万有引力知识点总结
- 格式:doc
- 大小:218.00 KB
- 文档页数:7
万有引力定律知识点万有引力定律(Universal Law of Gravitation)是牛顿在1687年发表的《自然哲学的数学原理》(Principia Mathematica Philosophiae Naturalis)中提出的重要物理定律之一、该定律描述了任何两个物体之间存在的引力。
1.引力的定义2.引力公式根据万有引力定律,两个物体之间的引力可以用以下的公式来表示:F=G*(m1*m2)/r^2其中,F是两个物体之间的引力,G是一个常量,被称为万有引力常量,m1和m2分别表示两个物体的质量,r表示两个物体之间的距离。
3.万有引力常量4.引力的力学效应根据牛顿的第三定律,两个物体之间的引力大小相等,方向相反。
这意味着,一个物体对另一个物体施加的引力与另一个物体对第一个物体施加的引力大小相等。
根据万有引力定律,如果其中一个物体的质量增加,或者两个物体之间的距离缩小,引力将增大。
相反,如果其中一个物体的质量减小,或者两个物体之间的距离增加,引力将减小。
5.引力的运动效应根据万有引力定律,任何两个物体之间的引力不仅存在于静止状态下,还会影响它们的运动。
根据万有引力定律,如果两个物体之间存在引力,它们将相互吸引并朝向彼此移动。
这就是为什么我们在地球上可以感受到重力,因为地球对我们施加引力,将我们拉向地面。
6.引力的应用万有引力定律在多个领域都有广泛的应用。
在天文学和宇宙物理学中,它被用来解释天体之间的运动和行星、卫星轨道的形成。
在生物学和运动力学中,它被用来研究运动物体之间的相互作用和力的平衡。
在工程学中,它被用来计算和设计建筑物结构的稳定性和地震活动的影响。
7.万有引力定律的限制万有引力定律是牛顿提出的近似定律,适用于中等大小的物体和相对较小的距离。
当涉及到极端条件,如黑洞或超大质量天体时,它的适用性会受到限制。
在这些极端条件下,需要使用更复杂的理论,如爱因斯坦的广义相对论来描述引力。
物理万有引力知识点总结物理万有引力是指物体之间存在的吸引力或引力的力量。
以下是物理万有引力的一些主要知识点总结:1. 万有引力定律:万有引力定律是描述物体之间引力关系的公式,它由牛顿提出。
定律表明,两个物体之间的引力大小与它们质量的乘积成正比,与它们之间的距离的平方成反比。
万有引力定律的公式为F = G * ((m1 * m2) / r^2),其中F表示引力的大小,m1和m2表示两个物体的质量,r表示它们之间的距离,G为引力常数。
2. 引力的性质:物理万有引力具有以下性质:- 引力具有吸引性,它总是指向两个物体之间的中心。
- 引力大小与物体质量成正比,质量越大,引力越大。
- 引力大小与物体距离的平方成反比,距离越近,引力越大。
- 引力作用力对是相互的,即每个物体对另一个物体都有一个相等大小但方向相反的引力。
3. 重力:重力是地球对物体产生的引力。
重力是物体的质量与地球质量之间的吸引力。
重力的大小可以使用万有引力定律计算。
重力使物体朝着地面方向下落,并使物体保持在地球表面。
地球上的物体之间的重力也可以用牛顿的万有引力定律来计算。
4. 行星运动和轨道:根据万有引力定律,行星在太阳的引力作用下绕太阳旋转。
行星的轨道呈椭圆形,太阳位于椭圆的一个焦点上。
行星轨道上离太阳近的部分称为近日点,离太阳远的部分称为远日点。
5. 引力与质量的关系:根据万有引力定律,引力的大小与物体质量成正比。
更大质量的物体将具有更大的引力。
这解释了为什么地球的引力比月球的引力大,因为地球的质量比月球大。
以上是物理万有引力的一些重要知识点总结。
物理万有引力定律是物理学中一个重要的基本定律,它解释了宇宙中物体之间相互吸引的原因,并在天体运动和宇宙学研究中起到关键作用。
高中物理万有引力知识点总结万有引力是物理中的一个重要概念,它是描述质点之间相互作用的力。
下面是高中物理万有引力的一些基本知识点总结:1. 万有引力的定义:万有引力是质点之间由于引力的作用而产生的相互吸引力。
2. 牛顿万有引力定律:牛顿在1666年提出了万有引力定律,它表述为“两个物体之间的引力与它们质量的乘积成正比,与它们距离的平方成反比”。
具体公式为F=G(m1*m2/r^2),其中F为引力大小,G为万有引力常量,m1和m2分别为两个质点的质量,r为它们之间的距离。
3. 万有引力的特点:万有引力是一种普遍存在的力,质点之间的作用力始终存在,无论它们之间的距离有多远。
它是一种吸引力,方向始终指向两个质点之间的连线上。
4. 万有引力的质点模型:为了简化计算,我们可以将物体近似为质点,即忽略物体的大小和形状,只考虑其质量和位置。
5. 万有引力和距离的关系:根据万有引力定律,引力与距离的平方成反比。
当两个质点之间的距离加倍时,引力减少到原来的四分之一;当距离减半时,引力增加到原来的四倍。
6. 万有引力和质量的关系:引力与质量的乘积成正比。
质量越大,引力也越大;质量越小,引力也越小。
7. 万有引力常量G:G是一个常量,它的值为6.674 × 10^-11 N·m^2/kg^2。
这个常量是通过实验测量得出的,它决定了万有引力的大小。
8. 地球上物体的重力:地球的质量很大,所以其对地球表面上的物体产生的引力非常强大,我们称之为重力。
重力是物体下落的原因,它与物体的质量成正比。
地球上任何物体的重力公式为F=mg,其中F为物体的重力,m为物体的质量,g为重力加速度。
9. 使万有引力为零的情况:如果两个物体之间的距离趋于无穷远,它们之间的引力会趋于零,这时不存在任何相互作用。
10. 万有引力的应用:万有引力是天体运动的重要力学基础。
它解释了行星绕太阳的椭圆轨道、天体潮汐现象、小行星带和宇宙的膨胀等现象。
万有引力开普勒行星运动定律1.所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。
2.对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。
3.所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.此比值的大小只与有关,在不同的星系中,此比值是不同的.(R 3T 2=k ) 一、对开普勒三定律的理解1.开普勒第一定律说明了不同行星绕太阳运动时的椭圆轨道是不同的,但有一个共同的焦点.2.行星靠近太阳的过程中都是向心运动,速度增加,在近日点速度最大;行星远离太阳的时候都是离心运动,速度减小,在远日点速度最小.3.开普勒第三定律的表达式为a 3T2=k ,其中a 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,k 是一个常量,与行星无关但与中心天体的质量有关.二、开普勒三定律的应用1.开普勒定律不仅适用于行星绕太阳的运转,也适用于卫星绕地球的运转.2.表达式a 3T2=k 中的常数k 只与中心天体的质量有关.如研究行星绕太阳运动时, 常数k 只与太阳的质量有关,研究卫星绕地球运动时,常数k 只与地球的质量有关.三、太阳与行星间的引力1.模型简化:行星以太阳为圆心做匀速圆周运动,太阳对行星的引力提供了行星做匀速圆周运一、太阳与行星间的引力2.万有引力的三个特性(1)普遍性:万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力.(2)相互性:两个有质量的物体之间的万有引力是一对作用力和反作用力,总是满足牛顿第三定律.(3)宏观性:地面上的一般物体之间的万有引力很小,与其他力比较可忽略不计,但在质量巨大的天体之间或天体与其附近的物体之间,万有引力起着决定性作用.四、万有引力和重力的关系1. 万有引力和重力的关系如图6-2、3-3所示,设地球的质量为M ,半径为R ,A 处物体的质量为m ,则物体受到地球的吸引力为F ,方向指向地心O ,由万有引力公式得F =G Mmr2.引力F 可分解为F 1、F 2两个分力,其中F 1为物体随地球自转做圆周运动的向心力F n ,F 2就是物体的重力mg2.近似关系:如果忽略地球的自转,则万有引力和重力的关系为:mg =GMm R 2,g 为地球表面的重力加速度.关系式2G Mm/R mg =即2gr G M =3.随高度的变化:在高空中的物体所受到的万有引力可认为等于它在高空中所受的重力mg ′=G Mm(R +h )2,在地球表面时mg =G Mm R 2,所以在距地面h 处的重力加速度g ′=R 2(R +h )2g . 五.计算天体的质量行星绕太阳,卫星绕行星做匀速圆周运动,为他们提供向心力的就是他们之间的万有引力,测量出环绕周期和环绕半径。
第六章 万有引力与航天7.万有引力与重力的关系:(1)“黄金代换”公式推导:当F G =时,就会有22gR GM RGMm mg =⇒=。
(2)注意:①重力是由于地球的吸引而使物体受到的力,但重力不是万有引力。
②只有在两极时物体所受的万有引力才等于重力。
③重力的方向竖直向下,但并不一定指向地心,物体在赤道上重力最小,在两极时重力最大。
④随着纬度的增加,物体的重力减小,物体在赤道上重力最小,在两极时重力最大。
⑤物体随地球自转所需的向心力一般很小,物体的重力随纬度的变化很小,因此在一般粗略的计算中,可以认为物体所受的重力等于物体所受地球的吸引力,即可得到“黄金代换”公式。
8.万有引力定律与天体运动:运动性质:通常把天体的运动近似看成是匀速圆周运动。
从力和运动的关系角度分析天体运动:天体做匀速圆周运动运动,其速度方向时刻改变,其所需的向心力由万有引力提供,即F 需=F 万。
如图所示,由牛顿第二定律得:2m ,LGM F ma F ==万需,从运动的角度分析向心加速度: .)2(22222L f L T L L v a n ππω=⎪⎭⎫ ⎝⎛=== (3)重要关系式:.)2(222222L f m L T m L m L v m L GMm ππω=⎪⎭⎫ ⎝⎛=== 2、地球绕太阳公转的角速度为ω1,轨道半径为R 1,月球绕地球公转的角速度为ω2,轨道半径为R 2,那么太阳的质量是地球质量的多少倍?解析:地球与太阳的万有引力提供地球运动的向心力,月球与地球的万有引力提供月球运动的向心力,最后算得结果为321221 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛R R ωω。
9.计算大考点:“填补法”计算均匀球体间的万有引力: 谈一谈:万有引力定律适用于两质点间的引力作用,对于形状不规则的物体应给予填补,变成一个形状规则、便于确定质点位置的物体,再用万有引力定律进行求解。
模型:如右图所示,在一个半径为R ,质量为M 的均匀球体中,紧贴球的边缘挖出一个半径为R/2的球形空穴后,对位于球心和空穴中心连线上、与球心相距d 的质点m 的引力是多大?思路分析:把整个球体对质点的引力看成是挖去的小球体和剩余部分对质点的引力之和,即可求解。
高一物理万有引力知识点总结
一、引力
1、引力是指物体之间的相互之间的作用力。
2、引力的定义是:质点之间的相互作用力,由距离决定,两者
距离越近,作用力越大,质点距离越远,作用力越小。
3、引力法则:引力作用力是双向的,即两质点之间的引力是相
等的。
二、引力的类型
1、斥力:即两物体间的反作用力。
2、弹力:物体之间的弹力也可以理解为引力,如弹簧的弹力。
3、磁力:当有磁体存在时,它们之间会产生的磁力。
4、重力:重力也是一种引力,也是宇宙中最有名的引力,它是
引起物体的自由落体运动的主要原因。
三、引力的实验
1、布拉格实验:是实验物理学家布拉格(1887年)用来测量引力的实验,该实验就揭示了物质间的相互引力。
2、太阳引力实验:该实验是行星发射实验的一种,它使用火箭
向太阳系内的行星发射小卫星,测量其飞行到临近太阳时引力的变化。
四、引力的其他知识
1、引力的公式:引力公式为F=G×m1×m2/r2,其中F表示引力,G表示万有引力常数,m1、m2表示两个作用质点的质量,r表示两个质点之间的距离。
2、万有引力常数:万有引力常数是宇宙中最基本的常数,它的值大约为6.67×10-11 N·m2/kg2。
万有引力定律及其应用知识点总结
1、万有引力定律:,引力常量G=6.67×N·m2/kg2
2、合用条件:可作质点的两个物体间的互相作用;假如两个平均的球体 ,r 应是两球心间距 .(物体的尺寸比两物体的距离r 小得多时,能够当作质点 )
3、万有引力定律的应用: (中心天体质量 M, 天体半径 R, 天体表面重力加快度 g )
(1)万有引力 =向心力(一个天体绕另一个天体作圆周运动时,下边式中 r=R+h )
(2)重力 =万有引力
地面物体的重力加快度:mg = G g = G ≈9.8m/s2
高空物体的重力加快度:mg = G g = G <9.8m/s2
4、第一宇宙速度 ----在地球表面邻近 (轨道半径可视为地球半径)绕地球作圆周运动的卫星的线速度,在全部圆周运动的卫星中线速度
是最大的 .
由 mg=mv2/R 或由 = =7.9km/s
5、开普勒三大定律
6、利用万有引力定律计算天体质量
7、经过万有引力定律和向心力公式计算围绕速度
8、大于围绕速度的两个特别发射速度:第二宇宙速度、第三宇宙
速度 (含义 )
第1页/共1页。
万有引力知识点汇总在我们的日常生活中,物体的下落、天体的运行,都离不开万有引力的作用。
万有引力是物理学中一个非常重要的概念,它不仅解释了许多自然现象,也为人类探索宇宙提供了理论基础。
接下来,让我们一起详细了解一下万有引力的相关知识点。
一、万有引力定律的发现万有引力定律是由英国科学家牛顿发现的。
据说,牛顿在看到苹果从树上落下时,开始思考物体下落的原因,并最终得出了万有引力定律。
牛顿的思考是基于对天体运动的观察和研究。
当时,天文学家开普勒已经发现了行星运动的三大定律,但对于行星为什么会按照这样的规律运动,还没有一个合理的解释。
牛顿通过深入的思考和数学推导,得出了万有引力定律,成功地解释了行星的运动规律。
二、万有引力定律的内容万有引力定律的内容是:任何两个物体之间都存在相互吸引的力,这个力的大小与两个物体的质量成正比,与它们之间的距离的平方成反比。
用公式表示为:$F = G\frac{m_1m_2}{r^2}$其中,$F$表示两个物体之间的引力,$G$是万有引力常量,其值约为$667×10^{-11} N·m^2/kg^2$,$m_1$和$m_2$分别表示两个物体的质量,$r$表示两个物体质心之间的距离。
三、万有引力常量的测定万有引力常量$G$的测定是一个非常重要的实验。
英国科学家卡文迪许通过巧妙的实验设计,利用扭秤实验测量出了$G$的值。
卡文迪许的实验装置非常精巧。
他将两个小铅球分别固定在一根轻质横杆的两端,横杆中间用一根细丝悬挂起来,形成一个扭秤。
然后,他再用两个大铅球分别靠近两个小铅球,由于万有引力的作用,横杆会发生扭转。
通过测量横杆的扭转角度,就可以计算出万有引力的大小,从而推算出$G$的值。
四、万有引力定律的适用范围万有引力定律适用于两个质点之间的相互作用。
但在实际情况中,大多数物体都不能看作质点。
对于质量分布均匀的球体,可以将其视为质量集中在球心的质点来计算引力。
当两个物体之间的距离远大于物体的尺寸时,也可以近似地将物体看作质点来计算引力。
必修二物理第六章万有引力知识点1. 万有引力定律:两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
数学表达式为:F = G × (m1 × m2) / r^2,其中F为两个物体之间的引力,G为万有引力常数,m1和m2分别为两个物体的质量,r为它们之间的距离。
2. 万有引力常数:G为一个固定的常数,其数值为6.674 × 10^-11 N·m^2/kg^2。
它描述了质量和引力之间的比例关系。
3. 地球上的重力:地球对物体的引力称为重力,是物体的质量和地球质量之间的引力作用。
数学表达式为F = mg,其中F为物体所受的重力,m为物体的质量,g为重力加速度(在地球上约为9.8 m/s^2)。
4. 引力的方向:引力的方向始终指向两个物体之间的中心,且大小相等。
5. 引力与质量的关系:引力与物体的质量成正比,质量越大,引力越大。
6. 引力与距离的关系:引力与两个物体之间的距离的平方成反比,距离越远,引力越弱。
7. 引力的作用范围:万有引力是一种长程力,作用范围无限远,即两个物体之间的引力不受距离的限制。
8. 四个基本力中的引力:万有引力是四个基本力之一,其他三个基本力分别为电磁力、强核力和弱核力。
9. 行星运动的引力:行星绕太阳运动是由于太阳对行星的引力作用,根据万有引力定律,太阳对行星的引力提供了向心力,使行星保持在轨道上运动。
10. 引力场:引力形成了一个与质量有关的场,任何在这个场中的物体都会受到引力的作用。
11. 引力势能:两个物体之间的引力势能等于它们之间的引力所做的功,计算公式为Ep = -G × (m1 × m2) / r,其中Ep为引力势能。
12. 开普勒定律:开普勒定律描述了行星运动的规律,其中包括行星轨道的椭圆形状、行星在不同位置上的速度以及行星轨道面与太阳赤道面的关系。
开普勒定律与万有引力定律的结合使得我们能够准确描述行星的运动。
万有引力定律知识点总结万有引力定律一.开普勒运动定律 (1)开普勒第一定律:所有的行星绕太阳运动的轨道都是,太阳处在所有椭圆的一个上.相等.D.两个物体间的引力总是大小相等,方向相反的,是一对平衡力:三、万有引力和重力不考虑自转的情况下,F 万=mg(2)开普勒第二定律:对于每一个行星而言,太阳和行星的连线在相等的时间内扫过的 (3)开普勒第三定律:所有行星的轨道的的比值都相等.四.天体表面重力加速度问题)例 1:火星和木星沿各自的椭圆轨道绕太阳运行,根据开普勒行星运动定律可知(A.火星与木星公转周期相等 B.火星和木星绕太阳运行速度的大小始终相等 C.太阳位于木星运行椭圆轨道的某焦点上 D.相同时间内,火星与太阳连线扫过的面积等于木星与太阳连线扫过的面积设天体表面重力加速度为 g,天体半径为 R,由重力加速度的关系为g1 R22 M 1 ? ? g 2 R12 M 2得 g= GM ,由此推得两个不同天体表面 R2例3:据报道,最近在太阳系外发现了首颗“宜居”行星,其质量约为地球质量的 6.4 倍,一个在地球表面重量为 600 N 的人在这个行星表面的重量将变为960 N,由此可推知该行星的半径与地球半径之比约为 A.0.5 B.2. C.3.2 D.4 五.天体质量和密度的计算二.万有引力定律 (1) 公式:F= ,其中 G ? 6.67 ? 10?11 N ? m 2 / kg 2 ,称为为有引力恒量。
间的相互作用,当两个物体间的距离远远大于物体本身间的距离.对于均匀的球体,r 是两1.只能求中心天体的质量2. 只要用实验方法测出卫星做圆周运动的半径 r 及运行周期 T,就可以算出天体的质量 M.若知道行星的半径则可得行星的密度 4? 2 3?r 2 4? 2 r 3 M mM M G 2 =m 2 r,由此可得:M= ;ρ = = = (R 为行星的半径) 2 4 3 GT 2 R 3 V GT T r ?R3(2) 适用条件:严格地说公式只适用于的大小时,公式也可近似使用,但此时 r 应为两物体间的距离对于质量为 m 1 和质量为 m 2 的两个物体间的万有引力的表达式 F=Gm1m2 r2例 2:下()例4:登月火箭关闭发动机在离月球表面112 km 的空中沿圆形轨道运动,周期是 120.5 min,月球的半径是 1740 km,根据这组数据计算月球的质量和平均密度.土星 29.5列说法正确的是公转周期(年)水星 0.241金星 0.615地球 1.0火星 1.88木星 11.86A.公式中的 G 是引力常量,它是人为规定的 B.当两物体间的距离 r 趋于零时,万有引力趋于无穷大 C.两物体间的引力大小一定是相等的六、讨论天体运动规律的基本思路基本方法:把天体的运动看成是匀速圆周运动,其所需向心力由万有引力提供。
知识点一 万有引力应用两条线索(1)万有引力=向心力 (2)重力=向心力 G2RMm = mg ⇒GM=gR 2(黄金代换式) 1、(中心天体质量密度)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0v 假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,则这颗行星的质量为A .GNmv 2B.GNmv4C .GmNv2D.GmNv4【解析】行星对卫星的万有引力提供其做匀速圆周运动的向心力,有Rv m R 22mGM '='① 行星对处于其表面物体的万有引力等于物体重力有,mg R =2GMm② 根据题意有N=mg ③,解以上三式可得GNmv 4M =,选项B 正确。
2、(多天体比较)假设地球是一半径为R 、质量分布均匀的球体。
一矿井深度为d 。
已知质量分布均匀的球壳对壳内物体的引力为零。
矿井底部和地面处的重力加速度大小之比为 A .R d -1 B .R d+1 C .2)(Rd R - D .2)(d R R - 【答案】A【解析】在地面上质量为m 的物体根据万有引力定律有:mg RMm G =2 ,从而得R G R RG g πρπρ343423⋅⋅=⋅⋅=。
根据题意,球壳对其内部物体的引力为零,则矿井底部的物体m ′只受到其以下球体对它的万有引力同理有)(34)(2d R G d R M G g -=-'='πρ,式中3)(34d R M -='πρ。
两式相除化简R d R d R g g -=-='1。
答案A 。
3、(多天体比较)火星探测项目我过继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。
假设火星探测器在火星表面附近圆形轨道运行周期为T ,神州飞船在地球表面附近圆形轨道运行周期为2T ,火星质量与地球质量之比为p ,火星半径与地球半径之比为q ,则T 、2T 之比为222222224[8]2[9]4[10][11][12]Mm v G m m r m r r r Tv mgr m m r m rr Tπωπω======g gA.3p q B.31p qC.3p qD.3q p答案:D解析:设中心天体的质量为M ,半径为R ,当航天器在星球表面飞行时,由222M m G m R R T π⎛⎫= ⎪⎝⎭和343M V R ρρπ==,解得23GT πρ=,即31T G πρρ=∝;又因为3343M M M V R R ρπ==∝,所以3R T M ∝,312T q T p=。
4、(中心天体质量密度)若有一艘宇宙飞船在某一行星表面做匀速圆周运动,设其周期为T ,引力常数为G ,那么该行星的平均密度为( B)A. π32GTB. 23GT πC. π42GTD. 24GT π5、(多天体比较)近年来,人类发射的多枚火星探测器已经相继在火星上着陆.某火星探测器绕火星做匀速圆周运动,它的轨道距火星表面的高度等于火星的半径,它的运动周期为T ,则火星的平均密度ρ的表达式为(k 为某个常数)( D )A .ρ=kTB .ρ=k TC .ρ=kT 2D .ρ=k T26、(中心天体质量密度)如图K19-3所示,美国的“卡西尼”号探测器经过长达7年的“艰苦”旅行,进入绕土星飞行的轨道.若“卡西尼”号探测器在半径为R 的土星上空离土星表面高h 的圆形轨道上绕土星飞行,环绕n 周飞行时间为t ,已知引力常量为G ,则下列关于土星质量M 和平均密度ρ的表达式正确的是( D ) A .M =4π2R +h 3Gt 2,ρ=3πR +h 3Gt 2R 3B .M =4π2R +h 2Gt 2,ρ=3πR +h 2Gt 2R 3C .M =4π2t 2R +h 3gn 2,ρ=3πt 2R +h 3Gn 2R 3D .M =4π2n 2r +h 3Gt 2,ρ=3πn 2R +h 3Gt 2R 3知识点二 双星模型、多星模型7、两颗靠得较近的天体称为双星,它们以连线上某点为圆心作匀速圆周运动,因而不至于由于引力作用而吸引在一起,以下说法中正确的是( BD ) A .它们作圆周运动的角速度之比与其质量成反比B .它们作圆周运动的线速度之比与其质量成反比C .它们所受向心力之比与其质量成反比D .它们作圆周运动的半径与其质量成反比。
8、如右图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速 圆周运动,星 A 和B 两者中心之间距离为L 。
已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧。
引力常数为G 。
(1)求两星球做圆周运动的周期。
(2)在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行为的周期记为T 1。
但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T 2。
已知地球和月球的质量分别为×1024kg 和 ×1022kg 。
求T 2与T 1两者平方之比。
(结果保留3位小数)解析:⑴A 和B 绕O 做匀速圆周运动,它们之间的万有引力提供向心力,则A 和B 的向心力相等。
且A 和B 和O 始终共线,说明A 和B 有相同的角速度和周期。
因此有R M r m 22ωω=,L R r =+,连立解得L M m m R +=,L M m Mr +=对A 根据牛顿第二定律和万有引力定律得L m M MT m L GMm +=22)2(π 化简得 )(23m M G L T +=π⑵将地月看成双星,由⑴得)(231m M G L T +=π将月球看作绕地心做圆周运动,根据牛顿第二定律和万有引力定律得L T m LGMm 22)2(π= 化简得 GML T 322π=所以两种周期的平方比值为01.11098.51035.71098.5)(242224212=⨯⨯+⨯=+=M M m T T 9、宇宙中存在一些离其它恒星较远的、由质量相等的三颗星组成的三星系统,通常可 忽略其它星体对它们的引力作用。
已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行。
设每个星体的质量均为m 。
(1)试求第一种形式下,星体运动的线速度和周期。
(2)假设两种形式星体的运动周期相同,第二种形式下星体之间的距离应为多少 解析:(1)第一种形式下,以某个运动星体为研究对象,由万有引力定律和牛顿第二定律,得:F 2F 1 RF 1=G 22R m F 2=G 22)2(R m F 1+F 2=m Rv 2运动星体的线速度:54Gmv R=周期为T ,则有:245R RT Rv Gmππ== (2)第二种形式星体之间的距离为r ,则三个星体作圆周运动的半径为R /为 R /=︒30cos 2r由于星体作圆周运动所需的向心力靠两个星体的万有引力的合力提供,由万有引力定律和牛顿第二定律,得:F 合=222rGm cos30°F 向=m/224R Tπ 222cos30m G l °=2cos30r m o 22()Tπ所以星体之间的距离为:r 3125R = 知识点三 宇宙速度含义:(1)第一宇宙速度(环绕速度):v 1= km/s ,是人造地球卫星的最小发射速度,最大绕行速度.(2)第二宇宙速度(脱离速度):v 2= km/s ,是物体挣脱地球的引力束缚需要的最小发射速度. (3)第三宇宙速度(逃逸速度):v 3= km/s ,是物体挣脱太阳的引力束缚需要的最小发射速度. 环绕速度推算:地gR v = 地R GMv =推导一:物体在地球附近绕地球做匀速圆周运动,万有引力提供向心力即地22地R v m R Mm G =,得地R GM v =。
推导二:物体在地球附近绕地球做匀速圆周运动需要的向心力等于重力,即地2R v m mg =,得地gR v =10、若取地球的第一宇宙速度为8 km/s ,某行星的质量是地球质量的6倍,半径是地球的倍,这顺行星的第一宇宙速度约为( C ) A. 2 km/s B. 4 km/s C. 16 km/s D. 32 km/s11、[2011·杭州检测] 宇航员在一行星上以10 m/s 的初速度竖直上抛一质量为 kg 的物体,不计阻力,经 s 后落回手中,已知该星球半径为7 220 km.F 2F 1F 合R / r(1)该星球表面的重力加速度是多大(2)要使物体沿水平方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大(3)若物体距离星球无穷远处时其引力势能为零,则当物体距离星球球心r 时其引力势能E p =-G Mm r(式中m 为物体的质量,M 为星球的质量,G 为引力常量).问要使物体沿竖直方向抛出而不落回星球表面,沿星球表面抛出的速度至少是多大11.(1)8 m/s 2(2)7600 m/s (3)10746 m/s[解析] (1)由匀变速运动规律知星球表面的重力加速度g ′=2v 0t=8 m/s 2.(2)由牛顿第二定律,有mg ′=m v 21R解得v 1=g ′R =7600 m/s. (3)由机械能守恒定律,有 12mv 22+(-G MmR )=0 在该行星表面质量为m 的物体受到的重力等于万有引力,有mg ′=G MmR2解得v 2=2g ′R =10746 m/s.知识点四 同步卫星与卫星变轨等卫星问题同步卫星:“六同”:即同轨道面(同在赤道的正上方)、同周期(与地球自转的周期相同)、同角速度、同高度、同线速度大小、同向心加速度大小。
“五不同”(通常情况):质量不同、向心力的大小不同、动能、势能、机械能不同。
环绕模型:不同物理量与半径关系 总结:“越高越慢”,只有T 与r 正相关 变轨判定:提供的力与所需力比较当F >mv 2/r 时,卫星做近心运动,此时卫星的速度将变大; 当F <mv 2/r 时,卫星做离心运动,此时卫星的速度将变小。
12、关于环绕地球运动的卫星,下列说法中正确的是 ( ) A 、分别沿圆轨道和椭圆轨道运行的两颗卫星,不可能具有相同的周期 B 、沿椭圆轨道运行的一颗卫星,在轨道不同位置可能具有相同的速率 C 、在赤道上空运行的两颗地球同步卫星,它们的轨道半径有可能不同 D 、沿不同轨道经过北京上空的两颗卫星,它们的轨道平面一定会重合解析:所有的同步卫星都在同一个赤道轨道上运动,C 错误;沿不同轨道经过北京上空的两颗卫星它们的运行轨道面与赤s km r GMv /08.3==道面的夹角可以不同,它们的轨道平面就不会重合,D 错误;分别沿圆轨道和椭圆轨道运行的两颖卫星,可能具有相同的周期,A 错误;沿椭圆轨道运行的一颗卫星,在轨道的关于长轴对称的两个位置的速率相等,所以在轨道不同位置可能具有相同的速率是正确的。