曲线上,满足,1F 2F 22221x y a b-=a 0b >P 120PF PF ⋅=u u u r u u u u r若,则该双曲线的离心率为( )12PF F ∆C. D. 1+1+【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力.5. 若a >0,b >0,a+b=1,则y=+的最小值是( )A .2B .3C .4D .56. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( )A .2013 B .2014 C .2015 D .20161111]7. 复数(为虚数单位),则的共轭复数为( )2(2)i z i-=i z A . B . C . D .43i -+43i +34i +34i-【命题意图】本题考查复数的运算和复数的概念等基础知识,意在考查基本运算能力.8. 已知平面向量=(1,2),=(﹣2,m ),且∥,则=()A .(﹣5,﹣10)B .(﹣4,﹣8)C .(﹣3,﹣6)D .(﹣2,﹣4)9. 设b ,c 表示两条直线,α,β表示两个平面,则下列命题是真命题的是()A .若b ⊂α,c ∥α,则b ∥cB .若c ∥α,α⊥β,则c ⊥βC .若b ⊂α,b ∥c ,则c ∥αD .若c ∥α,c ⊥β,则α⊥β10.定义行列式运算:.若将函数的图象向左平移m (m >0)个单位后,所得图象对应的函数为奇函数,则m 的最小值是( )A .B .C .D .11.已知f (x )=,g (x )=(k ∈N *),对任意的c >1,存在实数a ,b 满足0<a <b <c ,使得f (c )=f (a )=g (b ),则k 的最大值为( )A .2B .3C .4D .512.已知四个函数f (x )=sin (sinx ),g (x )=sin (cosx ),h (x )=cos (sinx ),φ(x )=cos (cosx )在x ∈[﹣π,π]上的图象如图,则函数与序号匹配正确的是()A .f (x )﹣①,g (x )﹣②,h (x )﹣③,φ(x )﹣④B .f (x )﹣①,φ(x )﹣②,g (x )﹣③,h (x )﹣④C .g (x )﹣①,h (x )﹣②,f (x )﹣③,φ(x )﹣④D .f (x )﹣①,h (x )﹣②,g (x )﹣③,φ(x )﹣④二、填空题13.若函数y=f (x )的定义域是[,2],则函数y=f (log 2x )的定义域为 .14.(本小题满分12分)点M (2pt ,2pt 2)(t 为常数,且t ≠0)是拋物线C :x 2=2py (p >0)上一点,过M 作倾斜角互补的两直线l 1与l 2与C 的另外交点分别为P 、Q .(1)求证:直线PQ 的斜率为-2t ;(2)记拋物线的准线与y 轴的交点为T ,若拋物线在M 处的切线过点T ,求t 的值.15.已知数列的各项均为正数,为其前项和,且对任意N ,均有、、成等差数列,}{n a n S n ∈n *n a n S 2n a 则.=n a 16.【徐州市第三中学2017~2018学年度高三第一学期月考】函数的单调增区间是__________.()3f x x x =-+17.已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 . 18.已知实数,满足,目标函数的最大值为4,则______.x y 2330220y x y x y ≤⎧⎪--≤⎨⎪+-≥⎩3z x y a =++a =【命题意图】本题考查线性规划问题,意在考查作图与识图能力、逻辑思维能力、运算求解能力.三、解答题19.已知A (﹣3,0),B (3,0),C (x 0,y 0)是圆M 上的三个不同的点.(1)若x 0=﹣4,y 0=1,求圆M 的方程;(2)若点C 是以AB 为直径的圆M 上的任意一点,直线x=3交直线AC 于点R ,线段BR 的中点为D .判断直线CD 与圆M的位置关系,并证明你的结论.20.如图,在直角梯形ABCD中,AB⊥AD,AB=AD=2,CD=4,将三角形ABD沿BD翻折,使面ABD⊥面BCD .(Ⅰ)求线段AC的长度;(Ⅱ)求证:AD⊥平面ABC.21.已知椭圆C1:+=1(a>b>0)的离心率e=,且经过点(1,),抛物线C2:x2=2py(p>0)的焦点F与椭圆C1的一个焦点重合.(Ⅰ)过F的直线与抛物线C2交于M,N两点,过M,N分别作抛物线C2的切线l1,l2,求直线l1,l2的交点Q的轨迹方程;(Ⅱ)从圆O:x2+y2=5上任意一点P作椭圆C1的两条切线,切点为A,B,证明:∠APB为定值,并求出这个定值.22.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.23.设定义在(0,+∞)上的函数f (x )=,g (x )=,其中n ∈N *(Ⅰ)求函数f (x )的最大值及函数g (x )的单调区间;(Ⅱ)若存在直线l :y=c (c ∈R ),使得曲线y=f (x )与曲线y=g (x )分别位于直线l 的两侧,求n 的最大值.(参考数据:ln4≈1.386,ln5≈1.609)24.(本小题满分12分)设函数()()2741201x x f x a a a --=->≠且.(1)当a =时,求不等式()0f x <的解集;(2)当[]01x ∈,时,()0f x <恒成立,求实数的取值范围.贵定县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B D ADCDABDC题号1112答案BD二、填空题13. [,4] .14.15.n16.(17. 3π . 18.3-三、解答题19. 20. 21. 22. 23.24.(1)158⎛⎫-∞ ⎪⎝⎭,;(2)()11128a ⎫∈⎪⎪⎭U ,,.。
2017-2018学年江西省高三(上)11月月考试卷(理科数学)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3)B.(1,3] C.[﹣1,2)D.(﹣1,2)2.已知i是虚数单位,复数z=i+,则复数的虚部是()A. B.C. D.23.一首小诗《数灯》,诗曰:“远望灯塔高7层,红光点点倍加增,顶层数来有4盏,塔上共有多少灯?”答曰()A.252 盏B.256盏C.508 盏D.512盏4.已知平面向量、满足•(+)=5,且||=2,||=1,则向量与夹角的余弦值为()A. B.﹣C.D.﹣5.已知把函数的图象向右平移个单位,再把横坐标扩大到原来的2倍,得到函数g(x),则函数g(x)的一条对称轴为()A.B.C.D.6.一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.7.在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设=m,则“0<m<2”是三棱锥C﹣ABE的体积不小于1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件8.某程序框图如图所示,该程序运行后输出的S的值是()A.2015 B.2016 C.3024 D.10079.函数f(x)=Asin(2x+φ)(|φ|≤,A>0)部分图象如图所示,且f(a)=f(b)=0,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=,则()A.f(x)在(﹣,)上是减函数B.f(x)在(﹣,)上是增函数C.f(x)在(,)上是减函数D.f(x)在(,)上是增函数10.已知变量x,y满足,若目标函数z=ax+y(a>0)取到最大值6,则a的值为()A.2 B.C.或2 D.﹣211.正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为()A.7π B.19πC.πD.π12.已知函数f(x)=,关于x的方程f(x+﹣2)=a的实根个数不可能为()A.5个B.6个C.7个D.8个二、填空题(每小题5分,共20分)13.已知a=,则二项式的展开式中的常数项为.14.已知函数f(x)=a x+1﹣2(a>0且a≠1)的图象恒过定点A,设抛物线E:y2=4x上任意一点M.到准线l的距离为d,则d+|MA|的最小值为.15.已知a>0且a≠1,若函数f(x)=loga[ax2﹣(2﹣a)x+3]在[,2]上是增函数,则a 的取值范围是.16.已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边上中线的交点,若=,且≥cos2x﹣msinx(x∈R)恒成立,则实数m的取值范围为.三、解答题(第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答,本大题共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)已知首项为3的数列{an }满足:=3,且bn=.(1)求证:数列{bn}是等差数列;(2)求数列{2n•bn }的前n项和Tn.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD为矩形,AB=2,BC=2,点P在底面上的射影在AC上E是AB的中点.(1)证明:DE⊥平面PAC(2)若PA=PC,且PA与面PBD所成的角的正弦值为,求二面角D﹣PA﹣B的余弦值.19.(12分)网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.(Ⅰ)求这4人中恰有1人去淘宝网购物的概率;(Ⅱ)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.20.(12分)已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.21.(12分)已知函数f(x)=a x+x2﹣xlna(a>0,a≠1).(1)求函数f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)单调增区间;(3)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然对数的底数),求实数a的取值范围.[选修4-4:极坐标与参数方程选讲]22.(10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l 的参数方程为:(t为参数),曲线C的极坐标方程为:ρ=4cosθ.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.[选修4-5:不等式选讲]23.已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.2017-2018学年江西省高三(上)11月月考试卷(理科数学)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2016•大庆校级二模)已知集合A={x|x2﹣2x﹣3≤0},B={x|y=ln(2﹣x)},则A∩B=()A.(1,3)B.(1,3] C.[﹣1,2)D.(﹣1,2)【分析】化简集合A、B,求出A∩B即可.【解答】解:∵集合A={x|x2﹣2x﹣3≤0}={x|﹣1≤x≤3}=[﹣1,3],B={x|y=ln(2﹣x)}={x|2﹣x>0}={x|x<2}=(﹣∞,2);∴A∩B=[﹣1,2).故选:C.【点评】本题考查了集合的化简与运算问题,是基础题目.2.(2016•衡水模拟)已知i是虚数单位,复数z=i+,则复数的虚部是()A. B.C. D.2【分析】直接利用复数的代数形式的除法运算法则化简求解即可.【解答】解:复数z=i+=i+=+i.复数=﹣i.则复数的虚部:﹣.故选:C.【点评】本题考查复数的代数形式混合运算,复数的基本概念,考查计算能力.3.(2015秋•天门期末)一首小诗《数灯》,诗曰:“远望灯塔高7层,红光点点倍加增,顶层数来有4盏,塔上共有多少灯?”答曰()A.252 盏B.256盏C.508 盏D.512盏【分析】由已知可得:数列{an }为等比数列,a1=4,n=7,公比q=2.利用等比数列的前n项和公式即可得出.【解答】解:由已知可得:数列{an }为等比数列,a1=4,n=7,公比q=2.∴S7==508.故选:C.【点评】本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.4.(2016秋•榕城区校级期中)已知平面向量、满足•(+)=5,且||=2,||=1,则向量与夹角的余弦值为()A. B.﹣C.D.﹣【分析】根据条件进行向量数量积的运算便可得出,从而得出向量夹角的余弦值.【解答】解:根据条件,=;∴.故选:C.【点评】考查向量数量积的运算及计算公式,向量夹角的概念.5.(2016•衡阳校级一模)已知把函数的图象向右平移个单位,再把横坐标扩大到原来的2倍,得到函数g(x),则函数g(x)的一条对称轴为()A.B.C.D.【分析】由两角和的正弦公式可得f(x)=2sin(x+),再由相位变换、周期变换可得g(x)=2sin(x+),再令x+=kπ+,k∈Z,解方程可得对称轴方程,对照选项,即可得到答案.【解答】解:函数=2(sinx+cosx)=2sin(x+),由f(x)的图象向右平移个单位,可得对应函数的解析式为y=2sin(x﹣+),即y=2sin(x+),再把横坐标扩大到原来的2倍,得到函数g(x)=2sin(x+),由x+=kπ+,k∈Z,可得x=2kπ+,k∈Z,当k=0时,x=,故选:B.【点评】本题主要考查三角函数的图象变换:相位变换和周期变换,考查两角和的正弦公式及正弦函数的对称轴方程,属于中档题.6.(2016•福安市校级模拟)一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是(单位:m2).()A.B.C.D.【分析】由三视图可以看出,此几何体是一个侧面与底面垂直的三棱锥,垂直于底面的侧面是一个高为2,底边长也为2的等腰直角三角形,底面与垂直于底面的侧面全等,此两面的面积易求,另两个与底面不垂直的侧面是全等的,可由顶点在底面上的射影作出此两侧面底边的高,将垂足与顶点连接,此线即为侧面三角形的高线,求出侧高与底面的边长,用三角形面积公式求出此两侧面的面积,将四个面的面积加起来即可【解答】解:由三视图可以看出,此几何体是一个侧面与底面垂直且底面与垂直于底面的侧面全等的三棱锥由图中数据知此两面皆为等腰直角三角形,高为2,底面连长为2,故它们的面积皆为=2,由顶点在底面的投影向另两侧面的底边作高,由等面积法可以算出,此二高线的长度长度相等,为,将垂足与顶点连接起来即得此两侧面的斜高,由勾股定理可以算出,此斜高为2,同理可求出侧面底边长为,可求得此两侧面的面积皆为=,故此三棱锥的全面积为2+2++=,故选A.【点评】本题考点是由三视图求几何体的面积、体积,考查对三视图的理解与应用,主要考查对三视图与实物图之间的关系,用三视图中的数据还原出实物图的数据,再根据相关的公式求表面积与体积,本题求的是三棱锥的全面积,做本题时要注意本题中的规律应用,即四个侧面两两相等,注意到这一点,可以大大降低运算量.三视图的投影规则是主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等.7.(2016•河北模拟)在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设=m,则“0<m<2”是三棱锥C﹣ABE的体积不小于1的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】经过点E作EH⊥AD,垂足为H,可得EH⊥平面ABCD,利用三棱锥条件计算公式可得:VC﹣ABE=≥1,即EH,又PA=3,可得=m≤1,即可判断出结论.【解答】解:经过点E作EH⊥AD,垂足为H,∵PA⊥底面ABCD,∴平面PAD⊥平面ABCD.则EH⊥平面ABCD,∵VC﹣ABE =VE﹣ABC,∴VC﹣ABE==×EH=≥1,则EH,又PA=3,,∴,∴=m≤2﹣1=1,∴“0<m<2”是三棱锥C﹣ABE的体积不小于1的必要不充分条件.故选:B.【点评】本题考查了空间位置关系的判定、体积的计算、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.8.(2016秋•赫山区校级月考)某程序框图如图所示,该程序运行后输出的S的值是()A.2015 B.2016 C.3024 D.1007【分析】模拟程序框图的运行过程,得出该程序运行后输出的算式S是求数列的和,且数列的每4项的和是定值,由此求出S的值.【解答】解:模拟程序框图的运行过程,得出该程序运行后输出的算式:S=a1+a2+a3+a4+…+a2013+a2014+a2015+a2016=(0+1)+(﹣2+1)+(0+1)+(4+1)+…+(0+1)+(﹣2014+1)+(0+1)+(2016+1)=6+…+6=6×=3024;所以该程序运行后输出的S值是3024.故选:C.【点评】本题考查了程序框图的应用问题,解题的关键是模拟程序运行的过程,得出程序运行后输出的算式的特征,是基础题目.9.(2016秋•榕城区校级期中)函数f(x)=Asin(2x+φ)(|φ|≤,A>0)部分图象如图所示,且f(a)=f(b)=0,对不同的x1,x2∈[a,b],若f(x1)=f(x2),有f(x1+x2)=,则()A.f(x)在(﹣,)上是减函数B.f(x)在(﹣,)上是增函数C.f(x)在(,)上是减函数D.f(x)在(,)上是增函数【分析】根据题意,得出函数f(x)的最小正周期,且b﹣a为半周期,再根据f(x1)=f(x2)时f(x1+x2)的值求出φ的值,从而写出f(x)的解析式,判断f(x)的单调性.【解答】解:∵f(x)=Asin(2x+φ),∴函数最小正周期为T=π;由图象得A=2,且f(a)=f(b)=0,∴•=b﹣a,解得b﹣a=;又x1,x2∈[a,b],且f(x1)=f(x2)时,有f(x1+x2)=,∴sin[2(x1+x2)+φ]=,即2(x1+x2)+φ=,且sin(2•+φ)=1,即2•+φ=,解得φ=,∴f(x)=2sin(2x+);令﹣+2kπ≤2x+≤+2kπ,k∈Z,∴﹣+2kπ≤2x≤+2kπ,k∈Z,解得﹣+kπ≤x≤+kπ,k∈Z,∴函数f(x)在区间[﹣+kπ,+kπ],k∈Z上是单调增函数,∴f(x)在区间(﹣,)上是单调增函数.故选:B.【点评】本题考查了正弦型三角函数的图象与性质的应用问题,是综合性题目.10.(2016秋•历下区校级期末)已知变量x,y满足,若目标函数z=ax+y(a>0)取到最大值6,则a的值为()A.2 B.C.或2 D.﹣2【分析】画出满足条件的平面区域,求出A,B的坐标,由z=ax+y得:y=﹣ax+z,结合函数的图象显然直线y=﹣ax+z过A,B时,z最大,求出a的值即可.【解答】解:画出满足条件的平面区域,如图示:由,解得:,由z=ax+y得:y=﹣ax+z,当直线y=﹣ax+z过A(1,4)时,B(4,1),z最大,此时,6=a+4,或6=4a+1,解得:a=2或a=,故选:C.【点评】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.11.(2015•江西模拟)正三角形ABC的边长为2,将它沿高AD翻折,使点B与点C间的距离为,此时四面体ABCD外接球表面积为()A.7π B.19πC.πD.π【分析】三棱锥B﹣ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,然后求球的表面积即可.【解答】解:根据题意可知三棱锥B﹣ACD的三条侧棱BD⊥AD、DC⊥DA,底面是等腰三角形,它的外接球就是它扩展为三棱柱的外接球,求出三棱柱的底面中心连线的中点到顶点的距离,就是球的半径,三棱柱中,底面△BDC,BD=CD=1,BC=,∴∠BDC=120°,∴△BDC的外接圆的半径为=1由题意可得:球心到底面的距离为,∴球的半径为r==.外接球的表面积为:4πr2=7π故选:A.【点评】本题考查空间想象能力,计算能力;三棱柱上下底面中点连线的中点,到三棱柱顶点的距离相等,说明中心就是外接球的球心,是本题解题的关键,仔细观察和分析题意,是解好数学题目的前提.12.(2015•安徽模拟)已知函数f(x)=,关于x的方程f(x+﹣2)=a的实根个数不可能为()A.5个B.6个C.7个D.8个【分析】由基本不等式可得x+﹣2≥0或x+﹣2≤﹣4,再作出函数f(x)=的图象,从而由图象分类讨论,从而由此分析关于x的方程f(x+﹣2)=a的实根个数.【解答】解:由基本不等式可得,x+﹣2≥0或x+﹣2≤﹣4;作函数f(x)=的图象如下,①当a>2时,x+﹣2<﹣24或<x+﹣2<1,故方程f(x+﹣2)=a的实根个数为4;②当a=2时,x+﹣2=﹣24或x+﹣2=或x+﹣2=2,故方程f(x+﹣2)=a的实根个数为6;③当1<a<2时,﹣24<x+﹣2<﹣4或<x+﹣2<或1<x+﹣2<2或2<x+﹣2<3,故方程f(x+﹣2)=a的实根个数为8;④当a=1时,x+﹣2=﹣4或0<x+﹣2<1或1=x+﹣2或x+﹣2=3,故方程f(x+﹣2)=a的实根个数为7;⑤当0<a<1时,﹣4<x+﹣2<0或3<x+﹣2<4或0<x+﹣2<1,故方程f(x+﹣2)=a的实根个数为4;⑥当a=0时,x+﹣2=0或3<x+﹣2<4,故方程f(x+﹣2)=a的实根个数为3;⑦当a<0时,x+﹣2>3,故方程f(x+﹣2)=a的实根个数为2.故选A.【点评】本题考查了函数的图象的作法及基本不等式的应用,同时考查了数形结合的思想应用,属于中档题.二、填空题(每小题5分,共20分)13.(2015秋•天门期末)已知a=,则二项式的展开式中的常数项为15 .【分析】运用积分公式得出a=1,二项式的展开式中项为:Tr+1=C6r•(﹣1)r•,利用常数项特征求解即可.【解答】解:∵a==sinx=1,∴二项式的展开式中项为:Tr+1=C6r•(﹣1)r•,当6﹣r=0时,r=4,常数项为:C64•(﹣1)4=15.故答案为:15.【点评】本题考查积分与二项展开式定理,属于难度较小的综合题,关键是记住公式.14.(2016秋•赫山区校级月考)已知函数f(x)=a x+1﹣2(a>0且a≠1)的图象恒过定点A,设抛物线E:y2=4x上任意一点M.到准线l的距离为d,则d+|MA|的最小值为.【分析】求出A的坐标,利用抛物线的定义,可得当F、A、M三点共线时,d+|MA|取得最小值为|AF|,即可得出结论.【解答】解:当x+1=0,解得x=﹣1,此时y=1﹣2=﹣1,故A(﹣1,﹣1),由题意得F(1,0),准线方程为x=﹣1,利用抛物线的定义,可得当F、A、M三点共线时,d+|MA|取得最小值为|AF|==.故答案为:.【点评】本题考查抛物线的定义和性质的应用,解答的关键利用是抛物线定义,体现了转化的数学思想.[ax2﹣(2﹣a)x+3]在[,2] 15.(2016•河北模拟)已知a>0且a≠1,若函数f(x)=loga上是增函数,则a的取值范围是{a|<a≤或a≥} .【分析】利用复合函数的单调性,二次函数、对数函数的性质,分类讨论,求得a的范围.【解答】解:∵a>0且a≠1,若函数f(x)=log[ax2﹣(2﹣a)x+3]在[,2]上是增函数,a设g(x)=ax2﹣(2﹣a)x+3,当a∈(0,1)时,则=﹣>,∴,求得<a≤.当a>1时,则,求得a≥.综上可得,a的范围为{a|<a≤或a≥},故答案为:{a|<a≤或a≥}.【点评】本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.16.(2016秋•赫山区校级月考)已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边上中线的交点,若=,且≥cos2x﹣msinx(x∈R)恒成立,则实数m的取值范围为[﹣4﹣2,4+2] .【分析】由题意知G是△ABC的重心,++=,代入+(a+b)+2c=求出a、b、c 的关系;,由+≥cos2x﹣msinx恒成立,得出≥(cos2x﹣msinx)max利用基本不等式求出+的最小值,构造函数g(x)=cos2x﹣msinx(x∈R),用换元法和分类讨论思想求出g(x)的最小值,再列出不等式求出m的取值范围.【解答】解:由题意知,G是△ABC的重心,则++=,即=﹣(+),代入+(a+b)+2c=,得:(1﹣2c)+(a+b﹣2c)=,则,解得;又+≥cos2x﹣msinx恒成立,即≥(cos2x﹣msinx),max且+=(+)•1=(+)•(a+b)=3+(+)≥3+2=3+2,当且仅当时“=”成立;令g(x)=cos2x﹣msinx(x∈R),则g(x)=﹣2sin2x﹣msinx+1,设t=sinx,t∈[﹣1,1];则g(t)=﹣2t2﹣mt+1,对称轴是t=﹣;①若﹣<﹣1,即m>4,=g(﹣1)=﹣1+m,令3+2≥﹣1+m,则g(t)max解得m≤4+2,即4<m≤4+2;②若﹣>1,即m<﹣4,=g(1)=﹣1﹣m,令3+2≥﹣1﹣m,则g(t)max解得﹣4﹣2≤m<﹣4;③若﹣1≤﹣≤1,即﹣4≤m≤4,则g(t)=g(﹣)=1+,max由3+2≥1+解得﹣4≤m≤4,故﹣4≤m≤4;综上,实数m的取值范围是[﹣4﹣2,4+2].故答案为:[﹣4﹣2,4+2].【点评】本题考查了三角函数、平面向量以及函数的综合应用问题,也考查了综合处理数学问题的能力.三、解答题(第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答,本大题共70分.解答应写出文字说明、证明过程或演算步骤.)}满足:=3,17.(12分)(2016秋•冀州市校级月考)已知首项为3的数列{an且b=.n(1)求证:数列{bn}是等差数列;(2)求数列{2n•bn }的前n项和Tn.【分析】(1)计算bn+1﹣bn==;(2)求出bn 的通项公式,得出Tn,使用错位相减法求和.【解答】解:(1)∵=3,∴=,∴bn+1﹣bn=﹣==.∴数列{bn}是等差数列.(2)b1==,∴bn=+(n﹣1)=n+.∴Tn=2•+22•+23•+24•+…+2n•,①①×2得:2Tn=22•+23•+24•+25•+…+2n+1•,②①﹣②得:﹣Tn=1++++…+•2n﹣2n+1•=1﹣2n+1•+•=1﹣2n+1•+•(2n+1﹣4)=﹣﹣•2n+1.∴Tn=+•2n+1.【点评】本题考查了数列等差关系的判断,数列求和,属于中档题.18.(12分)(2016秋•赫山区校级月考)如图,四棱锥P﹣ABCD的底面ABCD为矩形,AB=2,BC=2,点P在底面上的射影在AC上E是AB的中点.(1)证明:DE⊥平面PAC(2)若PA=PC,且PA与面PBD所成的角的正弦值为,求二面角D﹣PA﹣B的余弦值.【分析】(1)先证明AC⊥DE由题可知面PAC⊥面ABCD,且交线为AC,可得DE⊥面PAC(2取BC中点F,连接OE,OF,因为底面ABCD为矩形,所以OE⊥OF.建立如图所示的空间直角标系:A(1,﹣,0),B(1,,0),D(﹣1,﹣,0),P(0,0,a),,由PA与面PBD所成的角的正弦值为,得||=||×||×,⇒a,再求出两个面的法向量即可.【解答】解:(1)在矩形ABCD中,AB:BC=,且E是AB的中点,∴tan∠ADE=tan∠CAB=,…(1分)∴∠ADE=∠CAB,∵∠CAB+∠DAC=90°,∴∠ADE+∠DAC=90°,即AC⊥DE.…(3分)由题可知面PAC⊥面ABCD,且交线为AC,∴DE⊥面PAC.∴…(2):令AC与BD交于点O,∵PA=PC,且O是AC的中点,∴PO⊥AC.∵面PAC⊥面ABCD,∴PO⊥面ABCD.取BC中点F,连接OE,OF,因为底面ABCD为矩形,所以OE⊥OF.建立如图所示的空间直角标系:A (1,﹣,0),B (1,,0),D (﹣1,﹣,0),P (0,0,a ),…(6分)设面PDB 的法向量为,由,令,∴面PDB 的法向量为由∵PA 与面PBD 所成的角的正弦值为,∴||=||×||×,⇒a=1设平面PAD 的法向量为,,由 令y 2=1∴设平面PAB 的法向量为,由,令x 3=1∴ …(10分)cos θ=∴二面角D ﹣PA ﹣B 的余弦值为﹣ …(12分)【点评】本题考查了空间线面垂直的判定,利用向量处理线面角、二面角问题,属于中档题.19.(12分)(2016•南通模拟)网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为5或6的人去淘宝网购物,掷出点数小于5的人去京东商场购物,且参加者必须从淘宝和京东商城选择一家购物.(Ⅰ)求这4人中恰有1人去淘宝网购物的概率;(Ⅱ)用ξ、η分别表示这4人中去淘宝网和京东商城购物的人数,记X=ξη,求随机变量X的分布列与数学期望EX.【分析】(Ⅰ)依题意,这4个人中,每个人去淘宝网购物的概率为,去京东网购物的概率为,设“这4个人中恰有i个人去淘宝网购物”为事件Ai,则,(i=0,1,2,3,4),由此能求出这4个人中恰有1人去淘宝网购物的概率.(Ⅱ)由已知得X的所有可能取值为0,3,4,P(X=0)=P(A0)+P(A4),P(X=3)=P(A1)+P(A3),P(X=4)=P(A2),由此能求出X的分布列和EX.【解答】解:(Ⅰ)依题意,这4个人中,每个人去淘宝网购物的概率为,去京东网购物的概率为,设“这4个人中恰有i个人去淘宝网购物”为事件Ai(i=0,1,2,3,4),则,(i=0,1,2,3,4),这4个人中恰有1人去淘宝网购物的概率=.(Ⅱ)由已知得X的所有可能取值为0,3,4,P(X=0)=P(A0)+P(A4)==,P(X=3)=P(A1)+P(A3)=+=,P(X=4)=P(A2)==,∴X的分布列为:∴EX==.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意n次独立重复试验中事件A恰好发生k次的概率计算公式的合理运用.20.(12分)(2014•天津模拟)已知椭圆C:的右焦点为F(1,0),且点(﹣1,)在椭圆C上.(1)求椭圆C的标准方程;(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.【分析】(1)利用椭圆的定义求出a的值,进而可求b的值,即可得到椭圆的标准方程;(2)先利用特殊位置,猜想点Q的坐标,再证明一般性也成立即可.【解答】解:(1)由题意,c=1∵点(﹣1,)在椭圆C上,∴根据椭圆的定义可得:2a=,∴a=∴b2=a2﹣c2=1,∴椭圆C的标准方程为;(2)假设x轴上存在点Q(m,0),使得恒成立当直线l的斜率为0时,A(,0),B(﹣,0),则=﹣,∴,∴m=①当直线l的斜率不存在时,,,则•=﹣,∴∴m=或m=②由①②可得m=.下面证明m=时,恒成立当直线l的斜率为0时,结论成立;当直线l 的斜率不为0时,设直线l 的方程为x=ty+1,A (x 1,y 1),B (x 2,y 2) 直线方程代入椭圆方程,整理可得(t 2+2)y 2+2ty ﹣1=0,∴y 1+y 2=﹣,y 1y 2=﹣∴=(x 1﹣,y 1)•(x 2﹣,y 2)=(ty 1﹣)(ty 2﹣)+y 1y 2=(t 2+1)y 1y 2﹣t (y 1+y 2)+=+=﹣综上,x 轴上存在点Q (,0),使得恒成立.【点评】本题考查椭圆的标准方程,考查存在性问题,解题的关键的先猜后证,有一定的难度.21.(12分)(2017•江西二模)已知函数f (x )=a x +x 2﹣xlna (a >0,a ≠1). (1)求函数f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )单调增区间;(3)若存在x 1,x 2∈[﹣1,1],使得|f (x 1)﹣f (x 2)|≥e ﹣1(e 是自然对数的底数),求实数a 的取值范围.【分析】(1)先求函数的导函数f′(x ),再求所求切线的斜率即f′(0),由于切点为(0,0),故由点斜式即可得所求切线的方程;(2)先求原函数的导数得:f'(x )=a x lna+2x ﹣lna=2x+(a x ﹣1)lna ,再对a 进行讨论,得到f'(x )>0,从而函数f (x )在(0,+∞)上单调递增.(3)f (x )的最大值减去f (x )的最小值大于或等于e ﹣1,由单调性知,f (x )的最大值是f (1)或f (﹣1),最小值f (0)=1,由f (1)﹣f (﹣1)的单调性,判断f (1)与f (﹣1)的大小关系,再由f (x )的最大值减去最小值f (0)大于或等于e ﹣1求出a 的取值范围. 【解答】解:(1)∵f (x )=a x +x 2﹣xlna , ∴f′(x )=a x lna+2x ﹣lna , ∴f′(0)=0,f (0)=1即函数f (x )图象在点(0,1)处的切线斜率为0, ∴图象在点(0,f (0))处的切线方程为y=1;(3分) (2)由于f'(x )=a x lna+2x ﹣lna=2x+(a x ﹣1)lna >0①当a >1,y=2x 单调递增,lna >0,所以y=(a x ﹣1)lna 单调递增,故y=2x+(a x ﹣1)lna 单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(a x﹣1)lna单调递增,故y=2x+(a x﹣1)lna单调递增,∴2x+(a x﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(8分)(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max ﹣(f(x))min|=(f(x))max ﹣(f(x))min≥e﹣1,(12分)由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0(当t=1时取等号),所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)(14分)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).(16分)【点评】本题考查了基本函数导数公式,导数的几何意义,利用导数研究函数的单调性及利用导数求闭区间上函数的最值.属于中档题.[选修4-4:极坐标与参数方程选讲]22.(10分)已知极坐标系的极点在直角坐标系的原点处,极轴与x轴非负半轴重合,直线l 的参数方程为:(t为参数),曲线C的极坐标方程为:ρ=4cosθ.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)设直线l与曲线C相交于P,Q两点,求|PQ|的值.【分析】(1)利用极坐标与直角坐标的对于关系即可得出曲线C的方程;对直线l的参数方程消参数可得直线l的普通方程;(2)把直线l的参数方程代入曲线C的直角坐标方程得出关于参数t的一元二次方程,利用参数的几何意义和根与系数的关系计算|PQ|.【解答】解:(1)∵ρ=4cosθ.∴ρ2=4ρcosθ,∵ρ2=x2+y2,ρcosθ=x,∴x2+y2=4x,所以曲线C的直角坐标方程为(x﹣2)2+y2=4,由(t为参数)消去t得:.所以直线l的普通方程为.(2)把代入x2+y2=4x得:t2﹣3t+5=0.设其两根分别为t1,t2,则t1+t2=3,t1t2=5.所以|PQ|=|t1﹣t2|==.【点评】本题考查了参数方程,极坐标方程与直角坐标方程的转化,参数的几何意义,属于中档题.[选修4-5:不等式选讲]23.(2017•宝鸡一模)已知函数f(x)=|2x﹣a|+|2x+3|,g(x)=|x﹣1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.【分析】(1)利用||x﹣1|+2|<5,转化为﹣7<|x﹣1|<3,然后求解不等式即可.(2)利用条件说明{y|y=f(x)}⊆{y|y=g(x)},通过函数的最值,列出不等式求解即可.【解答】解:(1)由||x﹣1|+2|<5,得﹣5<|x﹣1|+2<5∴﹣7<|x﹣1|<3,得不等式的解为﹣2<x<4…(2)因为任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,所以{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x﹣a|+|2x+3|≥|(2x﹣a)﹣(2x+3)|=|a+3|,g(x)=|x﹣1|+2≥2,所以|a+3|≥2,解得a≥﹣1或a≤﹣5,所以实数a的取值范围为a≥﹣1或a≤﹣5.…(10分)【点评】本题考查函数的恒成立,绝对值不等式的解法,考查分析问题解决问题的能力以及转化思想的应用.。
高2018级高三(上)11月月考数学(理科)试题 共 1 张4 页考试时间:120分钟 满分:150分注意事项:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页,共4页。
考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。
第Ⅰ卷 (选择题 共60分)一、单选题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的) 1.已知集合(){}3|A x y lg x ==-,2{|680}B x x x =-+<,则AB =( )A .{}|23x x <<B .{}|23x x <≤C .{|24}x x <<D .{}|34x x << 2.已知复数z 满足(1)2z i i -=,则复数z 在复平面内对应的点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限3.“直线l 与平面α内无数条直线垂直”是“直线l 与平面α垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不必要也不充分条件 4.已知等差数列{}n a 、{}n b ,其前n 项和分别为n S 、n T ,2331n n a n b n +=-,则1111S T =( ) A .1517B .2532C .1D .25.若3tan 4α=,则2cos 2sin 2αα+=( ) A .6425 B .4825C .1D .16256.某几何体的三视图如下图所示,则该几何体的体积是( )A .23B .43C .2D .47.祖冲之是中国古代数学家、天文学家,他将圆周率推算到小数点后第七位.利用随机模拟的方法也可以估计圆周率的值,如右图程序框图中rand ( )表示产生区间0,1上的随机数,则由此可估计π的近似值为( ) A .0.001n B.0.002nC.0.003n D .0.004n8. 2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万)口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.759.若变量x ,y 满足约束条件2,1,1y x x y x ≤⎧⎪+≥⎨⎪≤⎩,则的11y z x -=+取值范围是( )A .11,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭ B .13,22⎡⎤⎢⎥⎣⎦ C .11,22⎡⎤-⎢⎥⎣⎦ D .13,,22⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭10.设()f x 是定义在R 上的偶函数,对任意的x ∈R ,都有()()22f x f x-=+,且当[]2,0x ∈-时,()112xf x ⎛⎫=- ⎪⎝⎭,若关于x 的方程()()log 20(1)a f x x a -+=>在区间(]2,6-内恰有三个不同实根,则实数a 的取值范围是( ) A .B .)2C .2⎤⎦D.2⎤⎦11.已知双曲线()222210,0xy a b a b-=>>的左、右焦点分别为12F F ,,过2F 作一条直线与双曲线右支交于A B,两点,坐标原点为O ,若15OA c BF a ,==,则该双曲线的离心率为( ) A B C D 12.若不等式2sin 12cos 2x x a x ⎛⎫≤+ ⎪⎝⎭对(0,]x π∀∈恒成立,则实数a 的取值范围是( ) A .[1,)+∞B .1,π⎡⎫+∞⎪⎢⎣⎭ C .1,3π⎡⎫+∞⎪⎢⎣⎭D .1,3⎡⎫+∞⎪⎢⎣⎭第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把答案填在答题卷上) 13.已知抛物线24x y =上一点A 的纵坐标为4,则点A 到抛物线焦点的距离为 14.在6(2)(1)x x -+展开式中,含4x 的项的系数是__________. 15.在ABC 中,已知2AB =,||||CA CB CA CB +=-,2cos 22sin 12B CA ++=,则BA 在BC 方向上的投影为__________.16.已知数列{}n a 的前n 项和为n S,直线y x =-2222n x y a +=+交于n A ,()*n B n N∈两点,且214n n n S A B =.若2123232n n a a a na a λ++++<+对*n N ∀∈成立,则实数λ的取值范围是______.三、解答题(本大题共6小题,共70分。
南昌县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 与命题“若x ∈A ,则y ∉A ”等价的命题是( )A .若x ∉A ,则y ∉AB .若y ∉A ,则x ∈AC .若x ∉A ,则y ∈AD .若y ∈A ,则x ∉A 2. 设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f()=( )A.B.C .0D.﹣3. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( ) A. B. C. D.4. 幂函数y=f (x )的图象经过点(﹣2,﹣),则满足f (x )=27的x 的值是( ) A.B.﹣ C .3D .﹣35. 若关于的不等式2043x ax x +>++的解集为31x -<<-或2x >,则的取值为( ) A . B .12 C .12- D .2-6. 已知直线x+y+a=0与圆x 2+y 2=1交于不同的两点A 、B ,O是坐标原点,且,那么实数a 的取值范围是( ) A.B.C .D.7. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心8.已知=(2,﹣3,1),=(4,2,x),且⊥,则实数x 的值是( )A .﹣2B .2C.﹣D.9. 某几何体的三视图如图所示,则该几何体的表面积为()A .8+2 B .8+8C .12+4 D .16+410.函数y=(x 2﹣5x+6)的单调减区间为( )A.(,+∞) B .(3,+∞)C .(﹣∞,) D .(﹣∞,2)班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________11.已知点M (a ,b ,c )是空间直角坐标系O ﹣xyz 中的一点,则与点M 关于z 轴对称的点的坐标是( ) A .(a ,﹣b ,﹣c ) B .(﹣a ,b ,﹣c ) C .(﹣a ,﹣b ,c ) D .(﹣a ,﹣b ,﹣c )12.已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确二、填空题13.设全集______.14.已知函数f (x )=cosxsinx ,给出下列四个结论: ①若f (x 1)=﹣f (x 2),则x 1=﹣x 2; ②f (x )的最小正周期是2π;③f (x )在区间[﹣,]上是增函数;④f (x )的图象关于直线x=对称.其中正确的结论是 .15.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .16.【泰州中学2018届高三10月月考】设二次函数()2f x ax bx c =++(,,a b c 为常数)的导函数为()f x ',对任意x R ∈,不等式()()f x f x ≥'恒成立,则222b ac +的最大值为__________.17.如图,函数f (x )的图象为折线 AC B ,则不等式f (x )≥log 2(x+1)的解集是 .18.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.三、解答题19.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2ln f x ax x =+,()21145ln 639f x x x x =++,()22122f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当23a =时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)20.已知f (x )=x 2﹣(a+b )x+3a .(1)若不等式f (x )≤0的解集为[1,3],求实数a ,b 的值; (2)若b=3,求不等式f (x )>0的解集.21.已知圆C 的圆心在射线3x ﹣y=0(x ≥0)上,与直线x=4相切,且被直线3x+4y+10=0截得的弦长为.(Ⅰ) 求圆C 的方程;(Ⅱ) 点A (1,1),B (﹣2,0),点P 在圆C 上运动,求|PA|2+|PB|2的最大值.22.已知函数()()21+2||02()1()102x x x x f x x ⎧-≤⎪⎪=⎨⎪->⎪⎩.(1)画出函数()f x 的图像,并根据图像写出函数()f x 的单调区间和值域;(2)根据图像求不等式3(x)2f ≥的解集(写答案即可)23.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.24.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.南昌县第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题1. 【答案】D【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可. 与命题“若x ∈A ,则y ∉A ”等价的命题是若y ∈A ,则x ∉A . 故选D .2. 【答案】D【解析】解:∵函数f (x )(x ∈R )满足f (x+π)=f (x )+cosx , 当0≤x <π时,f (x )=1,∴f ()=f ()=f ()+cos =f ()+cos +cos =f ()+cos +cos =f()+cos+cos=f ()+cos+cos+cos=0+cos﹣cos+cos=﹣.故选:D .【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.3. 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C 63=20种,其中恰有两个球同色C 31C 41=12种,故恰有两个球同色的概率为P==,故选:B . 【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题.4. 【答案】A【解析】解:设幂函数为y=x α,因为图象过点(﹣2,﹣),所以有=(﹣2)α,解得:α=﹣3所以幂函数解析式为y=x ﹣3,由f (x )=27,得:x ﹣3=27,所以x=.故选A .5. 【答案】D 【解析】试题分析:由题意得,根据不等式与方程的关系可知,不等式解集的端点就是对应的方程的根,可得方程2043x ax x +=++,解得3,1,x x x a =-=-=-,其对应的根分别为3,1,2x x x =-=-=,所以2a =-,故选D.考点:不等式与方程的关系.6.【答案】A【解析】解:设AB的中点为C,则因为,所以|OC|≥|AC|,因为|OC|=,|AC|2=1﹣|OC|2,所以2()2≥1,所以a≤﹣1或a≥1,因为<1,所以﹣<a<,所以实数a的取值范围是,故选:A.【点评】本题考查直线与圆的位置关系,考查点到直线的距离公式,考查学生的计算能力,属于中档题.7.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C8.【答案】A【解析】解:∵=(2,﹣3,1),=(4,2,x),且⊥,∴=0,∴8﹣6+x=0;∴x=﹣2;故选A.【点评】本题考查向量的数量积判断向量的共线与垂直,解题的关键是将垂直关系转化为两向量的内积为0,建立关于x的方程求出x的值.9.【答案】D【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA=2,AB=2,高为,1根据三视图得出侧棱长度为=2,∴该几何体的表面积为2×(2×+2×2+2×2)=16,故选:D【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.10.【答案】B【解析】解:令t=x2﹣5x+6=(x﹣2)(x﹣3)>0,可得x<2,或x>3,故函数y=(x2﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).本题即求函数t在定义域(﹣∞,2)∪(3,+∞)上的增区间.结合二次函数的性质可得,函数t在(﹣∞,2)∪(3,+∞)上的增区间为(3,+∞),故选B.11.【答案】C【解析】解:∵在空间直角坐标系中,点(x,y,z)关于z轴的对称点的坐标为:(﹣x,﹣y,z),∴点M(a,b,c)关于z轴的对称点的坐标为:(﹣a,﹣b,c).故选:C.【点评】本小题主要考查空间直角坐标系、空间直角坐标系中点的坐标特征等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.12.【答案】B【解析】解:∵E是BB1的中点且AA1=2,AB=BC=1,∴∠AEA1=90°,又在长方体ABCD﹣A1B1C1D1中,AD⊥平面ABB1A1,∴A1D1⊥AE,∴AE⊥平面A1ED1,故选B【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.二、填空题13.【答案】{7,9}【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9}, ∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9}, 故答案为:{7,9}。
内黄县高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .32. 已知椭圆,长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .83. 下列四个命题中的真命题是()A .经过定点的直线都可以用方程表示()000,P x y ()00y y k x x -=-B .经过任意两个不同点、的直线都可以用方程()111,P x y ()222,P x y ()()()()121121y y x x x x y y --=--表示C .不经过原点的直线都可以用方程表示1x ya b+=D .经过定点的直线都可以用方程表示()0,A b y kx b =+4. 已知△ABC 中,a=1,b=,B=45°,则角A 等于()A .150°B .90°C .60°D .30°5. 已知变量x 与y 负相关,且由观测数据算得样本平均数=3, =2.7,则由该观测数据算得的线性回归方程可能是()A . =﹣0.2x+3.3B . =0.4x+1.5C . =2x ﹣3.2D . =﹣2x+8.66. 已知一个算法的程序框图如图所示,当输出的结果为时,则输入的值为()21A .B .C .或D .或21-1-21-107. 设a ,b 为实数,若复数,则a ﹣b=()A .﹣2B .﹣1C .1D .28. 已知函数f (x )=(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )={a x -1,x ≤1log a1x +1,x>1)()A .-B .-1412班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________C .-D .-34549. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为()A .相离B .相切C .相交D .不能确定10.已知f (x )为R 上的偶函数,对任意x ∈R 都有f (x+6)=f (x )+f (3),x 1,x 2∈[0,3],x 1≠x 2时,有成立,下列结论中错误的是()A .f (3)=0B .直线x=﹣6是函数y=f (x )的图象的一条对称轴C .函数y=f (x )在[﹣9,9]上有四个零点D .函数y=f (x )在[﹣9,﹣6]上为增函数11.函数y=x+cosx 的大致图象是()A .B .C .D .12.已知函数f (x )=,则的值为()A .B .C .﹣2D .3二、填空题13.已知函数,,其图象上任意一点处的切线的斜率恒()ln a f x x x =+(0,3]x ∈00(,)P x y 12k ≤成立,则实数的取值范围是.14.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且,B=45°,面积S=2,则b 等于 .15.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药明显副作用(此空填“有”或“无”)16.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .17.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .18.命题p :∀x ∈R ,函数的否定为 .三、解答题19.在某大学自主招生考试中,所有选报Ⅱ类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A ,B ,C ,D ,E 五个等级.某考场考生的两科考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人.(Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A 的人数;(Ⅱ)若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分,求该考场考生“数学与逻辑”科目的平均分;(Ⅲ)已知参加本考场测试的考生中,恰有两人的两科成绩均为A .在至少一科成绩为A 的考生中,随机抽取两人进行访谈,求这两人的两科成绩均为A 的概率. 20.【南师附中2017届高三模拟二】如下图扇形是一个观光区的平面示意图,其中为,半AOB AOB ∠23π径为,为了便于游客观光休闲,拟在观光区内铺设一条从入口到出口的观光道路,道路由圆弧OA 1km A B、线段及线段组成.其中在线段上,且,设.AC CD BD D OB //CD AO AOC θ∠=(1)用表示的长度,并写出的取值范围;θCD θ(2)当为何值时,观光道路最长?θ21.已知函数f (x )=x 3+2bx 2+cx ﹣2的图象在与x 轴交点处的切线方程是y=5x ﹣10.(1)求函数f (x )的解析式;(2)设函数g (x )=f (x )+mx ,若g (x )的极值存在,求实数m 的取值范围以及函数g (x )取得极值时对应的自变量x 的值. 22.【常熟中学2018届高三10月阶段性抽测(一)】已知函数有一个零点为4,且满足.()()()3244f x x a x a b x c =+--++(),,R a b c ∈()01f =(1)求实数和的值;b c (2)试问:是否存在这样的定值,使得当变化时,曲线在点处的切线互相平行?0x a ()y f x =()()00,x f x 若存在,求出的值;若不存在,请说明理由;0x (3)讨论函数在上的零点个数.()()g x f x a =+()0,423.(本题满分12分)如图1在直角三角形ABC中,∠A=90°,AB=2,AC=4,D,E分别是AC,BC边上的中点,M为CD的中点,现将△CDE沿DE折起,使点A在平面CDE内的射影恰好为M.(I)求AM的长;(Ⅱ)求面DCE与面BCE夹角的余弦值.24.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:场数91011121314人数10182225205将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.(Ⅰ)根据已知条件完成下面的2×2列联表,并据此资料我们能否有95%的把握认为“歌迷”与性别有关?非歌迷歌迷合计男女合计(Ⅱ)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.P(K2≥k)0.050.01k 3.841 6.635附:K2=.内黄县高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题题号12345678910答案B D BDACCD题号1112答案BA二、填空题13.21≥a 14. 5 . 15., 无.16. .17. a ≤0或a ≥3 .18. ∃x 0∈R ,函数f (x 0)=2cos 2x 0+sin2x 0>3 .三、解答题19.20.(1);(2)设当时,取得最大值,即当时,观cos ,0,3CD πθθθ⎛⎫=+∈ ⎪⎝⎭∴6πθ=()L θ6πθ=光道路最长.21.22.(1);(2)答案见解析;(3)当或时,在有两个零点;当1,14b c ==1a <-0a >()g x ()0,410a -≤≤时,在有一个零点.()g x ()0,423.解:(I )由已知可得AM ⊥CD ,又M 为CD 的中点,∴; 3分(II )在平面ABED 内,过AD 的中点O 作AD 的垂线OF ,交BE 于F 点,以OA 为x 轴,OF 为y 轴,OC 为z 轴建立坐标系,可得,∴,,5分设为面BCE的法向量,由可得=(1,2,﹣),∴cos<,>==,∴面DCE与面BCE夹角的余弦值为4分24.。
2018届高三理综上册11月月考试题(含答案)
5 云浮罗定中学=NH3↑+H2
B.铜片与稀硝酸cu+N3-+4H+=cu2++N↑+2H2
c.用惰性电极电解饱和食盐水2cl-+2H2 cl2↑+H2↑+2H-
D.纯碱水解c32-+2H2 H2c3+2H-
10.下列实验设计不能成功的是()
编号实验目的实验操作及现象
A检验Na22试样是否变质为Na2c3向试样中加入盐酸,产生无色无味的气体
B从碘水中萃取碘向碘水中滴加ccl4,振荡静置后分层,下层呈紫红色
c证明Br2的氧化性比I2强将溴水滴入淀粉I溶液中,溶液变蓝色
D鉴别Alcl3和gcl2溶液分别向二种溶液中滴加NaH溶液直至过量,现象不同
11.用高铁酸钠(Na2Fe4)对河水消毒是饮水处理的新技术,已知制取Na2Fe4的反应为
Fe24+3Na23 2Na2Fe4+Na2,下列说法正确的是()
A.Na2既是氧化产物又是还原产物
B.在Na2Fe4中Fe为+6价,具有强氧化性,能消毒杀菌
c.Fe23既做氧化剂又做还原剂
D.该反应中氧化性比较Na2Fe4大于Na22
12.下列有关说法正确的是()
A.将氯化铝溶液加热蒸发、烘干可得无水氯化铝固体
B.离子化合物中一定含有离子键,还可能含有共价键
c.单质都是由同种元素组成的,只含一种元素的物质一定是纯净物。
2017-2018学年度第一学期 高三级理科数学11月考试试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}1,1,3A =-,{}21,2B a a =-,且B A ⊆,则实数a 有( )个不同取值.A .2B .3C .4D .5【答案】B【解析】因为B A ⊆,所以221a a -=-或223a a -=, 解得:1a =或1a =-或3a =, 所以实数a 的不同取值个数为3. 故选B .考点:1.集合间的关系;2.一元二次方程.2.复数2iiz +=的共轭复数是( ).A .2i +B .2i -C .12i +D .12i -【答案】C 【解析】22i (2i)i 2i 112i i i 1z ++-====--, 共轭复数12i z =+. 故选C .3.在ABC △中,则“π6A >”是“1sin 2A >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件【答案】B【解析】在ABC △中,由1sin 2A >得:π5π66A <<, 因为“π6A >”⇒“1sin 2A >”,“π6A >”⇐“1sin 2A >”, 所以“π6A >”是“1sin 2A >”的必要而不充分条件. 故选B .考点:1.三角函数的性质;2.充分条件与必要条件.4.下列命题中,错误的是( ).A .平行于同一平面的两个不同平面平行B .一条直线与两个平行平面中的一个相交,则必与另一个平面相交C .若两个平面不垂直,则其中一个平面内一定不存在直线与另一个平面垂直D .若直线不平行于平面,则此直线与这个平面内的直线都不平行 【答案】D【解析】解:由平面平行的判定定理知,平行于同一平面的两个不同平面平行,所以A 选项是正确的; 由直线与平面相交的性质,知一条直线与两个平行平面中的一个相交,则必与另一个平面相交,所以B 选项是正确的;由直线与平面垂直的性质定理,知如果平面α不垂直平面β, 那么平面α内一定不存在直线垂直于平面β,所以C 选项是正确的;若直线l 不平行平面α,则当l α⊂时,在平面α内存在与l 平行的直线,故D 不正确. 故选D .5.为得到函数3cos2y x =的图象,只需把函数π3sin 26y x ⎛⎫=+ ⎪⎝⎭的图象上所有的点( ).A .向右平行移动π3个单位长度B .向右平行移动π6个单位长度C .向左平行移动π3个单位长度D .向左平行移动π6个单位长度【答案】D【解析】解:函数π3cos 23sin 22y x x ⎛⎫==+ ⎪⎝⎭,把函数π3sin 26y x ⎛⎫=+ ⎪⎝⎭的图象上所有的点向左平行移动π6个单位长度,可得函数πππ3sin 23sin 2662y x x ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象.故选D .6.若1a b >>,01c <<,则( ).A .c c a b <B .c c ab ba <C .log log b a a c b c <D .log log a b c c <【答案】C【解析】A 项.使用特殊值法,令3a =,2b =,12c =, 得112232>,故A 项错误;B 项,使用特殊值法,令3a =,2b =,12c =, 得11223223⨯>⨯,故B 项错误;(由于110c -<-<,所以函数1c y x -=在(1,)+∞上单调递减,所以111c c c c a b a b ba ab -->>⇔<⇔<); C 项,使用特殊值法,令3a =,2b =,12c =, 得2313log 2log 22<,C 项正确; 要比较log b a c 和log a b c ,只需比较ln ln a c b和ln ln b ca , 即只需比较ln ln c b b 和ln ln ca a, 所以比较ln b b 和ln a a 的大小即可,构造函数()ln (1)f x x x x =>, 则()ln 10f x x '=+>,即()f x 在(1,)+∞上单调递增, 因此()()(1)0f a f b f >>=,所以ln ln 0a a b b >>, 所以11ln ln a a b b<, 又因为01c <<, 所以ln 0c <, 所以ln ln ln ln c ca ab b>, 所以log log b a a c b c <, 故C 项正确;D 项,使用特殊值法,令3a =,2b =,12c =, 得3211log log 22>, 故D 项错误,(要比较log a c 和log b c ,只需要比较ln ln c a 和ln ln cb即可,因为函数()ln (1)f x x x =>在(1,)+∞上单调递增,所以ln ln 0a b >>,即11ln ln a b <,因为01c <<,所以ln 0c <,所以ln ln ln ln c c a b>,即log log a b c c >).故选C .7.某几何体的三视图如图所示,且该几何体的体积是2,则正(主)视图的面积等于( ).A .32B .3C .2D .92【答案】A1俯视图侧视图主视图1x【解析】解:该几何体为四棱锥,其底面为直角梯形,面积1(12)232S =⨯+⨯=,则该几何体的体积13332V x =⋅⋅=,故32x =.8.如图给出的是计算11112462016++++的值的程序框图,其中判断框内应填入的是( ).A .2019i ≤B .2018i ≤C .2017i ≤D .2016i ≤【答案】D【解析】根据流程图,可知, 第1次循环:2i =,12S =; 第2次循环:4i =,1124S =+; 第3次循环:6i =,111246S =++,第1008次循环:2016i =,11112462016S =++++; 此时,设置条件退出循环,输出S 的值. 故判断框内可填入2016i ≤.9.圆O 的半径为3,一条弦4AB =,P 为圆O 上任意一点,则AB BP ⋅的取值范围为( ).A .[16,0]-B .[0,16]C .[20,4]-D .[4,20]-【答案】C【解析】解:如图所示,连接OA ,OB .过点O 作OC AB ⊥,垂足为C , 则122BC AB ==, ∴2cos 3OBA ∠=, ∴()AB BP AB OP OB AB OP AB OB ⋅=⋅-=⋅-⋅,||||cos ,||||cos AB OP AB OP AB OB OBA =⋅-⋅∠, 243cos ,4312cos ,83AB OP AB OP =⨯⨯-⨯⨯=-. ∵cos ,[1,1]AB OP ∈-, ∴12cos ,8[20,4]AB OP-∈-.10.平面上满足约束条件20100x x y x y ⎧⎪+⎨⎪--⎩≥≤≤的点(,)x y 形成的区域为D ,区域D 关于直线2y x =对称的区域为E ,则区域D 和E 中距离最近两点的距离为( ).ABCD【答案】A【解析】先根据约束条件画出可行域,如图,作出区域D 关于直线2y x =对称的区域,它们呈蝴蝶形, 由图可知,可行域内点(2,2)A -到A '的距离最小, 最小值为A 到直线2y x =的距离的两倍,∴最小值2=11.设m ,n ∈R ,若直线(1)(1)20m x n y +++-=与圆22(1)(1)1x y -+-=相切,则m n +的取值范围是( ).A.[1B.(),113,⎡-∞++∞⎣C.[2-+D .(),2222,⎡-∞-++∞⎣【答案】D【解析】本题主要考查直线与圆的位置关系及均值不等式的应用.1=,两边平方并整理得1m n mn ++=, 显然1n ≠, 故11n m n +=-, 显然1122(1)2111n n m n n n n n n n +-++=+=+=-++---,当10n ->时,利用均值不等式得2(1)2221m n n n +=-++=-≥;当10n -<时,利用均值不等式得22(1)21m n n n ⎡⎤+=-----⎢⎥-⎣⎦≤故m n +的取值范围是(),2222,⎡-∞-++∞⎣.故选D .12.已知函数21()1()32mx m n x f x x 3+++=+的两个极值点分别为1x ,2x ,且1(0,1)x ∈,2(1,)x ∈+∞.点(,)P m n 表示的平面区域为D ,若函数log (4)(1)a y x a =+>的图象上存在区域D 内的点,则实数a 的取值范围是( ).A .[)3,+∞B .(3,)+∞C .(]1,3D .(1,3)【答案】D【解析】解:21()()2f x x mx m n '=+++,依题意知,方程()0f x '=有两个根1x ,2x ,且1(0,1)x ∈,2(1,)x ∈+∞,由二次方程根的分布,则有1(0)()02f m n '=+>,1(1)1()02f m m n '=+++<,则0320m n m n +⎧⎨++⎩, 点(,)P m n 表示的平面区域为D ,画出二元一次不等式组:320m n m n +⎧⎨++⎩表示的平面区域, 如图所示:因为直线0m n +=,230m n ++=的交点坐标为(1,1)-,所以要使函数log (4)a y x =+,(1)a >的图象上存在区域D 内的点, 则必须满足1log (14)a <-+, 所以log 31a >,解得3a <. 又因为1a >, 所以13a <<.二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.函数22()log (f x x =-+的值域为__________.【答案】3,2⎛⎤-∞ ⎥⎝⎦【解析】解:∵20x <-+, ∴0x =时,()f x 最大,3()(0)log 2f x f ===最大值, 因此,本题正确答案是:3,2⎛⎤-∞ ⎥⎝⎦.14.设α为锐角,若π3cos 65α⎛⎫+= ⎪⎝⎭,则πsin 212α⎛⎫+ ⎪⎝⎭的值为__________.【解析】设π6βα=+,α为锐角, ππ2,π663P α⎛⎫=+∈ ⎪⎝⎭,∵32πsin sin53β=<=,可得β为锐角, 可求4cos 5β=,24sin 22sin cos 25βββ==, 27cos212sin 25ββ=-=, ∴ππππcos 2cos 2cos 212344ααβ⎛⎫⎛⎫⎛⎫+=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,ππcos2cos sin 2sin 44P β=+,=15.《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面ABC ,2PA AB ==,4AC =,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为__________. 【答案】20π【解析】本题主要考查空间几何体.由题意得该四面体的四个面都为直角三角形,且PA ⊥平面ABC ,2PA AB ==,4AC =,PC =PB =因为PBC △为直角三角形,因此BC =BC =.所以只可能是BC = 此时PB BC ⊥,因此AB BC ⊥, 所以平面ABC 所在小圆的半径即为22ACr ==, 又因为2PA =,所以外接球O的半径R ==,所以球O 的表面积为24π20πS R ==.16.抛物线28y x =的焦点为F ,设11(,)A x y 、22(,)B x y 是抛物线上的两个动点,若124|x x AB ++,则AFB ∠的最大值为__________. 【答案】2π3【解析】解:由抛物线定义得12AF x =+,22BF x =+,所以由124|x x AB ++=,得|AF BF AB +=, 因此,22222113||||||||||||||442cos 2||||2||||AF BF AF BF AF BF AB AFB AF BF AF BF +-⋅+-∠==⋅⋅, 132||||||||1422||||2AF BF AF BF AF BF ⨯⋅-⋅=-⋅≥,所以20π3AFB <∠≤,填2π3.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)四边形ABCD 如图所示,已知2AB BC CD ===,AD =(1cos A C -的值.(2)记ABD △,BCD △的面积分别为1S ,2S ,求2212S S +的最大值.【答案】见解析.【解析】(1)在ABD △中,DB =,在BCD △中,DB ,cos 1A C -=.(2)根据题意2211212cos S A =-,22244cos S C =-,所以2222121212cos 44cos S S A C +=-+-, 28cos 8cos 12C C =--+, 218cos 142C ⎛⎫=-++ ⎪⎝⎭,因为24BD <<,所以8cos (16C -∈-,计算出1cos 1C -<<,所以221214S S +≤, 当1cos 2C =-时,取等号,即2212S S +最大值为14.BC18.(本小题满分12分)为了调查高中生的数学成绩与学生自主学习时间之间的相关关系,新苗中学数学教师对新入学的45名学生进行了跟踪调查,其中每周自主做数学题的时间不少于15小时的有19人,余下的人中,在高三模拟考试中数学成绩不足120分的占813,统计成绩后,得到如下的22⨯列联表:“高中生的数学成绩与学生自主学习时间有关”.(2)(i )按照分层抽样的方法,在上述样本中,从分数大于等于120分和分数不足120分的两组学生中抽取9名学生,设抽到的不足120分且周做题时间不足15小时的人数为X ,求X 的分布列(概率用组合数算式表示).(ii )若将频率视为概率,从全校大于等于120分的学生中随机抽取20人,求这些人中周做题时间不少于15小时的人数的期望和方差.附:22()()()()()n ad bc K a b c d a c b d -=++++【解析】(1)∵27.287 6.63525201926K =>⨯⨯⨯≈. ∴能在犯错误的概率不超过0.01的前提下认为“高中生的数学成绩与学生自主学习时间有关”. (2)(i )由分层抽样知大于等于120分的有5人,不足120分的有4人,X 的可能取值为0,1,2,3,4.416420C (0)C P X ==,33416420C C (1)C P X ⋅==,22416420C C (2)C P X ⋅==,31416420C C (3)C P X ⋅==,44420C (4)C P X ==.(ii )设从全校大于等于120分的学生中随机抽取20人,这些人中周做题时间不少于15小时的人数为随机变量Y , 由题意可知(20,0.6)YB ,故()12E Y =,() 4.8D Y =.19.(本小题满分12分)如图所示的几何体是由棱台111ABC A B C -和棱锥11D AAC C -拼接而成的组合体,其底面四边形ABCD 是边长为2的菱形,且60BAD ∠=︒,1BB ⊥平面ABCD ,11122BB A B ==.(1)求证:平面1AB C ⊥平面1BB D . (2)求二面角11A BD C --的余弦值. 【答案】见解析.【解析】解:(1)∵1BB ⊥平面ABCD , ∴1BB AC ⊥,在菱形ABCD 中,BD AC ⊥,D ABC 1B 1A 1又1BDBB B =,∴AC ⊥平面1BB D , ∵AC ⊂平面1AB C , ∴平面1AB C ⊥平面1BB D . (2)连接BD ,AC 交于点O ,以O 为坐标原点,以OA 为x 轴,以OD 为y 轴, 如图建立空间直角坐标系,(0,1,0)B -,(0,1,0)D ,1(0,1,2)B -,A ,11111,222B A BA A ⎫=⇒-⎪⎪⎝⎭,同理11,22C ⎛⎫- ⎪ ⎪⎝⎭, 131,22BA ⎛⎫= ⎪⎪⎝⎭,(0,2,0)BD =,11,22BC ⎛⎫= ⎪ ⎪⎝⎭,设平面1A BD 的法向量(,,)n x y z =, ∴100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩,则(n =-,设平面DCF 的法向量(,,)m x y z =, 10BD m BC m ⎧⋅=⎪⎨⋅=⎪⎩, 则m =,设二面角11A BD C --为θ,||13cos 19||||m n m n θ⋅==.20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为1A ,2A ,左、右焦点分别为1F ,2F ,离心率为12,点(4,0)B ,2F 为线段1A B 的中点.(1)求椭圆C 的方程.(2)若过点B 且斜率不为0的直线l 与椭圆C 交于M 、N 两点,已知直线1A M 与2A N 相交于点G ,试判断点G 是否在定直线上?若是,请求出定直线的方程;若不是,请说明理由. 【答案】见解析.【解析】(1)设点1(,0)A a -,2(,0)F c , 由题意可知:42a c -+=,即42a c =-①, 又因为椭圆的离心率12c e a ==,即2a c =②, 联立方程①②可得:2a =,1c =,则2223b a c =-=,所以椭圆C 的方程为22143x y +=. (2)方法一:根据椭圆的对称性猜测点G 是与y 轴平行的直线0x x =上, 解设当点M 为椭圆的上顶点时,直线l 40y +-, 此时点85N ⎛ ⎝⎭,则联立直线120A M l y -+=和直线120A N l y +-=可得点G ⎛ ⎝⎭,据此猜想点G 在直线1x =上,下面对猜想给予证明: 设11(,)M x y ,22(,)N x y ,联立方程22(4)13y k x x y x=-⎧⎪⎨+=⎪⎩,可得:2222(34)3264120k x k x k +-+-=,0∆>,由韦达定理可得21223234k x x k +=+,2122641234k x x k -=+(*),因为直线111:(2)2A M y l y x x =++,222:(2)2A N y l y x x =--. 联立两直线方程得122122(2)(2)222y y y x x x x x +==-+--(其中x 为G 点的横坐标), 即证:1212322y y x x -=+-, 即12213(4)(2)(4)(2)k x x k x x -⋅-=--+, 即证1212410()160x x x x -++=,将(*)代入上式可得22222224(6412)1032160163203403434k k k k k k k⋅-⨯-+=⇔--++=++, 此式明显成立,原命题得证.所以点G 在定直线上1x =上.21.(本小题满分12分)已知函数()ln 1af x x x=+-,a ∈R . (1)若函数()f x 的最小值为0,求a 的值. (2)证明:e (ln 1)sin 0x x x +->. 【答案】见解析. 【解析】(1)()ln 1af x x x=+-的定义域为(0,)+∞, 且221()a x af x x x x-'=-=.若0a ≤,则()0f x '>,于是()f x 在(0,)+∞上单调递增,故()f x 无最小值,不合题意. 若0a >,则当0x a <<时,()0f x '<; 当x a >时,()0f x '>.故()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增. 于是当x a =时,()f x 取得最小值ln a . 由已知得ln 0a =,解得1a =, 综上,1a =.(2)①下面先证明当(0,π)x ∈时,e (ln 1)sin 0x x x +->, 设()sin g x x x =-, 则()cos 1g x x '=-,于是当0πx <<时,()0g x '<, 所以()g x 在[)0,π上单调递减, 所以当0πx <<时,()(0)0g x g <=, 所以sin 1xx->-. 由(1)可知1ln 10x x+-≥, 即1ln 1x x--≥,所以当0πx <<时, sin (ln 1)sin 1xx x x-->-≥, 于是0e (ln 1)sin e 1e 10x x x x +->->-=, 即e (ln 1)sin 0x x x +->. ②当[)π,x ∈+∞时,sin 1x -≥, 因为ln 10x ->,所以(ln 1)sin (ln 1)x x x ---≥, 所以e (ln 1)sin e (ln 1)x x x x x +---≥,设()e ln 1x h x x =-+,则π11()e e 0πx h x x '=-->≥,所以()h x 在[)π,+∞上单调递增, 故π()(π)e ln π10h x h =-+>≥,所以e (ln 1)sin e (ln 1)0x x x x x +--->≥, 综上,不等式e (ln 1)sin 0x x x +->恒成立.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,已知圆1C 的参数方程为1cos 2sin x y φφ=+⎧⎨=+⎩(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线2C 的极坐标方程为cos 20ρθ+=. (1)求1C 的极坐标方程与2C 的直角坐标方程.(2)若直线3C 的极坐标方程为π()4θρ=∈R ,设3C 与1C 的交点为M ,N ,P 为2C 上的一点,且PMN △的面积等于1,求P 点的直角坐标.【答案】见解析.【解析】解:(1)1C 的普通方程为22(1)(2)1x y -+-=,即222440x y x y +--+=, 因为cos x ρθ=,sin y ρθ=,所以1C 的极坐标方程为22cos 4sin 40ρρθρθ--+=, 2C 的直角坐标方程为2x =-.(2)将π4θ=代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=得1ρ=2ρ=所以||MN =因为PMN △的面积等于1,所以P 点到直线π4θ=即0x y -=设(2,)P y -|2|2y +=,0y =或4-.P 点坐标为(2,0)-或(2,4)--.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()|21|f x x =-,x ∈R . (1)解不等式()2|1|f x x -+≥.(2)若对于x ,y ∈R ,有1|1|3x y --≤,1|21|6y +≤,求证:()1f x <.【答案】见解析.【解析】(1)解:不等式化为|1||21|2x x ++-≥. ①当12x ≥时,不等式为32x ≥,解得23x ≥,故23x ≥;②当112x -<≤时,不等式为22x -≥,解得0x ≤,故10x -≤≤; ③当1x <-时,不等式为32x -≥,解得23x -≤,故1x <-,综上,原不等式的解集为{|0x x ≤或23x ⎫⎬⎭≥.(2)215|21||2(1)21|2|1||21|1366x x y y x y y -=--++--+++=<≤≤,所以()1f x <.。
福建省2018届高三上学期第三次月考(11月)数学(理)试题一、选择题(本大题共12小题,每小题5分) 1.设集合2|11A x x ⎧⎫=≥⎨⎬+⎩⎭,集合{}|2,0x B y y x ==<,则A B = ( ) A .(]1,1- B .[]1,1- C .(],1-∞ D .[)1,-+∞ 2.已知i 为虚数单位,则复数ii Z +-=331的虚部为( )A 、1B 、1-C 、iD 、i - 3.sin15cos15+ 的值是( )A B C D 4.函数x e x f x ln )(=在点))1(,1(f 处的切线方程是( ) A.)1(2-=x e y B.1-=ex y C.)1(-=x e y D.e x y -= 5.双曲线2255x ky -=的一个焦点坐标是(2,0),那么k 的值为( )A .3B .5CD 7.等比数列{}n a 中,42a =,55a =,则数列{lg }n a 的前8项和等于( ) A .6 B .5 C .4 D .3 7.设1a b >>,0c <给出下列三个结论:①;②c c a b <;③log ()log ()a b b c a c -<-.其中所有的正确结论的序号是( )A .①B .①②C .②③D .①②③8 )A.13a =B.12a =C.11a =D.10a =9 )10.在直角梯形ABCD 中,CD AB //,︒=∠90BAD ,,M 是AB 的中点,且ND BN 2=,则AN CM ⋅的值为( )(A (B (C (D11.一个几何体的三视图及尺寸如图所示,则该几何体的外接球半径为 ( )A. B.C.D.12.已知函数()sin cos f x x a x =-图象的一条对称轴为记函数()f x 的两个极值点分别为12,x x ,则 )A .0二、填空题(本大题共4小题,每小题5分)13.若(2x 4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则(a 0+a 2+a 4)2-(a 1+a 3)2的值为14.设等差数列{}n a 的公差为d ,前n 项和为n S ,若11a d ==,则___. 15.如下图,ABC ∆中的阴影部分是由曲线2y x =与直线20x y -+=所围成,向ABC ∆内随机投掷一点,则该点落在阴影部分的概率为_________.16.若,x y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,若目标函数3z ax y =+仅在点(1,0)处取得最小值,则a 的取值范围为_________.三、解答题17.(本小题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,(1)求a ; (2,求ABC ∆面积的最大值.18.(本小题满分12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租时间不超过两小时免费,超过两个小时的部分每小时收费2元(不足1小时的部分按 1小时计算).有甲、乙两人独立来该租车点车租骑游(各租一车一次).(1)求甲、乙两人所付租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列与数学期望E ξ.19.(本小题满分12分)如图,边长为2的正方形ABCD 中,点E 是AB 的中点,点F 是BC 的中点,将△AED 、△DCF 分别沿DE 、DF 折起,使A 、C 两点重合于点A ',连接EF ,A B '.(Ⅰ)求证:A D EF '⊥;(Ⅱ)求二面角A EF D '--的余弦值.20.(本小题满分12分)如图,上一点P 向x 轴作垂线,垂足为左焦点F ,B A ,分别为E 的右顶点,上顶点,且OP AB ∥,(1)求椭圆E 的方程;(2)D C ,为E 上的两点,若四边形ACBD D B C A ,,,(逆时针排列)的对角线CD 所在直线的斜率为1,求四边形ACBD 面积S 的最大值.21.已知函数2()ln(1)(0)f x x ax a =++≤. (1)若()f x 在0x =处取极值,求a 的值; (2)讨论(x)f 的单调性;(3)证明: e 为自然对数的底数, *n N ∈)22.选修:坐标系与参数方程(本小题满分10分)在平面直角坐标系中,直线l 的参数方程为(其中t 为参数).现以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为6cos ρθ=. (Ⅰ) 写出直线l 普通方程和曲线C 的直角坐标方程;(Ⅱ) 过点(10)M -,且与直线l 平行的直线1l 交C 于A ,B 两点,求||AB .23.选修:不等式选讲(本小题满分10分) 已知函数()|1|||f x x m x =++-(其中m ∈R ). (Ⅰ) 当3m =时,求不等式()6f x ≥的解集;(Ⅱ) 若不等式()8f x ≥对任意实数x 恒成立,求m 的取值范围.2016-2017学年上学期高三11月月考数学(理科)答案一、选择题: 1.A试题分析:21|1|0(1,1]11x A x x x x -⎧⎫⎧⎫=≥=≤=-⎨⎬⎨⎬++⎩⎭⎩⎭,{}|2,0(0,1)x By y x ==<=,所以A B =(]1,1-,选A.考点:集合运算2.B 【解析】解:因为Z i ===-,因此虚部为-1, 选B3.C 4.C.试题分析:由题意可知,切线方程的斜率为e ,则可求出在点))1(,1(f 处的切线方程, 故选C.考点:1.导数的几何意义;2.切线方程.5.D C .考点:双曲线方程及其性质. 6. C 试题分析:441281845lg lg lg lg lg()lg104a a a a a a a a ++=∙∙=== , 故选C .考点:1、等比数列;2、对数的基本运算.7.D 试题分析:①∵1a b >>,∴,∵0c <,∴,①正确;②∵0c <,∴cx y =在()∞+,0上为减函数,又1a b >>,∴c c a b <,故②正确;③∵c b c a ->-,根据对数函数的性质()()()c b c a c a a a b ->->-log log log ,∴③正确.故选D .考点:(1)命题真假的判定与应用;(2)指数函数的图象与性质;(3)对数函数的图象与性质.8.C.112k k =+=,此时需跳出循环,故11a =,故选C.考点:程序框图.9.D 试题分析:易判断函数为偶函数,由0y =得1x =±,D .考点:函数的图象与性质.10.D 【解析】以点D 为坐标原点,分别以、DC DA为x,y 轴,建立平面直角坐标系,则111(0,1)、(1,1)、(2,0)、(,1)、(,)233A B C M N ,所以312(,1)、(,)233CM AN =-=-所以 3127(,1)(,)=-2336CM AN ⋅=-⋅-11、试题分析:由三视图可知:该几何体是一个如图所示的三棱锥P-ABC,它是一个正四棱锥P-ABCD的一半,其中底面是一个两直角边都为6的直角三角形,高PE=4.设其外接球的球心为O,O点必在高线PE上,外接球半径为R,则在直角三角形BOE中,BO2=OE2+BE2=(PE-EO)2+BE2,即R2=(4-R)2+(2,解得:C.考点:三视图,球与多面体的切接问题,空间想象能力12.B.考点:三角函数的图象与性质.二.填空题:13.试题分析:令1x=得考点:二项式定理1415分,几何概型概率16.()3,6-【解析】作出可行域如图所示,仅在点(1,0考点:简单的线性规划.三、解答题17.(本小题满分12分)试题解析:(1,解得1a=.(2以当且仅当取等号),从而,即ABC ∆面积的最大值为 考点:解三角形.18.(本小题满分12分)试题解析:(1 记甲、乙两人所付得租车费用相同为事件A ,则(2)设甲、乙两个所付的费用之和为ξ,ξ可能取得值为0,2,4,6,8分布列考点:1、离散型随机变量的期望与方差;2、互斥事件的概率加法公式19.(本小题满分12分) 19.【解析】 试题解析:(Ⅰ)在正方形ABCD 中,有AD AE ⊥,CD CF ⊥ 则A D A E ''⊥,A D A F ''⊥ 又A E A F A '''=∴A D '⊥平面A EF '而EF ⊂平面A EF ',∴A D EF '⊥ 5分(Ⅱ)方法一: ∵正方形ABCD 的边长为2,点E 是AB 的中点,点F 是BC 的中点,∴1BE BF A E A F ''====, ∴∴222A E A F EF ''+=,∴A E A F ''⊥由(Ⅰ)得A D '⊥平面A EF ',∴分别以A E ',A F ',A D '为x ,y , z 轴建立如图所示的空间直角坐标系A xyz '-,则(0,0,0)A ',(1,0,0)E , (0,1,0)F ,(0,0,2)D ∴(1,0,2)DE =- ,(0,1,2)DF =-,设平面DEF 的一个法向量为1(,,)n x y z = ,则由112020n DE x z n DF y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩, 可取1(2,2,1)n =又平面A EF '的一个法向量可取2(0,0,1)n =又由图可知:该二面角为锐二面角面角分是BC 的中点, , 且∴A G EF '⊥ 又2A D '= ∴∴二面角A EF D '--的余弦值为[考点:线线垂直、线面垂直、空间向量法、向量的夹角. 20.(本小题满分12分) 试题解析:(1由OP AB ∥得椭圆E 的方程为(2,),(),,(2211y x D y x C , 将直线CD 的方程代入椭圆E 得0224322=-++m mx x ,到直线CD 的距离 )1,0(B 到直线CD 的距离所以四边形ACBD 的面积 所以当0=m 时,S 取得最大值考点:直线与圆锥曲线位置关系. 21.(本小题满分12分)/(0)0,0f a ∴=∴=,验证知0a =符合条件.①若0a =时,∴(x)f 在(0,)+∞单调递增,在(,0)-∞单调递减; ②若00a <⎧⎨∆≤⎩得,当1a ≤-时,/()0f x ≤对x R ∈恒成立,∴()f x 在R 上单调递减.③若10a -<<时,由/()0f x >得220ax x a ++>∴()f x 在递减 综上所述,若1a ≤-时,()f x 在(,)-∞+∞上单调递减;若10a -<<时,()f x 在递减; 若0a =时,()f x 在(0,)+∞单调递增,在(,0)-∞单调递减.(3)由(2)知,当1a =-时,()f x 在(,)-∞+∞单调递减考点:利用导数研究函数的单调性与极值;不等式的证明.22.选修:坐标系与参数方程(本小题满分10分) 试题解析:(Ⅰ) 消去参数t ,得直线l 的普通方程为60x y --=. 又由6cos ρθ=得26cos ρρθ=, 由cos sin x y ρθρθ⎧⎨⎩=,=得曲线C 的直角坐标方程为2260x y x +-=. (Ⅱ) 过点(1,0)M -且与直线l 平行的直线1l 的参数方程为,知1200t t >>,, 考点:1、直线的参数方程;2、极坐标方程与直角坐标方程间的互化.23.选修:不等式选讲(本小题满分10分) 试题解析:(Ⅰ) 当3m =时,()6f x ≥即|1||3|6x x ++-≥. ①当1x <-时,得136x x ---+≥,解得2x -≤;②当13x -≤≤时,得136x x +-+≥,不成立,此时x ∈∅; ③当3x >时,得136x x ++-≥成立,此时4x ≥.综上,不等式()6f x ≥的解集为{|2x x -≤或4}x ≥(Ⅱ) 因为|1|+|||1|x m x x m x +-++-≥=|1|m +,,即18m +-≤或18m +≥,解得9m -≤或7m ≥,即m 的取值范围是(9][7)-∞-+∞ ,,. 考点:1、绝对不等式的解法;2、三角绝对值不等式的性质.。
安徽省合肥市 2018 届高三上学期11月月考试卷数学(理科)一、选择题:本大题共12小题,每小题5分,满分60分.1.已知a,b∈R,i是虚数单位,若a+i与2﹣bi互为共轭复数,则=()A. +i B. +i C.﹣i D.﹣i2.已知集合A={x|x2﹣2x﹣3≥0},B={x|log2(x﹣1)<2},则(∁RA)∩B=()A.(1,3)B.(﹣1,3)C.(3,5)D.(﹣1,5)3.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84 B.0.68 C.0.32 D.0.164.我国古代数学名著《数书九章》中有“天池盆测雨”题:下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为28寸,盆底直径为12寸,盆深18寸.若盆中积水深9寸,则平地降雨量是()寸.(注:平地降雨量等于盆中积水体积除以盆口面积)A.1 B.2 C.3 D.45.执行如图所示的程序框图,输出S的值是()A.0 B. C.D.6.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣7.变量x,y满足约束条件,则x2+y2的取值范围是()A.[0,9] B.[5,+∞)C.D.8.已知曲线C:﹣y2=1的左右焦点分别为F1F2,过点F2的直线与双曲线C的右支相交于P,Q两点,且点P的横坐标为2,则PF1Q的周长为()A.B.5C.D.49.函数f(x)=Asin(ωx+φ)(其中)的图象如图所示,为了得到的图象,只需将f(x)的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位10.若曲线y=e x﹣(a>0)上任意一点切线的倾斜角的取值范围是[,),则a=()A.B.C.D.311.某实心钢质工件的三视图如图所示,其中侧视图为等腰三角形,俯视图是一个半径为3的半圆,现将该工件切削加工成一个球体,则该球体的最大体积为()A.B.C.πD.12.已知f(x)=|xe x|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围为()A.(,+∞)B.(﹣∞,﹣)C.(﹣,﹣2)D.(2,)二、填空题:本大题共4小题,每小题5分,满分20分.13.已知=(3,4),•=﹣3,则向量在向量的方向上的投影是.14.椭圆C的中心为原点,焦点在y轴上,离心率,椭圆上的点到焦点的最短距离为,则椭圆的标准方程为.15.某台风中心位于A港口东南方向的B处,且台风中心与A港口的距离为400千米.预计台风中心将以每小时40千米的速度向正北方向移动,离台风中心500千米的范围都会受到台风影响,则A港口从受到台风影响到影响结束,将持续小时.16.将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:(x2+x+1)0=1(x2+x+1)1=x2+x+1(x2+x+1)2=x4+2x3+3x2+2x+1(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1…观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5的展开式中,x7项的系数为75,则实数a的值为.三、解答题:本大题共5小题,满分60分.17.设数列{an }的前n项和为Sn,an是Sn和1的等差中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列bn =an•log2an+1,求{bn}的前n项和Tn.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.19.如图,已知四棱锥P﹣ABCD的底面ABCD为菱形,且∠ABC=60°,AB=PC=2,PA=PB=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.20.过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且线段AB的最小长度为4.(Ⅰ)求抛物线C的方程;(Ⅱ)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,证明直线AP与x轴交于一定点并求出该定点坐标.21.函数f(x)=lnx,g(x)=x2﹣x﹣m,(Ⅰ)若函数F(x)=f(x)﹣g(x),求函数F(x)的极值.(Ⅱ)若f(x)+g(x)<x2﹣(x﹣2)e x在x∈(0,3)恒成立,求实数m的取值范围.第22至23题为选做题,请任选其中一题作答,答题前请将所选的题号填在答题卡相应位置,并用铅笔将相应的题号框涂黑,同时选做两题者,以选做的第一题给分.[选修4-4:坐标系与参数方程坐标]22.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,且两个坐标系取相同的单位长度,已知圆C1:ρ=﹣2cosθ,曲线(t为参数).(Ⅰ)求圆C1和曲线C2的普通方程;(Ⅱ)过圆C1的圆心C1且倾斜角为的直线l交曲线C2于A,B两点,求圆心C1到A,B两点的距离之积.[选修4-5:不等式选讲]23.已知a,b,c∈(0,+∞),且a+b+c=1,求证:(1)(﹣1)•(﹣1)•(﹣1)≥8;(2)++≤.安徽省合肥市 2018 届高三上学期11月月考试卷(理科数学)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.1.已知a,b∈R,i是虚数单位,若a+i与2﹣bi互为共轭复数,则=()A. +i B. +i C.﹣i D.﹣i【考点】复数代数形式的乘除运算.【分析】a+i与2﹣bi互为共轭复数,可得a=2,1=﹣(﹣b),解得a,b.再利用复数的运算法则即可得出.【解答】解:a+i与2﹣bi互为共轭复数,∴a=2,1=﹣(﹣b),解得a=2,b=1.则===,故选:C.2.已知集合A={x|x2﹣2x﹣3≥0},B={x|log2(x﹣1)<2},则(∁RA)∩B=()A.(1,3)B.(﹣1,3)C.(3,5)D.(﹣1,5)【考点】交、并、补集的混合运算.【分析】由已知可得∁R A={x|x2﹣2x﹣3<0},解不等式求出∁RA,和集合B,结合集合交集运算的定义,可得答案.【解答】解:∵集合A={x|x2﹣2x﹣3≥0},∴∁RA={x|x2﹣2x﹣3<0}=(﹣1,3),又∵B={x|log2(x﹣1)<2}={x|0<x﹣1<4}=(1,5),∴(∁RA)∩B=(1,3),故选:A3.已知随机变量x服从正态分布N(3,σ2),且P(x≤4)=0.84,则P(2<x<4)=()A.0.84 B.0.68 C.0.32 D.0.16【考点】正态分布曲线的特点及曲线所表示的意义.【分析】根据对称性,由P(x≤4)=0.84的概率可求出P(x<2)=P(x>4)=0.16,即可求出P(2<x<4).【解答】解:∵P(x≤4)=0.84,∴P(x>4)=1﹣0.84=0.16∴P(x<2)=P(x>4)=0.16,∴P(2<x<4)=P(x≤4)﹣P(x<2)=0.84﹣0.16=0.68故选B.4.我国古代数学名著《数书九章》中有“天池盆测雨”题:下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为28寸,盆底直径为12寸,盆深18寸.若盆中积水深9寸,则平地降雨量是()寸.(注:平地降雨量等于盆中积水体积除以盆口面积)A.1 B.2 C.3 D.4【考点】旋转体(圆柱、圆锥、圆台);棱柱、棱锥、棱台的体积.【分析】由题意求得盆中水的上地面半径,代入圆台体积公式求得水的体积,除以盆口面积得答案.【解答】解:如图,由题意可知,天池盆上底面半径为14寸,下底面半径为6寸,高为18寸.∵积水深9寸,∴水面半径为(14+6)=10寸,则盆中水的体积为π×9(62+102+6×10)=588π(立方寸).∴平地降雨量等于=3(寸).故选:C.5.执行如图所示的程序框图,输出S的值是()A.0 B. C.D.【考点】程序框图.【分析】模拟执行程序,可得程序框图的功能是计算并输出S=tan+tan+tan+…+tan+tan的值,利用正切函数的周期性即可计算求值.【解答】解:模拟执行程序,可得程序框图的功能是计算并输出S=tan+tan+tan+…+tan+tan的值,由于:tan+tan+tan=0,k∈Z,且:2016=3×672,所以:S=(tan+tan+tan)+…+(tan+tan+tan)=0+0+…+0=0.故选:A.6.已知sin(﹣α)﹣cosα=,则cos(2α+)=()A.B.﹣C.D.﹣【考点】两角和与差的正弦函数;两角和与差的余弦函数.【分析】由条件利用两角和差的正弦公式求得sin(α+)=﹣,再利用二倍角的余弦公式求得cos(2α+)的值.【解答】解:∵sin(﹣α)﹣cosα=cosα﹣sinα﹣cosα=﹣sin(α+)=,∴sin(α+)=﹣,则cos(2α+)=1﹣2sin2(α+)=,故选:C.7.变量x,y满足约束条件,则x2+y2的取值范围是()A.[0,9] B.[5,+∞)C.D.【考点】简单线性规划.【分析】作平面区域,且x2+y2的几何意义是点(0,0)与点(x,y)的两点的距离的平方,从而利用数形结合求解.【解答】解:作约束条件的平面区域如下,x2+y2的几何意义是点(0,0)与点(x,y)的两点的距离的平方,且大圆的半径为3,小圆的半径为0,故0≤x2+y2≤9,故选:A.8.已知曲线C:﹣y2=1的左右焦点分别为F1F2,过点F2的直线与双曲线C的右支相交于P,Q两点,且点P的横坐标为2,则PF1Q的周长为()A.B.5C.D.4【考点】双曲线的简单性质.【分析】求出双曲线的a,b,c,求得焦点,判断三角形PF1Q为等腰三角形,PQ⊥x轴,令x=2,求得|PQ|,再由勾股定理,求得|PF1|,即可求得周长.【解答】解:双曲线C:﹣y2=1的a=,b=1,c==2,则F 1(﹣2,0),F 2(2,0),由于点P 的横坐标为2,则PQ ⊥x 轴,令x=2则有y 2=﹣1=,即y=.即|PF 2|=,|PF 1|===.则三角形PF 1Q 的周长为|PF 1|+|QF 1|+|PQ|=++=.故选:A .9.函数f (x )=Asin (ωx+φ)(其中)的图象如图所示,为了得到的图象,只需将f (x )的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位 D .向右平移个长度单位【考点】函数y=Asin (ωx+φ)的图象变换.【分析】根据图象求出φ的值,再由“左加右减”法则判断出函数图象平移的方向和单位长度.【解答】解:∵由函数图象可得:A 的值为1,周期T=4×(﹣)=π,∴ω===2,又函数的图象的第二个点是(,0),∴2×+φ=π,于是φ=,则f (x )=sin (2x+)=sin[2(x+)],∵g(x)=cos(2x﹣)=sin2x,∴为了得到g(x)=cos(2x﹣)的图象,只需将f(x)的图象向右平移个单位即可.故选:D.10.若曲线y=e x﹣(a>0)上任意一点切线的倾斜角的取值范围是[,),则a=()A.B.C.D.3【考点】利用导数研究曲线上某点切线方程.【分析】求导f′(x)=e x+,从而由f′(x)=e x+≥,求解.【解答】解:f′(x)=e x+,∵f(x)=e x﹣在任一点处的切线的倾斜角的取值范围是[,),∴f′(x)=e x+≥,∴≤[f′(x)],min而由a>0知,e x+≥2;(当且仅当e x=时,等号成立),故2=,故a=故选:C.11.某实心钢质工件的三视图如图所示,其中侧视图为等腰三角形,俯视图是一个半径为3的半圆,现将该工件切削加工成一个球体,则该球体的最大体积为()A.B.C.πD.【考点】由三视图求面积、体积.【分析】由三视图知几何体为半个圆锥,根据三视图的数据求底面面积与高,求出其轴截面的内切球的半径,代入公式计算即可.【解答】解:由题目所给三视图可得,该几何体为圆锥的一半,圆锥的底面半径为3,高为4,所以母线长为5,设其轴截面的内切球的半径为r,则,∴r=1,∴该球体的最大体积为,故选A.12.已知f(x)=|xe x|,方程f2(x)+tf(x)+1=0(t∈R)有四个实数根,则t的取值范围为()A.(,+∞)B.(﹣∞,﹣)C.(﹣,﹣2)D.(2,)【考点】利用导数研究函数的单调性;函数的零点与方程根的关系.【分析】化简f(x)=|xe x|=,从而求导以确定函数的单调性,从而作出函数的简图,从而解得.【解答】解:f(x)=|xe x|=,易知f(x)在[0,+∞)上是增函数,当x ∈(﹣∞,0)时,f (x )=﹣xe x , f′(x )=﹣e x (x+1),故f (x )在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数; 作其图象如下,且f (﹣1)=;故若方程f 2(x )+tf (x )+1=0(t ∈R )有四个实数根,则方程x 2+tx+1=0(t ∈R )有两个不同的实根,且x 1∈(0,),x 2∈(,+∞)∪{0},故,或1=0解得,t ∈(﹣∞,﹣),故选:B .二、填空题:本大题共4小题,每小题5分,满分20分.13.已知=(3,4),•=﹣3,则向量在向量的方向上的投影是 ﹣ . 【考点】平面向量数量积的运算.【分析】根据平面向量投影的定义,利用数量积与模长计算即可. 【解答】解: =(3,4),•=﹣3,∴||==5,∴向量在向量的方向上的投影是||cos<,>=||×==﹣.故答案为:﹣.14.椭圆C的中心为原点,焦点在y轴上,离心率,椭圆上的点到焦点的最短距离为,则椭圆的标准方程为=1 .【考点】椭圆的标准方程.【分析】根据题意建立关于a、c的方程组,解出a=,c=1,从而得到b2=a2﹣c2=1,可得椭圆的方程.【解答】解:∵,椭圆上的点到焦点的最短距离为,∴=,a﹣c=﹣1,解得a=,c=1,∴b2=a2﹣c2=1,由此可得椭圆的方程为=1,故答案为=1.15.某台风中心位于A港口东南方向的B处,且台风中心与A港口的距离为400千米.预计台风中心将以每小时40千米的速度向正北方向移动,离台风中心500千米的范围都会受到台风影响,则A港口从受到台风影响到影响结束,将持续15 小时.【考点】解三角形的实际应用.【分析】过A作AC垂直BC,垂足为点C,则BC=AC=400千米,在BC线上取点D使得AD=500千米进而根据勾股定理求得DC,进而乘以2,再除以速度即是 A港口受到台风影响的时间.【解答】解:由题意AB=400千米,过A作AC垂直BC,垂足为点C,则BC=AC=400千米台风中心500千米的范围都会受到台风影响所以在BC线上取点D使得AD=500千米因为AC=400千米,AD=500千米∠DCA是直角根据勾股定理 DC=300千米因为500千米的范围内都会受到台风影响所以影响距离是300×2=600千米T==15(小时)故答案为:15.16.将三项式(x2+x+1)n展开,当n=0,1,2,3,…时,得到以下等式:(x2+x+1)0=1(x2+x+1)1=x2+x+1(x2+x+1)2=x4+2x3+3x2+2x+1(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1…观察多项式系数之间的关系,可以仿照杨辉三角构造如图所示的广义杨辉三角形,其构造方法为:第0行为1,以下各行每个数是它头上与左右两肩上3数(不足3数的,缺少的数计为0)之和,第k行共有2k+1个数.若在(1+ax)(x2+x+1)5的展开式中,x7项的系数为75,则实数a的值为 1 .【考点】归纳推理.【分析】由题意可得广义杨辉三角形第5行为1,5,15,30,45,51,45,30,15,5,1,所以(1+ax)(x2+x+1)5的展开式中,x7项的系数为30+45a=75,即可求出实数a的值.【解答】解:由题意可得广义杨辉三角形第5行为1,5,15,30,45,51,45,30,15,5,1,所以(1+ax)(x2+x+1)5的展开式中,x7项的系数为30+45a=75,所以a=1.故答案为:1.三、解答题:本大题共5小题,满分60分.17.设数列{an }的前n项和为Sn,an是Sn和1的等差中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设数列bn =an•log2an+1,求{bn}的前n项和Tn.【考点】数列的求和;数列递推式.【分析】(Ⅰ)通过等差中项的性质可知2an =Sn+1,并与2an﹣1=Sn﹣1+1(n≥2)作差,进而整理可知数列{an}是首项为1、公比为2的等比数列,计算即得结论;(Ⅱ)求解得出bn =an•log2an=n•2n﹣1,利用错位相减法求解数列的和.【解答】解:(Ⅰ)∵an 是Sn和1的等差中项,∴2an =Sn+1,2an﹣1=Sn﹣1+1(n≥2),两式相减得:2an ﹣2an﹣1=an,即an=2an﹣1,又∵2a1=S1+1,即a1=1,∴数列{an}是首项为1、公比为2的等比数列,∴an=2n﹣1;(Ⅱ)∵由(Ⅰ)知,an=2n﹣1.∴bn =an•log2an+1=n•2n﹣1.∴Tn=1×20+2×21+3×22…+(n﹣1)•2n﹣2+n•2n﹣1,①2Tn=1×21+2×22+3×23+…+(n﹣1)×2n﹣1+n•2n,②①﹣②得出:﹣Tn=1+(21+22+23+…+2n﹣1)﹣n•2n=1+﹣n•2n=(﹣n)×2n,∴Tn=(﹣n)×2n.18.班主任为了对本班学生的考试成绩进行分折,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(I)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可,不必计算出结果)(Ⅱ)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如表:(i)若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为ξ,求ξ的分布列和数学期望;(ii)根据上表数据,求物理成绩y关于数学成绩x的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:回归直线的方程是:,其中b=,a=.【考点】离散型随机变量的期望与方差;线性回归方程;离散型随机变量及其分布列.【分析】(Ⅰ)根据分层抽样的定义建立比例关系即可得到结论.(Ⅱ)(i)ξ的取值为0,1,2,3,计算出相应的概率,即可得ξ的分布列和数学期望.(ii)根据条件求出线性回归方程,进行求解即可.【解答】(Ⅰ)解:依据分层抽样的方法,24名女同学中应抽取的人数为名,18名男同学中应抽取的人数为18=3名,故不同的样本的个数为.(Ⅱ)(ⅰ)解:∵7名同学中数学和物理成绩均为优秀的人数为3名,∴ξ的取值为0,1,2,3.∴P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==,∴ξ的分布列为Eξ=0×+1×+2×+3×=.(ⅱ)解:∵b=0.65,a==83﹣0.65×75=33.60.∴线性回归方程为=0.65x+33.60当x=96时, =0.65×96+33.60=96.可预测该同学的物理成绩为96分.19.如图,已知四棱锥P﹣ABCD的底面ABCD为菱形,且∠ABC=60°,AB=PC=2,PA=PB=.(Ⅰ)求证:平面PAB⊥平面ABCD;(Ⅱ)设H是PB上的动点,求CH与平面PAB所成最大角的正切值.【考点】直线与平面所成的角;平面与平面垂直的判定.【分析】(I)取AB中点O,连结PO、CO,由PA=PB可得PO⊥AB,利用特殊三角形的性质计算PO,OC,PC,可证PO⊥OC,于是PO⊥平面ABCD,故平面PAB⊥平面ABCD;(II)由面面垂直的性质可知∠CHO为CH与平面PAB所成的角,故当OH最小值,tan∠CHO=取得最大值.【解答】(Ⅰ)证明:取AB中点O,连结PO、CO,∵PA=PB=,AB=2,∴△PAB为等腰直角三角形,∴PO=1,PO⊥AB,∵AB=BC=2,∠ABC=60°,∴△ABC为等边三角形,∴,又PC=2,∴PO2+CO2=PC2,∴PO⊥CO,又AB∩CO=O,AB⊂平面ABCD,CO⊂平面ABCD,∴PO⊥平面ABC,又PO⊂平面PAB,∴平面PAB⊥平面ABCD.(Ⅱ)解:∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,OC⊥AB,OC⊂平面ABCD,∴OC⊥平面PAB,∴∠CHO为CH与平面PAB所成的角.∵tan∠CHO=,∴当OH⊥PB时,OH取得最小值,此时tan∠CHO取得最大值.当OH⊥PB时,OH==.∴tan∠CHO==.20.过抛物线C:y2=2px(p>0)的焦点F的直线交抛物线于A,B两点,且线段AB的最小长度为4.(Ⅰ)求抛物线C的方程;(Ⅱ)已知点D的坐标为(4,0),若过D和B两点的直线交抛物线C的准线于P点,证明直线AP与x轴交于一定点并求出该定点坐标.【考点】抛物线的简单性质.【分析】(Ⅰ)由题意2p=4,求出p,即可求抛物线C的方程;(Ⅱ)设A(x1,y1),B(x2,y2),设直线AB的方程为x=my+1,联立方程组,表示出直线BD的方程,与抛物线C的准线方程构成方程组,解得P的坐标,求出直线AP的斜率,得到直线AP的方程,求出交点坐标即可.【解答】解:(Ⅰ)由题意2p=4,∴p=2,∴抛物线C的方程为y2=4x;(Ⅱ)证明:设A(x1,y1),B(x2,y2),设直线AB的方程为x=my+1与抛物线的方程联立,得y2﹣4my﹣4=0,∴y1•y2=﹣4,依题意,直线BD与x轴不垂直,∴x2=4.∴直线BD的方程可表示为,y=(x﹣4)①∵抛物线C的准线方程为,x=﹣1②由①,②联立方程组可求得P的坐标为(﹣1,﹣)∴P 的坐标可化为(﹣1,),∴k AP =,∴直线AP 的方程为y ﹣y 1=(x ﹣x 1),令y=0,可得x=x 1﹣=∴直线AP 与x 轴交于定点(,0).21.函数f (x )=lnx ,g (x )=x 2﹣x ﹣m ,(Ⅰ)若函数F (x )=f (x )﹣g (x ),求函数F (x )的极值.(Ⅱ)若f (x )+g (x )<x 2﹣(x ﹣2)e x 在x ∈(0,3)恒成立,求实数m 的取值范围. 【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求出F (x )的导数,注意定义域,列表表示F (x )和导数的关系,以及函数的单调区间,即可得到极大值,无极小值;(Ⅱ)f (x )+g (x )<x 2﹣(x ﹣2)e x 在(0,3)恒成立,整理为:m >(x ﹣2)e x +lnx ﹣x 在x ∈(0,3)恒成立;设h (x )=(x ﹣2)e x +lnx ﹣x ,运用导数求得h (x )在(0,3)的最大值,即可得到m 的取值范围.【解答】解:(Ⅰ)F (x )=lnx ﹣x 2+x+m ,定义域(0,+∞),F′(x )=﹣2x+1=﹣,F′(x )=0,可得x=1,则F (x )的极大值为F (1)=m ,没有极小值;(Ⅱ)f (x )+g (x )<x 2﹣(x ﹣2)e x 在(0,3)恒成立; 整理为:m >(x ﹣2)e x +lnx ﹣x 在x ∈(0,3)恒成立;设h (x )=(x ﹣2)e x +lnx ﹣x ,则h′(x )=(x ﹣1)(e x ﹣),x >1时,x ﹣1>0,且e x >e ,<1,即h′(x )>0; 0<x <1时,x ﹣1<0,设u=e x ﹣,u′=e x +>0,u 在(0,1)递增,x→0时,→+∞,即u <0,x=1时,u=e ﹣1>0,即∃x 0∈(0,1),使得u 0=﹣=0,∴x ∈(0,x 0)时,u <0;x ∈(x 0,1)时,u >0,x ∈(0,x 0)时,h ′(x )>0;x ∈(x 0,1)时,h′(x )<0. 函数h (x )在(0,x 0)递增,(x 0,1)递减,(1,3)递增, h (x 0)=(x 0﹣2)+lnx 0﹣x 0=(x 0﹣2)•﹣2x 0=1﹣﹣2x 0,由x 0∈(0,1),﹣<﹣2,h (x 0)=1﹣﹣2x 0<﹣1﹣2x 0<﹣1,h (3)=e 3+ln3﹣3>0,即x ∈(0,3)时,h (x )<h (3),即m ≥h (3), 则实数m 的取值范围是(e 3+ln3﹣3,+∞).第22至23题为选做题,请任选其中一题作答,答题前请将所选的题号填在答题卡相应位置,并用铅笔将相应的题号框涂黑,同时选做两题者,以选做的第一题给分.[选修4-4:坐标系与参数方程坐标]22.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,且两个坐标系取相同的单位长度,已知圆C 1:ρ=﹣2cos θ,曲线(t 为参数).(Ⅰ)求圆C 1和曲线C 2的普通方程;(Ⅱ)过圆C 1的圆心C 1且倾斜角为的直线l 交曲线C 2于A ,B 两点,求圆心C 1到A ,B 两点的距离之积.【考点】参数方程化成普通方程.【分析】(Ⅰ)圆C 1:ρ=﹣2cos θ,即ρ2=﹣2ρcos θ,利用互化公式可得圆C 1的普通方程.由曲线(t 为参数),利用平方关系可得:曲线C 2的普通方程.(Ⅱ)由(Ⅰ)可知:C 1(﹣1,0)则直线l 的参数方程代入=1,有,圆心C 1到A ,B 两点的距离之积为|t 1t 2|.【解答】解:(Ⅰ)圆C 1:ρ=﹣2cos θ,即ρ2=﹣2ρcos θ,直角坐标方程为(x+1)2+y 2=1,曲线(t 为参数),消去参数可得=1.(Ⅱ)过圆C 1的圆心C 1且倾斜角为的直线l 的方程为y=(x+1),则直线l 的参数方程为:(t 为参数),将其代入=1,有,∴.所以圆心C 1到A ,B 两点的距离之积为|t 1t 2|=.[选修4-5:不等式选讲]23.已知a ,b ,c ∈(0,+∞),且a+b+c=1,求证:(1)(﹣1)•(﹣1)•(﹣1)≥8;(2)++≤.【考点】不等式的证明.【分析】利用基本不等式,即可证明结论.【解答】证明:(1)∵a ,b ,c ∈(0,+∞),∴a+b ≥2,b+c ≥2,c+a ≥2,(﹣1)•(﹣1)•(﹣1)=≥=8.…(2)∵a ,b ,c ∈(0,+∞),∴a+b ≥2,b+c ≥2,c+a ≥2,2(a+b+c )≥2+2+2,两边同加a+b+c 得3(a+b+c )≥a+b+c+2+2+2=(++)2.又a+b+c=1,∴(++)2≤3,∴++≤.…。