实验二、外压薄壁圆筒形容器失稳实验
- 格式:doc
- 大小:121.00 KB
- 文档页数:3
薄壁圆筒外压失稳实验一、实验目的1.观察外压容器的失稳破坏现象及破坏后的形态。
2.验证外压筒体试件失稳时临界压力的理论计算式。
二、实验装置基本配置表一、实验装置基本配置表:图一、薄壁圆筒外压失稳实验装置三、实验原理薄壁容器在受外压作用时,往往在器壁内的应力还未达到材料的屈服极限,而在外压达到某一数值时,壳体会突然推动原来形状而出现褶皱,这种现象称为失稳,失稳时的压力称为临界压力,以P cr [MPa]表示。
它与材料的弹性性能(弹性模数E 和泊桑比μ)、几何尺寸(简体直径D 、壁厚S O 和筒体计算长度L)有关。
钢制薄壁容器的临界压力与波数的计算公式如下:长圆筒Bress 公式:202)(12DS E P cr μ-=(1) 短圆筒B.M.Pamm 公式:)()//()/(06.7/59.242002正整数D L S D n s D LD ES P cr ==(2)临界尺寸:0/17.1L S D D cr = (3) 当L >L cr 时,为长圆筒; 当L <L cr 时,为短圆筒。
式中:P—临界压力,MPa;crD—圆筒直径,mm;L—圆筒计算长度,mm;S0—圆筒壁厚,mm;E—材料弹性模数,MPa;μ—材料泊桑比;n—失稳时波数;Lcr—临界长度,mm。
四、实验操作步骤1.开启计算机,启动计算机、打开实验软件。
2.检查压力传感器和温度计是否正常。
3.测量试件几何尺寸,检查水箱内水是否充足,适量添加。
4.启动离心泵,向失稳灌内注入适量水(水加至试件放入不易水为宜),安装测试试件。
5.停止离心泵,将压力仪表输出值调至0,启动压缩机。
6.慢慢改变仪表输出值,增加压力,记录压力变化曲线。
7.通过有机玻璃观察试件受压及其变形情况(失稳瞬间有响声)。
8.关闭实验设备,释放压力,取出实验试件分析实验数据。
五、实验数据。
锅炉制造BOILER MANUFACTURING第4期2019年7月No. 4Jul. 2019接管弯矩与外压作用下薄壁圆筒的失稳分析方小里,张福君(哈尔滨锅炉厂有限责任公司,黑龙江哈尔滨150046)摘要:本文采用考虑初始几何缺陷的弹塑性应力分析方法对某带薄壁圆筒进行了非线性失稳分析,结果表明:开孔接管大大降低了薄壁圆筒失稳临界载荷;随着接管弯矩的增大,圆筒临界失稳载荷有一定程度减低, 并且圆筒的临界变形有整体失稳波形向接管局部失稳转变。
关键词:接管弯矩;薄壁圆筒汐卜圧;失稳中图分类号:TH49文献标识码:A 文章编号:CN23 - 1249(2019)04 - 0056 - 03Stability Analysis of Thin - Walled Cylindrical Shell with NozzleSubjected to Moment and External PressureFang Xiaoli , Zhang Fujun(Harbin Boiler Company Limited , Harbin 150046, China)Abstract : The nonlinear stability analysis of a thin-walled cylindrical shell with nozzle is carried out using elastic-plastic stress analysis considering initial geometry imperfection. The results show thatthe nozzle largely reduces the critical buckling load of the thin-walled cylindrical shell ; The bucklingloads decrease when the nozzle moment increase , and the buckling modes transform from total de ・ formation to local deformation.Key words : nozzle moment ; thin-walled cylindrical shell ; external ; instability0引言大型薄壁外压容器的一个主要失效模式是失 稳失效,容器一旦发生失稳往往很突然且后果异常严重,因此在设计时必须对其失稳进行详细的 分析计算。
实验二、外压薄壁圆筒形容器失稳实验一、实验目的1. 观察薄壁圆筒形容器在外压作用下丧失稳定性后的形态。
2. 测定圆筒形容器失去稳定性时的临界压力并与理论值相比较。
二、基本原理圆筒形容器在外压作用下,常因刚度不足使容器失去原有形状,即被压扁或折曲成波形,这就是容器的失稳现象,容器失去稳定性时的外压力,成为容器的临界压力,用cr p 表示。
圆筒形容器失去稳定性后,其横截面被折成波形,波数n 可能是1,2,3,4,……等任意整数,如图一所示。
容器承受临界值的外压力而失去稳定性,决非是由于容器壳体本身不圆的缘故,即是绝对圆的壳体也会失去稳定性。
当然如壳体不圆(具有椭圆度)容器更容易失稳,即它的临界压力值会下降。
根据外压容器筒体的长短,可分为长圆筒,短圆筒和刚性圆筒三种,刚性圆筒一般具有足够的刚度,可不必考虑稳定性问题。
但长圆筒,短圆筒必须进行稳定性计算,它们的临界压力cr p 值大小主要与厚壁(t ),外直径(0D ),长度(L )有关。
亦受材料弹性模数(E ),泊桑比(μ)影响。
所谓长圆筒,短圆筒之分,并不是指它们的绝对长度,而是与直径壁厚有关的相对长度。
一般长圆筒、短圆筒之间的划分用临界长度cr L 表示。
如容器长度L >cr L 为长圆筒,反之为短圆筒。
临界长度cr L 由下式确定:t D D Lcr 0017.1=长圆筒:长圆筒失稳时的波数n =2,临界压力cr p 仅与0D t 有关,而与0D L 无关。
cr p 值可由下式计算:32)(12Dt E p cr μ-=短圆壁:短圆筒失去稳定性时,波数n >2,如为3,4,5……,其波数n 可近似为:图一 圆筒形容器失去稳定后的形状42)()(06.7D t D L n =临界压力可由下式计算:tD LD Et p cr 00259.2=对于外压容器临界压力的计算,有时为计算简便起见,可借助于一些现成的计算图来进行。
四、实验步骤及注意事项1. 测量试件的有关参数:壁厚(t ),直径(0D ),长度(L )。
实验二 外压薄壁容器的稳定性实验一、实验目的1.掌握失稳的概念,了解圆筒形壳体失稳后的形状和波数;2.掌握临界压力的概念,了解长圆筒、短圆筒和刚性圆筒的划分及其临界压力。
二、实验内容测量圆筒形容器失稳时的临界压力值,并与不同的理论公式计算值及图算法计算值进行比较。
观察外压薄壁容器失稳后的形态和变形的波数,并按比例绘制试件失稳前后的横断面形状图,用近似公式计算试件变形波数。
对实验结果进行分析和讨论。
三、实验装置过程装备与控制工程专业基本实验综合实验台,详见附录二。
四、实验原理1.圆筒的临界长度计算如式(2-1)和式(2-2):cr 1.17L = (2-1)'L =cr (2-2)当:L >cr L 时,属于长圆筒;'L cr <L <cr L 时,属于短圆筒;L <'L cr 时,属于刚性圆筒。
2.圆筒的临界压力计算公式(1)长圆筒的临界压力计算如式(2-3):3221E t P D μ⎛⎫= ⎪-⎝⎭cr (2-3) (2)短圆筒的临界压力计算如式(2-4)和式(2-5): ①R.V .Mises 公式()()()32222222211121111Et E t n P n R nL nL R n R R μμππ⎡⎤⎢⎥--⎛⎫⎢⎥=+-+ ⎪⎢⎥-⎝⎭⎡⎤⎛⎫⎛⎫+⎢⎥ ⎪-+⎢⎥ ⎪⎝⎭⎣⎦⎝⎭⎢⎥⎣⎦cr (2-4) ②B.M.Pamm 公式2Pcr (2-5) (3)利用外压圆筒的图算法计算其临界压力 3.波数的计算公式(2-6)五、实验步骤(一)测量试件参数(见图2-2)1.测量试件实际长度0L 、圆弧处外部高度1h 、 翻边处高度2h ;外直径2D 、内直径1D 。
图2-2外压薄壁容器试件图2-1外压薄壁容器的稳定性实验流程图(二)计算试件参数计算壁厚t 、圆弧处内部高度3h 、中径D 、计算长度L 。
(三)实验台操作外压薄壁容器的稳定性实验流程图如图2-1所示,实验前打开阀门V05、V07、V09、V10、V12,关闭其他所有阀门。
过程装备专业实验实验指导书武汉工程大学二零一五年三月目录实验一内压容器应力测试实验实验二外压容器失稳测试实验实验三高压爆破综合实验实验一内压容器应力测试实验一、实验目的1、掌握对各种压力容器的应力分析研究,要求做到:1) 正确合理的选择测点位置。
2)测点处布片方案的合理拟定。
3)测试对象加载的步骤等。
2、掌握静态应变20点以上的测量技能。
3、学会使用计算机和数据采集仪对测点应变进行自动数据采集。
4、初步学会测量数据的处理和测量结果的误差分析。
二、实验仪器及设备1、实验对象:实验对象为六组带不同封头的内压容器,参数如下:标准椭圆封头:D i=300mm,S=4mm标准碟形封头:D i=300mm,S=4mm600锥型封头:Di=300mm ,S=4mm,半顶角300900锥型封头:Di=300mm ,S=4mm,半顶角450半球型封头:Di=300mm,S=4mm平盖型封头:S=25mm容器圆柱形筒体:Di=300mm ,S=4mm容器材料304不锈钢,μ=0.3 E=1.96×105kg/cm2,最大实验压力2.5Mp2、静态数字应变仪(SDY—2203型3台,预调平衡箱3台)、应变数据采集仪(1台)及计算机(1台),3、实验装置(图1)三、实验原理1 准备工作1)测点选择由容器受内压作用时应力分布状况分析,知各个封头曲率比较大的部位,以及封头和筒体连接的部位,应力变化较大。
故上述两区间相应地增加测点数量(具体分布尺寸见现场实验装置)。
补偿块 压力表 排气阀工作片压力表 实验容器电动油泵 加压阀卸压阀图1 实验装置示意图2) 布片方案实验对象为内压薄壁容器,筒壁应力状态可简化为二向平面应力状态,且主应力方向为相互垂直的经向和环向。
因此在测点布片时应沿两向主应力方向垂直粘贴应变片。
3) 加载步骤从0开始加载至2.5Mpa 测一次各点应变,再卸载至1.6Mpa 测一次各点应变,最后卸载回零,即0—2.5Mpa —1.6Mpa —0。
实验二、外压薄壁圆筒形容器失稳实验
一、实验目的
1. 观察薄壁圆筒形容器在外压作用下丧失稳定性后的形态。
2. 测定圆筒形容器失去稳定性时的临界压力并与理论值相比较。
二、基本原理
圆筒形容器在外压作用下,常因刚度不足使容器失去原有形状,即被压扁或折曲成波形,这就是容器的失稳现象,容器失去稳定性时的外压力,成为容器的临界压力,用cr p 表示。
圆筒形容器失去稳定性后,其横截面被折成波形,波数n 可能是1,2,3,4,……等任意整数,如图一所示。
容器承受临界值的外压力而失去稳定性,决非是由于容器壳体本身不圆的缘故,即是绝对圆的壳体也会失去稳定性。
当然如壳体不圆(具有椭圆度)容器更容易失稳,即它的临界压力值会下降。
根据外压容器筒体的长短,可分为长圆筒,短圆筒和刚性圆筒三种,刚性圆筒一般具有足够的刚度,可不必考虑稳定性问题。
但长圆筒,短圆筒必须进行稳定性计算,它们的临界压力cr p 值大小主要与厚壁(t ),外直径(0D ),长度(L )有关。
亦受材料弹性模数(E ),泊桑比(μ)影响。
所谓长圆筒,短圆筒之分,并不是指它们的绝对长度,而是与直径壁厚有关的相对长度。
一般长圆筒、短圆筒之间的划分用临界长度cr L 表示。
如容器长度L >cr L 为长圆筒,反之为短圆筒。
临界长度cr L 由下式确定:
t D D L cr 0017.1=
长圆筒:长圆筒失稳时的波数n =2,临界压力cr p 仅与0D t 有关,而与0D L 无关。
cr
p 值可由下式计算:
3
2)(12D
t E p cr μ-=
短圆壁:短圆筒失去稳定性时,波数n >2,如为3,4,5……,其波数n 可近似为:
图一 圆筒形容器失去稳定后的形状
4
2
)
()(06
.7D t D L n = 临界压力可由下式计算:
t
D LD Et p cr 00259.2=
对于外压容器临界压力的计算,有时为计算简便起见,可借助于一些现成的计算图来进行。
四、实验步骤及注意事项
1. 测量试件的有关参数:壁厚(t ),直径(0D ),长度(L )。
用千分尺测壁厚,用游标卡尺测内直径(便于精确测量)和长度,外直径0D 由内直径加壁厚得到。
各参数分别测量两到三次,计算时取平均值。
2. 手动放气,确保压力为零。
按图二所示安装实验设备,将外压圆筒试件6置于平板顶盖上,试件与平顶盖间用垫片5密封(试件折边上下各放一垫片);用压紧法兰4通过四个密封螺母2将试件压紧到平板顶盖上。
3. 将圆筒底垫块8 (一大一小) 置于外压圆筒底部,把用心轴7置于圆筒底垫块的中心孔中,再将横梁1压在心轴7上,通过两个压紧螺母2上紧 (用手旋紧既可);以此抵消试件承受的轴向载荷。
4. 插好电源,先打开风机,再打开压缩机,根据试验时间,通过压力调节旋钮,可调节压
1-横梁 2-压紧螺母 3-密封螺母 4-压紧法兰 5-垫片 6-外压圆筒 7-心轴 8-圆筒底垫块 9-透明容器 10-工作台
力进入速度,缓慢升压至试件破坏为止(试件破坏时有轻微的响声),记下容器的失稳压力
p)。
失稳后,需快速手动放气泄压,关(即有轻微响声时的瞬间压力,此压力为临界压力
cr
闭压缩机,再关闭风机。
如压缩机中途关闭停机,重新开机时须将压力卸到零方能启动。
5. 待压力为零后取出试件,观察失稳后试件的形状并记下波纹数。
6. 关闭电源开关,清理好实验备件和工具。
五、实验报告内容及要求:
1、简述实验目的及原理、实验装置简图,附实验数据记录表。
2、绘出试件失稳前后的横断形状简图。
3、将测量的试件几何尺寸、临界压力值、波形数等实验数据和理论计算结果填入实验报告。
4、用理论计算公式和算图法分别计算其临界压力值,并与实测值进行比较。
5、用公式计算波形数,根据实际波形数分析圆筒性质。
6、分析讨论外压容器中影响临界压力大小的各种因素。
附:
试件材料:
弹性模量E= Mpa;泊松比μ=
外压失稳实验记录表。