摩擦学原理摩擦表面状态
- 格式:pptx
- 大小:9.38 MB
- 文档页数:128
摩擦学知识点总结摩擦是指两个表面之间的相对运动受到的阻力。
摩擦学是研究摩擦现象的科学,涉及到力学、材料学、表面科学、润滑学等多个学科的知识。
摩擦学的研究对于工程和日常生活都有着重要的意义。
本文将就摩擦学的一些重要知识点进行总结,包括摩擦力的产生机制、摩擦系数、摩擦的影响因素、摩擦的应用以及摩擦的减小等内容。
一、摩擦力的产生机制摩擦力的产生是由于两个表面之间的微观不平整的凸起和凹陷之间发生了相互作用。
当两个表面接触时,由于其不光滑的表面,导致表面之间存在着局部的微小接触点。
在这些接触点处,由于原子和分子之间的相互吸引力和斥力,产生了摩擦力。
这种微观不平整的表面结构导致了摩擦力的产生,这也是为什么光滑的表面摩擦力更小的原因。
二、摩擦系数摩擦系数是用来描述两个表面之间摩擦性质的参数。
通常用符号μ来表示。
摩擦系数的大小取决于两个表面之间的物理性质以及表面之间的状态。
通常来说,摩擦系数分为静摩擦系数和动摩擦系数。
静摩擦系数是指在两个表面相对静止的情况下,需要克服的摩擦力与正压力之比。
而动摩擦系数是指在两个表面相对运动的情况下,需要克服的摩擦力与正压力之比。
摩擦力与正压力之比就是静摩擦系数或者动摩擦系数。
摩擦系数是一个重要的物理量,不同材料之间的摩擦系数差异很大,所以在工程设计和实际应用中需要根据具体情况来选择合适的摩擦系数。
三、摩擦的影响因素影响摩擦的因素有很多,主要包括:1. 表面形状和粗糙度:表面的形状和粗糙度对摩擦力的大小影响很大。
通常来说,表面越光滑,摩擦力就越小。
2. 正压力大小:正压力越大,摩擦力也就越大。
正压力是指两个表面之间的垂直于接触面的力。
3. 材料的性质:不同材料之间的摩擦系数是不同的,材料的硬度、弹性模量、表面粗糙度都会影响摩擦力的大小。
4. 温度:温度的变化也会对摩擦力产生影响。
一般来说,温度升高会使摩擦力减小。
5. 润滑情况:润滑剂的使用会减小摩擦力,从而减小磨损和能量损失。
四、摩擦的应用摩擦力是一种普遍存在的力,它在我们的日常生活和工程实践中都有着广泛的应用。
摩擦学表面摩擦和粘性摩擦摩擦学:表面摩擦和粘性摩擦摩擦作为物体之间的相互作用力之一,在日常生活中无处不在。
它不仅影响着机械装置的性能,也在我们的运动中起到重要的作用。
本篇文章将对摩擦的不同类型进行探讨,着重介绍表面摩擦和粘性摩擦的特点及应用。
一、表面摩擦表面摩擦是指两个物体接触表面之间的摩擦力。
它是由于两个物体表面的不平滑性和接触面积对力的传递造成的。
表面摩擦可以分为静摩擦和动摩擦。
1. 静摩擦静摩擦是指物体在没有相对运动时所受的摩擦力。
它的大小与物体之间的垂直压力以及物体表面的粗糙度有关。
当我们试图拉开两个紧密堆叠的书本时,由于静摩擦的作用,书本往往很难分离。
这是因为两个书本表面的微小凸起和凹陷之间产生的摩擦力比我们所施加的力要大。
2. 动摩擦动摩擦是指物体在相对运动时所受的摩擦力。
与静摩擦相比,动摩擦往往较小。
当我们用力将物体推动时,动摩擦会抵消部分作用在物体上的力,使得物体的运动速度较慢。
汽车轮胎和道路之间的摩擦力就是一种实际应用中的动摩擦。
合理控制动摩擦可以帮助我们安全驾驶,防止车辆打滑。
二、粘性摩擦粘性摩擦是指物体在相对运动时,在介质中的阻力产生的摩擦力。
其中介质可以是液体或气体。
相比于表面摩擦,粘性摩擦是由于物体与介质之间的黏性造成的。
1. 液体粘性摩擦液体粘性摩擦是指物体在液体介质中相对运动时受到的阻力。
例如,当我们将手指伸入水中快速移动时,我们可以感觉到液体对手指的阻力。
这种阻力是由于液体分子与手指表面分子间的相互作用力造成的。
液体粘性摩擦在管道输送、风洞试验等领域具有广泛应用。
2. 气体粘性摩擦气体粘性摩擦是指物体在气体介质中相对运动时受到的阻力。
相比于液体粘性摩擦,气体粘性摩擦较小,因为气体分子间的相互作用力较弱。
然而,在高速运动或高温条件下,气体粘性摩擦也会产生一定的影响。
航空航天领域中的空气动力学研究就需要考虑气体粘性摩擦的影响。
结语摩擦作为一种力的体现,对于物体的运动和工程设计至关重要。
摩擦力大小与相接触物体间的表面名义接触面积无关。
犁沟效应22rA v π=H A rh=SS v rA W σπσ)2(2==H S SF A rh σσ==θππσπσμctg r h r rh W F S S p 2222====∴若考虑粘着效应和犁沟效应S r B v A A F στ+=θπστσσστμctg A A A A W FS B S v S r S v B v 2+=+==①对大多数金属加工表面角很大,第二项数值很小可以忽略②磨粒磨损中,角很小,不能省去第二项θθ机械互锁模型粘着模型自由滚动受制滚动槽内滚动由于材料的弹性模量不同由于滚动接触表面有切向由于几何形状使接触各点接触消失时,大部分变形能得到释放,由于产生的能量差为滚动摩擦的损耗其大小与材料的阻尼和松弛性能有关低速滚动时的弹性滞后损失小高速滚动时的弹性滞后相对较大随载荷增大,塑性变形逐渐扩展到表使材料发生塑性变形需要消耗能量滚动体前方的塑性变形是滚动摩擦十Tabor与滑动摩擦的表面分离过程完全不同滚动接触的接近与分离在垂直方向分离过程要克服粘附力拉伸作用粘附力属于范德华力粘附力很小,只占摩擦阻力很小一部分滚动摩擦是由多种机理组合的复杂过程概括为四种机理:微观滑移、弹性滞后、塑性变四种机理产生的摩擦阻力可以相互叠加滚动接触应力不大时主要以弹性滞后为主接触应力比较大时主要以塑性变形为主对于滚动过程的摩擦阻力如何定量计算?圆柱在平面上的滚动材料的受压弹性变形为:引入滞后系数,则功耗为:摩擦阻力:滚动阻力系数: (由实验得出)2221W x p aa π=−4WR a E π=′23e Mx Wa x E M R Rθπ===×α23e e Wa x E Fx E R αααπ⇒==•23Wa F Rαπ∴=1/2224()33F a WR f R R E ααωπππ===′α。
绪论1、摩擦学定义:是关于相对运动的相互作用表面的科学技术,包括摩擦、润滑、磨损和冲蚀。
2、摩擦学研究内容主要包括:摩擦、磨损、润滑以及表面工程技术。
3、摩擦:是抵抗两物体接触表面在外力作用下发生切向相对运动的现象。
4、磨损:着重研究与分析材料和机件在不同工况下的磨损机理、发生规律和磨损特性。
5、润滑:研究内容包括流体动力润滑、静力润滑、边界润滑、弹性流体动力润滑等在内的各种润滑理论及其在实践中的应用。
6、表面工程技术:将表面与摩擦学有机结合起来,解决机器零部件的减摩、耐磨,延长使用寿命的问题。
第一章1、表面形貌:微观粗糙度、宏观粗糙度(即波纹度)和宏观几何形状偏差。
2、表面参数:(1)算术平均偏差Ra 是在一个取样长度lr 内纵坐标值Z (x )绝对值的算术平均值。
(2)轮廓的最大高度Rz 是在一个取样长度lr 内最大轮廓峰高Zp 和最大轮廓谷深Zv 之和的高度。
(3)均方根偏差Rq 是在一个取样长度lr 内纵坐标值Z (x )的均方根值。
3、对于液体,表层中全部分子所具有的额外势能的总和,叫做表面能。
表面能越高,越易粘着。
4、物理吸附:当气体或液体与固体表面接触时,由于分子或原子相互吸引的作用力而产生的吸附叫做物理吸附,是靠范德华力维系的,温度越高,吸附量越小。
物理吸附薄膜形成的特点是吸附和解吸附具有可逆性,无选择性。
5、化学吸附:极性分子与金属表面的电子发生交换形成化学键吸附在金属表面上,且极性分子呈定向排列。
化学吸附的吸附能较高,比物理吸附稳定,且是不完全可逆的,具有选择性。
6、粘附:是指两个发生接触的表面之间的吸引。
7、影响粘附的因素:①润湿性,②粘附功,③界面张力,④亲和力。
8、金属表面的实际结构:(1)外表层:①污染层,②吸附气体层,③氧化层;(2)内表层:①加工硬化层,②金属基体。
第二章1、固体表面的接触分类:(1)点接触和面接触。
(2)①弹性接触(赫兹接触),②塑性接触,③弹塑性接触,④粘弹性接触。
机械设计中的摩擦学原理分析摩擦学是研究摩擦、磨损和润滑的学科,对于机械设计来说,摩擦学原理的应用至关重要。
摩擦学原理的理解能够帮助工程师们设计出更有效、更可靠的机械系统。
本文就机械设计中的摩擦学原理进行详细分析。
一、摩擦学基本概念摩擦是由于两个物体之间的接触而产生的阻碍相对运动的力。
摩擦由于两个物体之间的微小不平整而产生,其平衡状态下的力大小可以用摩擦系数表示。
摩擦系数越大,两个物体之间的摩擦力就越大,相对滑动也就越困难。
磨损是指在摩擦作用下,物体表面逐渐剥落、破损或变形的过程。
摩擦作用时产生的热量会导致磨损,并且可以通过润滑来减少磨损。
润滑是指利用润滑剂在接触表面形成润滑膜,减少摩擦和磨损的过程。
润滑可以分为液体润滑、固体润滑和气体润滑三种方式。
润滑剂的选择应根据工作条件和材料特性进行合理选择,以确保机械系统的正常运行。
二、摩擦学在机械设计中的应用1. 摩擦副配对设计在机械设计中,合理选择和设计摩擦副对是至关重要的。
摩擦副应具备摩擦系数小、磨损少、寿命长等特点,以保证机械系统的正常运行。
在进行摩擦副设计时,需要考虑工作条件、材料的性质、润滑和摩擦副配合间隙等因素。
2. 摩擦和磨损分析摩擦和磨损分析是机械设计中重要的一环,通过合理的分析可以预测摩擦副件的损坏和寿命,进行合理的维护和更换。
同时,也可以通过分析优化摩擦副材料、润滑方式等因素,减少磨损,提高机械系统的效能。
3. 润滑技术应用在机械设计中,润滑技术的应用可以减少机械系统的摩擦和磨损,延长使用寿命。
润滑可以使用液体润滑剂、固体润滑剂或气体润滑剂,根据工作条件选用合适的润滑方式。
4. 摩擦噪音和振动控制摩擦副件在运动过程中会产生噪音和振动,影响机械系统的正常工作和使用寿命。
为了减轻噪音和振动,需要通过设计和选择合适的材料、润滑方式以及减振措施等途径来控制和减少噪音和振动的产生。
三、机械设计中的摩擦学原理实例以某自动化生产线上的输送系统设计为例,通过摩擦学原理的应用可以解决以下问题:1. 提高输送效率:通过合理选择输送系统的摩擦副件材料和润滑方式,减小摩擦力,提高输送效率。
摩擦学基本知识目录1. 摩擦学简介 (3)1.1 摩擦学的定义和学科范围 (4)1.2 摩擦学的重要性与应用领域 (5)2. 摩擦的分类与机制 (6)2.1 摩擦的分量和类型 (7)2.2 摩擦机理的基本概念 (8)2.3 不同表面相互作用的摩擦特性 (9)3. 摩擦因数的测定与预测 (10)3.1 摩擦因数的测定方法 (13)3.2 摩擦因数的预测模型 (14)3.3 摩擦因数的理论与实验研究 (16)4. 接触力与接触压力 (17)4.1 接触力产生的基本原理 (18)4.2 接触压力分布分析 (19)4.3 表面纹理与非线性接触压力 (21)5. 摩擦系数与磨损 (22)5.1 摩擦系数的影响因素 (23)5.2 磨损理论与磨损机制 (25)5.3 表面损伤与摩擦副寿命 (26)6. 润滑理论与技术 (27)6.1 润滑的基本原理 (29)6.2 润滑剂的种类与性能 (29)6.3 润滑技术的应用与发展 (30)7. 润滑与摩擦学研究进展 (32)7.1 高温润滑与表面化学 (33)7.2 纳米润滑与摩擦纳米技术 (34)7.3 非传统润滑方法 (36)8. 摩擦与润滑系统分析 (37)8.1 摩擦与润滑系统的建模 (38)8.2 系统分析和仿真方法 (39)8.3 设计原则与优化方法 (42)9. 摩擦与润滑材料 (43)9.1 摩擦与润滑基体材料 (44)9.2 摩擦系数与材料特性 (46)9.3 摩擦与磨损材料的研究 (47)10. 表面工程与表面特征对摩擦的影响 (48)10.1 表面工程技术 (50)10.2 表面特征与摩擦性质 (51)10.3 表面处理与润滑原理 (52)11. 摩擦与润滑的可持续性与环境考量 (54)11.1 环境保护与绿色润滑 (55)11.2 可持续设计与材料选择 (56)11.3 摩擦与润滑的节能减排 (57)12. 摩擦与润滑的科技伦理与社会责任 (58)12.1 专利与知识产权保护 (59)12.2 技术创新与科技伦理 (61)12.3 摩擦与润滑的社会责任 (62)13. 摩擦与润滑的未来趋势 (63)13.1 新兴技术的应用前景 (64)13.2 智能化与信息化在摩擦学中的应用 (65)13.3 摩擦学与当代科技发展的交融 (66)1. 摩擦学简介摩擦学是一门研究涉及相互接触并相对运动的物体间相互作用的科学。
摩擦学原理复习题整理1. 简述摩擦种类及机理2. 简述磨损种类及机理1. 答:摩擦的分类:按摩擦副的运动状态:动摩擦,静摩擦按摩擦副的运动形式:滚动摩擦,滑动摩按摩擦副的润滑状态:干摩擦,流体摩擦,边界摩擦,混合摩擦摩擦产生机理:1)机械啮合理论:摩擦力源于接触面的粗糙程度。
相互接触的两物体粗糙的峰相互啮合、碰撞以及产生的塑性或弹性变形,特别是硬的粗糙峰嵌入软表面后在滑动过程中产生的形变会引起较大的摩擦力。
2)分子作用理论:这种理论认为由于分子的活动性和分子作用力使固体粘附在一起而产生滑动阻力。
被称为粘着效应。
3)粘着理论:人们从机械——分子联合作用的观点出发建立了粘着理论。
2. 答:磨损种类:点蚀磨损、胶合磨损、擦伤磨损、粘着磨损、疲劳磨损、冲蚀磨损、腐蚀磨损、磨料磨损。
磨损产生机理:1)磨粒磨损机理:微观切削、挤压剥落、疲劳破坏2)粘着磨损机理:通常摩擦表面的实际接触面积只有表观面积的 0.1~0.01%。
对于重载高速摩擦副,接触峰点的表面压力有时可达 5000MPa,并产生1000度以上的瞬现温度。
而由于摩擦副体积远大于接触峰点,一旦脱离接触,峰点温度便迅速下降,一般局部高温持续时间只有几个毫秒。
摩擦表面处于这种状态下,润滑油膜、吸附膜或其他表面膜将发生破裂,使接触峰点产生粘着,随后在滑动中粘着结点破坏。
这种粘着、破坏、再粘着的交替过程就构成粘着磨损。
弹性流体动力润滑和流体动压润滑分别适用于什么情况。
两个作相对运动物体的摩擦表面,用借助于相对速度而产生的粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷, 称为流体动力润滑。
所用的粘性流体可以是液体(如润滑油) ,也可以是气体(如空气等), 相应地称为液体动力润滑和气体动力润滑。
流体动力润滑的主要优点是,摩擦力小, 磨损小,并可以缓和振动与冲击。
流体动力润滑通常研究的是低副接触受润零件之间的润滑问题,把零件摩擦表面视作刚体,并认为润滑剂的粘度不随压力而改变。
摩擦的四种状态
摩擦的四种状态包括:
干摩擦:当两物体的滑动表面无任何润滑剂或保护膜时,它们直接接触并产生摩擦,这种状态称为干摩擦。
例如,冲孔网的制作过程中,冲头在钢板上的摩擦就是干摩擦。
边界摩擦:当两摩擦表面各附有一层微薄的边界膜(如吸附膜或反应膜),使得两表面并不直接接触时,这种状态称为边界摩擦。
边界摩擦的摩擦状态相较于干摩擦有所改善,其摩擦和磨损程度主要取决于边界膜的性质、材料表面机械性能和表面形貌。
流体摩擦:当两摩擦表面被一层连续的流体润滑膜完全隔开时,这种状态称为流体摩擦。
这种状态也称为液体摩擦,它不会发生金属表面的磨损,是理想的摩擦状态。
根据润滑膜厚度的不同,流体摩擦还可以进一步分为液体摩擦和半液体摩擦。
混合摩擦:当两表面间同时存在干摩擦、边界摩擦和流体摩擦的两种及以上状态时,这种状态称为混合摩擦。
在实践中,很多摩擦副都处于混合摩擦状态。
以上四种摩擦状态是根据摩擦副表面间的润滑状态进行分类的,不同的状态对设备性能和使用寿命有重要影响。