内燃机特性(精)
- 格式:ppt
- 大小:1.52 MB
- 文档页数:20
名词解释压缩比:气缸总容积与燃烧室容积之比,表示被被压缩的程度。
用ε 表示。
ε=Va/Vc=Vs+Vc配气定时:指内燃机每个气缸的进排气门从开始开启到完全关闭所经历的曲轴转角。
气门重叠角:通常是指发动机进气门和排气门处于同时开启的一段时间用曲轴转角来表示称为气门重叠角。
点火提前角:从点火时刻起到活塞到达压缩上止点,这段时间内曲轴转过的角度。
喷油提前角:喷油器开始喷油时,活塞距离压缩达上止点的曲轴转角。
增压中冷:利用冷却风扇在车辆运行过程中所产生的高速气体流动来冷却增压空气。
偶件:优质材料,精细加工,配对研磨不可互换,密封极好的对件。
喷油规律:指在喷油过程中,单位凸轮转角内从喷油器入气缸的燃油量。
指示效率指示压力、平均指示压力:指单位气缸容积一个循环所做的指示功, Pmi=Wi/Vs有效指示压力: (定义,表达式)指示热效率:指发动机实际循环指示功与所消耗的燃料热量的比值。
η it=Wi/Q1 有效热效率:实际循环的有效功与为得到此有效功所消耗的热量的比值。
η et=We/ η m平均有效压力:使活塞移动一个行程所做的功等于每个循环所做的有效功的一个假想(平均不变)的压力。
有效燃料消耗率 be:指单位有效功的耗油量。
指示功率:内燃机单位时间内所做的指示功,Pi=2PmiVsni/τ有效功率:指示功率扣除机械损失功率即为有效功率。
Pe=Pi-Pm升功率:在标定工况下发动机每升气缸工作容积所发出的有效功率。
Pl=Pe/Vs充量系数Φc :每循环吸入气缸的空气量换算成进气管的体积与活塞排量之比。
过量空气系数Φa:燃料单位燃料的实际空气量与理论空气量指比。
空燃比α :空气质量流量与燃料质量流量之比。
机械效率:有效功率与指示功率之比。
η m=Pe/Pi机械损失:运动件的摩擦损耗功与附件所消耗的功。
压力升高率dp/dφ:增压比:残余废气系数:上一个循环残留在缸内的废弃 Mr 与每循环缸内气体的总质量 m0 之比。
第九章 内燃机的使用特性与匹配内燃机的工作特性是内燃机性能的对外反映。
特性的表现形式有很多,除了前面已经介绍过的调整特性(如燃料调整特性和点火正时、供油正时调整特性等)和调速特性外,本章将重点介绍内燃机的基本使用特性,如负荷特性、速度特性、万有特性等。
由于内燃机作为动力机械是为其他工作机械提供动力的,两者之间的匹配不仅涉及工作机械的性能,而且也与内燃机本身的使用特性密切相关。
为此,本章将简要介绍内燃机与常用工作机械的匹配要点。
研究内燃机的使用特性及其与工作机械的匹配,不仅是为了评价内燃机的使用性能,为工作机械正确选用内燃机提供依据,同时,还可以通过对影响内燃机使用特性的各种因素的分析,提出改进内燃机的特性以适应匹配要求的技术措施,来优化整个动力装置的使用性能。
第一节 内燃机的工况内燃机的使用特性表明它在不同工况下的使用性能。
内燃机工况就是指它实际运行的工作状况。
表征内燃机工况的参数有表示工作频率的转速n 以及表示工作负荷的转矩tq T 、功率e P 等。
由于tq T 与内燃机的平均有效压力me P 成正比,所以也经常用me P 表示内燃机的负荷。
用me P 表示的负荷与内燃机的尺寸无关,便于比较不同内燃机真正的负荷水平。
这些工况参数之间有下列关系:n P T P m e tq e ∝=∝ (9-1)可见 e P 、tq T (或 me P )、n 三个参数中,只有两个是独立变量,即当任意两个参数确定后,第三个参数就可通过与式(9—1)类似的关系式求出。
以e P -n 坐标系绘出的内燃机可能运行的工况和工作范围,如图9—1所示。
显然,内燃机可能的工作区域被限定在一定范围内。
上边界线3为内燃机油量控制机构处于最大位置时不同转速下内燃机所能发出的最大功率(外特性功率线)。
左侧边界线为内燃机最低稳定工作转速min n ,低于此转速时,由于飞轮等运动件储存能量较小,导致内燃机转速波动过大,不能稳定运转,或者工作过程恶化,不能高效运转。
内燃机燃烧特性数值模拟研究内燃机是目前主流的动力装置之一,其优点包括结构简单、重量轻、效率高、成本低等。
然而,内燃机在燃烧过程中会释放一些有害气体,对环境造成一定的污染。
为了减轻这种污染,需要对内燃机的燃烧过程进行研究和优化,而数值模拟技术正是一种有效的手段。
1. 燃烧特性的研究意义内燃机的燃烧过程是复杂的,它涉及到燃料的混合、点火、燃烧等多个阶段。
燃烧特性的研究可以揭示这些阶段的物理本质和相关机理,为内燃机的设计和优化提供理论依据。
例如,燃烧特性的研究可以帮助分析燃烧过程中的温度、压力、速度等参数的变化规律,进而优化燃烧室的形状和燃料的喷射方式,提高内燃机的热效率和燃烧效率,降低有害气体排放。
此外,燃烧特性的研究还可以为汽车工程、航空航天等领域的发展提供支持。
例如,在飞机发动机的设计中,燃烧室的形状和喷射方式对发动机的性能和寿命影响很大,需要通过燃烧特性的研究进行优化。
2. 数值模拟的研究方法数值模拟是一种重要的燃烧特性研究方法。
它通过利用计算机软件对内燃机的燃烧过程进行模拟,可以有效地分析燃烧室内的流场、温度场和化学反应过程等因素对燃烧过程的影响。
数值模拟可以分为三个主要阶段:前处理、数值计算和后处理。
其中前处理包括几何建模、网格划分、物理模型的选择和设定等,是数值模拟的基础。
数值计算则是根据所选物理模型和设定的初值、边界条件等参数,通过计算机算法求解相关方程,得到燃烧过程各个阶段的物理量(如速度、温度、压力等)。
后处理则是对计算结果进行分析和处理,获得与燃烧过程相关的各项指标和图形。
目前可用于内燃机燃烧特性数值模拟的软件主要有Fluent、Star-CD、Fire等。
这些软件的使用条件和适用范围不同,需要根据实际需要进行选择和使用。
3. 数值模拟在内燃机燃烧特性研究中的应用数值模拟技术在内燃机燃烧特性研究中得到了广泛的应用。
下面以柴油机燃烧过程的数值模拟为例,介绍其应用情况。
(1)柴油机燃烧室形状的优化燃烧室的形状对柴油机的性能和排放都有着重要的影响。
活塞式内燃机燃烧过程的热力学特性与优化活塞式内燃机是一种重要的动力装置,广泛应用于汽车、机械设备和发电等领域。
燃烧过程是活塞式内燃机能量转换的核心环节,其热力学特性和优化对发动机性能具有重要影响。
本文将深入探讨活塞式内燃机的燃烧过程热力学特性,并提出一些优化策略。
一、活塞式内燃机燃烧过程热力学特性燃烧过程的热力学特性是评价发动机性能的重要指标,主要包括燃烧时间、燃烧效率和热损失等。
活塞式内燃机燃烧过程的热力学特性与燃烧室结构、燃料类型和进气系统直接相关。
1. 燃烧时间燃烧时间是指燃料在燃烧室中完全燃烧所需要的时间。
燃烧时间的长短直接关系到燃烧效率和发动机的功率输出。
通过优化燃烧室形状、喷油系统和点火系统,可以有效控制燃烧时间,提高发动机的效率和性能。
2. 燃烧效率燃烧效率是指燃料在燃烧过程中转化为有效功率的比例。
提高燃烧效率可以降低燃料消耗和排放物排放。
燃煤室的混合气浓度、点火时机和燃烧稳定性都对燃烧效率有重要影响。
通过优化喷油系统、点火系统和控制策略,可以提高燃烧效率。
3. 热损失热损失是指燃烧过程中由于热传导、辐射和机械损失导致的能量损失。
热损失直接降低了发动机的热效率和经济性。
通过优化活塞材料、缸体和缸盖的散热性能,减少热损失,可以提高发动机的效率。
二、活塞式内燃机燃烧过程的优化策略为了提高活塞式内燃机的热力学特性,可以采取以下优化策略:1. 混合气优化合理调节混合气的浓度和空燃比,可以提高燃烧效率。
采用先进的喷油系统和进气控制系统,实现优化的混合气供应,可以在不同工况下实现更好的燃烧效果。
2. 燃烧室优化通过优化燃烧室结构和几何形状,可以改善混合气的流动性和燃烧稳定性。
合理设计活塞顶部形状和喷油策略,可以促进燃烧过程的蔓延和扩散,提高燃烧效率。
3. 点火优化优化点火系统,可以提高燃烧效率和点火性能。
采用先进的点火技术,如高能火花塞和电压升压系统,可以确保可靠的点火,并提高燃烧效率。
4. 循环过程优化通过优化活塞、缸体和活塞环的材料和结构,可以减少摩擦损失和热损失。
内燃机燃烧过程的特性分析内燃机作为现代交通工具的核心部件,是现代工业不可或缺的关键技术之一。
在内燃机中,燃烧是产生能量的最关键的过程之一。
本文将重点分析内燃机燃烧过程的特性。
1. 燃烧反应内燃机中的燃烧反应通常是烷基烃与空气中的氧气进行的反应。
该反应需要涉及三个因素:燃料质量,空气质量和点火点。
当这三个因素被控制在一个特定的范围内时,燃烧反应才能够正常进行。
当点火点到达燃油的点火点时,烷基烃分子将与空气中的氧气结合形成一系列的反应产物,其中主要的产物是二氧化碳和水蒸气。
同时,该反应会释放出大量的热能,从而推动活塞运动。
2. 点火系统内燃机的点火系统采用火花点火方式,该方式采用了几个关键部件:点火塞,高压线圈和电容器等。
点火塞的作用是产生一个火花,该火花能够点燃混合气体。
高压线圈的作用是提供电量,从而产生能够点燃混合气体的高压电流。
电容器的作用是升压产生高压电流,以激发点火塞产生火花。
燃烧反应需要在点火塞产生的火花引导下进行。
不同类型的火花塞适用于不同类型的燃油,因此,内燃机的点火系统必须与所使用的燃油相兼容。
3. 燃油喷射系统内燃机的燃油喷射系统是一个非常重要的部件,它能够准确地控制混合气体的组成和比例。
同时,这个系统可以自动适应不同的驾驶条件,从而保证内燃机的燃烧效率和性能。
燃油喷射系统通常包括多个传感器和控制模块,以确保燃油的喷射量、压力和时间管理得当。
4. 燃烧过程的特性内燃机的燃烧过程的特性主要受到下列因素的影响:(1)混合气体的浓度和比例:混合气体中的燃油和空气的比例对燃烧过程有重要影响。
如果比例不正确,燃烧过程将被质量损失或减速。
(2)燃油的化学组成:不同的燃油具有不同的特性和燃烧产物。
因此,与燃油特性不匹配的点火系统可能会导致燃烧不完全,缩短内燃机的寿命。
(3)点火系统的效率:好的点火系统不仅能够促进燃油的燃烧,而且能够降低排放,并增加燃油的燃烧效率。
(4)燃油喷射和混合气体的压缩:燃油喷射系统和混合气体压缩过程可以影响燃油的混合和燃烧过程。
1.HC(汽油机)生成机理:不完全燃烧;壁面淬熄效应;壁面油膜和积炭的吸附.(柴油机):混合不均匀;喷油器压力室容积的影响.2.点火及喷油时刻的影响:汽油机点火提前角推迟,最高温度,压力降低.NOx生成量少,排气温度高,HC在排气中继续燃烧,含量减少,但过迟使燃烧速度慢会使HC增多,动力性经济性变差.柴油机喷油提前角减小,最高温度下降,NOx减少,使其烟度增加,功率下降。
3.发动机特性:指在一定条件下发动机的性能指标与特性参数随各种可变因素的变化规律。
4.速度特性:汽油机节气门开度不变或柴油机油量调节机构位置不变,个工况处于最佳调整状态,发动机性能指标和特性参数随转速的变化规律。
5.汽油机曲线趋势及分析(影响因素分析):ηit曲线具有中间平坦,两头略低的特点。
(低速时,缸内气流扰动减弱,火焰传播速度低,漏气及散热损失增大,ηit降低;高速时,燃烧持续时间短,燃烧不充分,曲轴转角增大,等容度下降,ηit降低);ηm总趋势随转速增大而下降,低负荷时节气门关小,泵气损失增加使曲线更陡;φc随转速增大而下降,节气门开度减小,下降幅度大;φa变化平坦,总趋势随转速上升略增。
6.柴油机曲线趋势及分析:gb由喷油泵的速度特性决定,随转速上升而增加;ηit曲线同汽油机,两头略朝下(低速时喷射压力减小,缸内气流减弱,传热及漏气损失增加,高速时,φc下降,喷油量增加,使混合气过浓);ηm总趋势随转速增大而下降。
7.汽,柴油机速度特性的对比:汽油机转矩线总体上向下倾斜较大,低负荷时倾斜更大;而柴油机总体变化平坦,低负荷时甚至上扬;汽油机Pe外特性最大值点,一半就是标定功率点,而柴油机可达到的最大值点转速很高,并非特性线的极值点。
柴油机燃油消耗率曲线要比汽油机平坦,低负荷时更是如此。
8.负荷特性:当发动机转速不变时,稳态性能指标随负荷变化的规律。
汽油机分析:ηit曲线两头下降,总体随负荷下降而变小(节气门开度减小,循环进气量下降,残余废气系数加大,燃烧速度下降;负荷变小时,Φa变浓,燃烧不完全;燃料气化条件恶化和单位工质传热量增加);ηm随负荷增加而上升,到中负荷逐渐趋于平坦;Φc 随节气门开度加大而上升,负荷加大,温度上升时,略有下降;Φa按理想混合气要求变化。