2020年中考数学专题突破专题十一:最短路径——造桥选址问题复习课程
- 格式:doc
- 大小:970.00 KB
- 文档页数:14
中考压轴题突破:几何最值问题大全(将军饮马、造桥选址、胡不归、阿波罗尼斯圆等)一、基本图形最值问题在几何图形中分两大类:①[定点到定点]:两点之间,线段最短;②[定点到定线]:点线之间,垂线段最短。
由此派生:③[定点到定点]:三角形两边之和大于第三边;④[定线到定线]:平行线之间,垂线段最短;⑤[定点到定圆]:点圆之间,点心线截距最短(长);⑥[定线到定圆]:线圆之间,心垂线截距最短;⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。
举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。
已知⊙O半径为r,AO=d,P是⊙O上一点,求AP的最大值和最小值。
证明:由“两点之间,线段最短”得AP≤AO+PO,AO≤AP+PO,得d-r≤AP ≤d+r,AP最小时点P在B处,最大时点P在C处。
即过圆心和定点的直线截得的线段AB、AC分别最小、最大值。
(可用“三角形两边之和大于第三边”,其实质也是由“两点之间,线段最短”推得)。
上面几种是解决相关问题的基本图形,所有的几何最值问题都是转化成上述基本图形解决的。
二、考试中出现的问题都是在基本图形的基础上进行变式,如圆与线这些图形不是直接给出,而是以符合一定条件的动点的形式确定的;再如过定点的直线与动点所在路径不相交而需要进行变换的。
类型分三种情况:(1)直接包含基本图形;(2)动点路径待确定;(3)动线(定点)位置需变换。
(一)直接包含基本图形例1.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是。
简析:由∠B=30°知弧AD一定,所以D是定点,C是直线AC上的动点,即为求定点D到定线AC的最短路径,求得当CD⊥AC时最短为3。
(二)动点路径待确定例2.,如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是。
13.4.最短路径(2)—
造桥选址问题
精品资料
仅供学习与交流,如有侵权请联系网站删除 谢谢2
13.4造桥选址问题
一.学习目标:
1、能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用;感悟转化思想.
2、在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 二.重点难点:
学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题. 学习难点:如何利用轴对称将最短路径问题转化为线段和最小问题. 三.合作探究:(同学合作,教师引导) 1.温故知新:
前面我们研究过最短路径问题,求最短路径的依据有:
(1) . (2) . 2.探究新知: 问题2 造桥选址问题
如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN.桥建在何处才能使从A 到B 的路径AMNB 最短?(假定河的两岸是平行的直线,桥要与河垂直)
思维分析:
1.如右图假定任选位置造桥MN,连接AM 和BN,从A 到B 的路径是AM+MN+BN,那么怎样确定什么情况下最短呢?
2.利用上面的“求最短路径的依据”解决问题:我们遇到了什么障碍呢?
四.感悟与反思:
A ·
· B
A ·
· B。
2020年中考数学专题突破专题十一:最短路径——造桥选址问题专题十一:最短路径——造桥选址问题【导例引入】导例:如图1,已知正方形ABCD 边长为3,点E 在AB 边上且BE=1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是 .【方法指引】(1)如图,在直线l 上找M 、N 两点(M 在左),使得AM+MN+NB 最小,且MN=d 。
方法:将点A 向右平移d 个单位到A ′,作A ′关于直线l 的对称点A",连接A"B 交直线l 于点N ,将点N 向左平移d 个单位到M ,点M 、N 即为所求,此时AM+MN+NB 最小为A"B 。
(2)如图,1l ∥2l ,1l ,2l 之间距离为d ,在1l ,2l 分别找M 、N 两点,使得MN ⊥1l ,且AM+MN+NB 最小。
l于点N,将点N向上平方法:将点A向下平移d个单位到A′,连接A′B交直线2移d个单位到M,点M,N即为所求,AM+MN+NB的最小值为A′B+d。
(3)如图,点P,Q在∠AOB内,分别在OA,OB上找点C,点D,使四边形PCDQ的周长最小.方法:分别作P,Q关于OA,OB的对称点P′,Q′,连接P′Q′分别交OA,OB与点C,D,则此时四边形PCDQ的周长最小本质为转化思想:(1)化同侧为异侧(对称变换),(2)平移定距离(平移变换),(3)化折线为直线(两点之间线段最短)“将军饮马”问题主要利用构造对称图形解决求两条线段和差、三角形周长、四边形周长等一类最值问题,会与直线、角、三角形、四边形、圆、抛物线等图形结合,在近年的中考和竞赛中经常出现,而且大多以压轴题的形式出现。
【例题精讲】类型一:两定点两动点形成最短路径型例1 如图1,已知A(0, 2)、B(6, 4),E(a, 0),F(a+1, 0),求a为何值时,四边形ABFE周长最小?请说明理由.【分析】四边 ABFE的四条边中,AB,EF的长度固定,只要AE+BF最小,则四边形周长将取得最小值,将B点向左平移一个单位长(EF的长度),得到点M,再作A关于x轴的对称点A′,连接A′M,可得点E的位置,从而问题得解.类型二:两定点一定角形成最短路径型例2.如图,在∠POQ内部有两点M,N,∠MOP=∠NOQ.(1)画图并简要说明画法:在射线OP上取一点A,使点A到点M和点N的距离和最小;在射线OQ上取一点B,使点B到点M和点N的距离和最小;(2)直接写出AM+AN与BM+BN的大小关系.【分析】分别作M关于射线OP的对称点M′,点N关于射线OQ的对称点N′,连接N′M,连接M′N,即可得到答案.【专题过关】1.如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E,F分别是BC,DC上的点,当△AEF的周长最小时,∠EAF的度数为 .2.如图,正方形的ABCD的边长为6,E,F是对角线BD上的两个动点,且,2,连接CE,CF,则△CEF周长的最小值为.EF=23.在平面直角坐标系中,已知点A(-2,0),点B(0,4),点E(0,1),将△AEO沿x轴向右平移得到△A′E′O′,连接A′B,BE′,则当A′B+BE′取最小值时,点E′的坐标为 .4.直线l外有一点D,点D到直线l的距离为5,在△ABC中,∠ABC=90°,AB=6,tan∠CAB=,边AB在直线l上滑动,则四边形ABCD周长的最小值为.5.如图,已知直线l1∥l2,l1、l2之间的距离为8,点P到直线l1的距离为6,点Q到直线l2的距离为4,PQ=4,在直线l1上有一动点A,直线l2上有一动点B,满足AB⊥l2,且PA+AB+BQ最小,此时PA+BQ=.6.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x +c的图象交x轴于另一点B.(1)二次函数的解析式为;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F,E的坐标.7.矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C (O,3),直线y=x与与BC边相交于点D.(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D、A两点,试确定此抛物线的解析式;(3)在(2)中抛物线的对称轴是否存在点P,使四边形ABDP的周长最小,并求出最小值;8. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF =2,EF=3.(1)求抛物线的解析式;(2)连接CB 交EF 于点M ,连接AM 交OC 于点R ,连接AC ,求△ACR 的周长;(3)设G (4,-5)在该抛物线上,P 是y 轴上一动点,过点P 作PH ⊥EF 于点H ,连接AP ,GH ,问AP +PH +HG 是否有最小值?如果有,求出点P 的坐标;如果没有,请说明理由.10. 已知,如图,二次函数()2230y ax ax a a =+-≠的图象的顶点为H ,与x 轴交于A 、B 两点(B 在A 点右侧),点H 、B 关于直线l :333y x =+对称. (1)求A ,B 两点坐标,并证明点A 在直线l 上;(2)求二次函数解析式;(3)过点B 作直线BK ∥AH 交直线l 于K 点,M ,N 分别为直线AH 和直线l 上的两个动点,连接HN ,NM ,MK ,求HN+NM+MK 和的最小值.10(备用).在平面直角坐标系中,已知抛物线y =ax 2+bx +c 经过点A (-3,0)、B (0,3)、C (1,0)三点.(1)求抛物线的解析式和它的顶点坐标;(2)若点P 、Q 分别是抛物线的对称轴l 上两动点,且纵坐标分别为m ,m +2,当四边形CBQP 周长最小时,求出此时点P 、Q 的坐标以及四边形CBQP 周长的最小值.备用图答案: 例1 .在四边形ABEF 中,AB ,EF 为定值,求AE +BF 的最小值,先把这两条线段经过平移,使得两条线段有公共端点.如图6-2,将线段BF 向左平移两个单位,得到线段ME .如图6-3,作点A 关于x 轴的对称点A ′,MA ′与x 轴的交点E ,满足AE +ME 最小.由△A ′OE ∽△BHF ,得'OE HF OA HB =.解方程6(2)24a a -+=,得43a =.例2.(1)图略,点A ,B 即为所求.画法:①作点M 关于射线OP 的对称点M′;②连接M′N 交OP 于点A ;③作点N 关于射线OQ 的对称点N′;④连接N′M 交OQ 于点B.(2)AM +AN =BM +BN.【专题过关】1.80°.2.2254+.3.(,1). 4.18 .5. 4 .作PE ⊥l 1于E 交l 2于F ,在PF 上截取PC=8,连接QC 交l 2于B ,作BA ⊥l 1于A ,此时PA +AB +BQ 最短.作QD ⊥PF 于D .在Rt△PQD中,∵∠D=90°,PQ=4,PD=18,∴DQ==,∵AB=PC=8,AB∥PC,∴四边形ABCP是平行四边形,∴PA=BC,∴PA+BQ=CB+BQ=QC===4.6.(1)y=-x2+4x+5;(2)如图①,图①∵点B是二次函数的图象与x轴的交点,∴由二次函数的解析式为y=-x2+4x+5得,点B的坐标B(5,0),设直线BC解析式为y=kx+b,∵直线BC过点B(5,0),C(0,5),∴505k bb+=⎧⎨=⎩,解得15kb=-⎧⎨=⎩,∴直线BC解析式为y=-x+5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,-n+5),D点的坐标为(n,-n2+4n+5),则d=|-n2+4n+5-(-n+5)| .由题意可知:-n2+4n+5>-n+5,∴d=-n2+4n+5-(-n+5)=-n2+5n=-(n-52)2+254,∴当n=52时,线段ND长度的最大值是25 4;(3)∵点M(4,m)在抛物线y=-x2+4x+5上,∴m=5,∴M(4,5).∵抛物线y=-x2+4x+5=-(x-2)2+9,∴顶点坐标为H(2,9),如图②,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(-2,9);作点M(4,5)关于x轴的对称点M1,则点M1的坐标为M1(4,-5),连接H1M1分别交x轴于点F,y轴于点E,∴H1M1+HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点.图②设直线H1M1的函数解析式为y=mx+n,∵直线H1M1过点H1(-2,9),M1(4,-5),∴9254m nm n=-+⎧⎨-=+⎩,解得73133mn⎧=-⎪⎪⎨⎪=⎪⎩,∴y=-73x+133.∴当x=0时,y=133,即点E坐标为(0,133);当y=0时,x=137,即点F坐标为(137,0) .故所求点F,E的坐标分别为(137,0),(0,133).7.(1)由题知,直线y=x与BC交于点D(x,3).把y=3代入y=x中得,x=4,∴D(4,3);(2)抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,把x=4,y=3;x=6,y=0,分别代入y=ax2+bx中,得解得∴抛物线的解析式为y=﹣x2+x;(3)如图1:作D(4,3)点关于对称轴x=3的对称点E(2,3),连接AE交对称轴于点P,直线AE的解析式为y=kx+b,图象经过点A,点E,得解得,直线AE的解析式为y=﹣x+. 当x=3时,y=﹣×3+,即P(3,).四边形ABDP周长的最小值=AB+DB+DP+AP=AB+DB+AE=3+2+=3+2+5=10.8. 如图,抛物线y=-x2+bx+c与x轴交于A,B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF =2,EF=3.(1)求抛物线的解析式;(2)连接CB交EF于点M,连接AM交OC于点R,连接AC,求△ACR的周长;(3)设G(4,-5)在该抛物线上,P是y轴上一动点,过点P作PH⊥EF于点H,连接AP,GH,问AP+PH+HG是否有最小值?如果有,求出点P的坐标;如果没有,请说明理由.解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴C点坐标为(0,3),E点坐标为(2,3).将C、E点坐标代入抛物线解析式y=-x2+bx+c得:解得∴抛物线的解析式为:y=-x2+2x+3;(2)由(1)得y=-x2+2x+3,令y=0,得-x2+2x+3=0.解得x1=-1,x2=3.∴A(-1,0),B(3,0) .∵AO=1,CO=3,在Rt△AOC中,AC==.∵CO=BO=3,∴∠OBC=∠OCB=45°.∴FM=BF=1.∵RO∥MF,∠RAO=∠MAF,∴△ARO∽△AMF.∴,即=.解得RO=.∴CR=OC-OR=3-=,AR===,∴△ACR的周长为:AC+CR+AR=++=;(3)如解图①,取OF中点A′,连接A′G交直线EF的延长线于点H,过点H作HP′⊥y 轴于点P′,连接AP′.图①则当P在P′处时,使AP+PH+HG最小,∵A′为OF中点,∴A′坐标为(1,0) .设直线A′G的解析式为y=kx+a,将点G(4,-5),A′(1,0)分别代入,得解得∴直线A′G的解析式为:y=-x+.令x=2,得y=-+=-,∴点H 的坐标为(2,-) .∴符合题意的点P 的坐标为(0,-). 9. (1)依题意,得ax 2+2ax-3a=0(a ≠0),解得x 1=﹣3,x 2=1,∵B 点在A 点右侧,∴A 点坐标为(﹣3,0),B 点坐标为(1,0)证明:∵直线l :333y x =+, 当x=﹣3时,3-33y =⨯+(3)=0,∴点A 在直线l 上. (2)∵点H 、B 关于过A 点的直线l :333y x =+对称,∴AH=AB=4.过顶点H 作HC ⊥AB 交AB 于C 点,则AC=AB=2,HC =2.∴顶点H(-1,2),代入二次函数解析式,解得a=-. ∴二次函数解析式为2-3333-+22y x x =; (3)直线AH 的解析式为=333y x + . 直线BK 的解析式为=33y x -,由3=33= 33y x y x ⎧+⎪⎨⎪-⎩,解得=3=23 x y ⎧⎪⎨⎪⎩,即()323K ,,则BK =4,∵点H 、B 关于直线AK 对称,()323K ,,∴HN +MN 的最小值是MB .过K 作KD ⊥x 轴于点D ,作点K 关于直线AH 的对称点Q ,连接QK ,交直线AH 于点E ,==23KD KE ,则QM =MK ,==23QE EK ,AE ⊥QK ,∴根据两点之间线段最短得出BM +MK 的最小值是BQ ,即BQ 的长是HN +NM +MK 的最小值,∵BK ∥AH ,∴∠BKQ =∠HEQ =90°.由勾股定理得()2222423238QB BK QK =+=++=,∴HN +NM +MK 的最小值为8.(备用)9.(1)将A ,B ,C 的坐标代入函数解析式,得,解得 ∴ 抛物线的解析式为y =-x 2-2x +3=-(x +1)2+4,即顶点坐标为(-1,4); (2)如解图②,将B 点向下平移两个单位,得D 点,连接AD 交对称轴于点P ,作BQ ∥PD 交对称轴于Q 点,∵PQ ∥BD ,BQ ∥PD ,∴四边形BDPQ 是平行四边形.∴BQ =PD ,PQ =BD =2.∴BQ +PC =PD +AP =AD .由勾股定理,得AD ===,BC ===. ∴四边形CBQP 周长的最小值为BC +BQ +PQ +PC =BC +PQ +(BQ +PC )=BC +PQ +AD=+2+=2+2.设AD 的解析式为y =kx +b ,将A ,D 点坐标代入得,301k b b -+=⎧⎨=⎩,解得131k b ⎧=⎪⎨⎪=⎩,∴直线AD 的解析式为y =x +1. 当x =-1时,y =,即P (-1,) .由|PQ |=2,且Q 点纵坐标大于P 点纵坐标得Q (-1,),故当四边形CBQP 周长最小时,点P 的坐标为(-1,),点Q 的坐标为(-1,),四边形CBQP 周长的最小值是2+2.。