函数的奇偶性说课PPT幻灯片33页PPT
- 格式:ppt
- 大小:4.08 MB
- 文档页数:33
函数的奇偶性前言函数的奇偶性是高中数学中的一个重要概念,也是数学中的常见性质之一。
片面地来讲,它们是课程表中的某一个知识点,但是如果它被用来将不同的数学概念联系起来,比如对称、周期性、等等,则可以把它作为基础知识点,引导学生探求数学中的奇美妙世界。
本文将围绕着函数的奇偶性来进行讲解。
正文什么是函数的奇偶性一个给定的函数,如果对于任意的x,都有f(−x)=−f(x),则称该函数为一个奇函数,如果对于任意的x,都有f(−x)=f(x),则称该函数为一个偶函数。
奇偶性的性质1.若f(x)是一个奇函数,则其图像关于原点对称。
若f(x)是一个偶函数,则其图像关于y轴对称。
2.对于任意的奇函数f(x),f(0)=0。
对于任意的偶函数f(x),f(0)是正的。
3.奇函数与奇函数相加,得到一个奇函数;奇函数与偶函数相加,得到一个奇函数;偶函数与偶函数相加,得到一个偶函数。
4.奇函数与奇函数相乘,得到一个偶函数;奇函数与偶函数相乘,得到一个奇函数;偶函数与偶函数相乘,得到一个偶函数。
5.如果f(x)是一个定义域为$[0,\\infty)$上的偶函,那么f(x)可以表示为一个关于x=0的偶函数的傅里叶级数。
奇偶性的应用对称性奇函数是关于原点对称的,而偶函数则是关于y轴对称的。
根据这一性质,我们可以很容易地画出函数的图像。
例如,对于函数f(x)=x3,其中f(x)是一个奇函数,我们可以得到关于原点的对称图像:奇函数对称性1同样地,对于函数g(x)=x2,其中g(x)是一个偶函数,我们可以得到关于y轴的对称图像:偶函数对称性1这种对称性不仅存在于函数的图像中,还可以应用于方程的解决。
例如,对于二次方程ax2+bx+c=0,如果b=0,那么该方程是一个偶函数。
如果我们知道一个根x0,那么−x0也是一个根。
这种对称性使得解方程变得更加简单。
周期性对于任意函数f(x),如果存在一个正数T,使得f(x+T)=f(x)对任意的x都成立,那么我们称f(x)是有周期的,T是这个周期。
函数的奇偶性引入大家好,我是现代数学教师,今天我来给大家讲解《函数的奇偶性》这一话题。
让我们开始这一趟数学之旅!首先,让我们回顾一下数学中的“奇偶性”概念。
在数学中,奇偶性通常用来描述一个数或者一个函数在变量变化时的规律性。
对于数学函数,我们可以通过对函数的自变量奇偶性的变化来探索这个函数的奇偶性质。
学习目标在学习完本节课后,我们将了解以下内容:•掌握函数奇偶性的定义•能够判断一个函数的奇偶性•能够利用函数的奇偶性来简化计算函数的奇偶性定义首先,让我们来定义函数的奇偶性。
对于一个函数f(x),我们称它为: - 奇函数,当且仅当f(−x)=−f(x)对于所有x成立; - 偶函数,当且仅当f(−x)=f(x)对于所有x成立; - 既不是奇函数也不是偶函数,当存在至少一个x使得f(−x)eqf(x)且f(−x)eq−f(x)成立。
上述定义意味着,如果一个函数既不是奇函数也不是偶函数,那么我们称它为“无奇偶性”的函数。
判断函数的奇偶性现在我们已经了解了函数奇偶性的定义,接下来我们就来看看如何判断一个函数的奇偶性。
奇函数对于奇函数而言,我们起始于f(−x)=−f(x)的假设,推导至一一般情况的有效方法是:•将f(x)变为−f(−x);•利用f(−x)=−f(x)替代−f(−x);•得到结果中−f(x)=f(−x)。
通过这些步骤我们得知,如果一个函数f(x)满足f(−x)=−f(x),那么这个函数一定是奇函数。
偶函数同样的,对于偶函数而言,我们起始于f(−x)=f(x)的假设,推导至一般情况的有效方法是:•将f(x)变为f(−x);•利用f(−x)=f(x)替代f(−x);•得到结果f(x)=f(−x)。
这说明,如果一个函数f(x)满足f(−x)=f(x),那么这个函数一定是偶函数。
无奇偶性的函数当一个函数f(x)既不是奇函数也不是偶函数时,表示我们无法通过f(x)和−f(x)的关系得到关于函数的更多信息。