一次函数与反比例函数专题复习
- 格式:doc
- 大小:278.00 KB
- 文档页数:4
反比例函数和一次函数专项练习30题(有答案)1.如图,已知一次函数与反比例函数的图象交于A,B两点,且点A的横坐标为4.(1)求k的值;(2)根据正比例函数与反比例函数的性质直接写出B点坐标;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.2.正比例函数y=kx和反比例函数的图象相交于A,B两点,已知点A的横坐标为1,纵坐标为3.(1)写出这两个函数的表达式;(2)求B点的坐标;(3)在同一坐标系中,画出这两个函数的图象.3.反比例函数与一次函数y=2x+1的图象都过点(1,a).(1)确定a的值以及反比例函数解析式;(2)求反比例函数和一次函数的图象的另一个交点坐标.4.已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,﹣3a)(a>0),且点B在反比例函数的图象上,求a的值和一次函数的解析式.5.如图正比例函数与反比例函数的图象在第一象限内的交点A的横坐标为4.(1)求k值;(2)求它们另一个交点B的坐标;(3)利用图象直接写出:当x在什么范围内取值时,y1>y2.6.已知一次函数y=kx+b与反比例函数的图象交于点(﹣1,﹣1),求这两个函数的解析式及它们图象的另一个交点的坐标.7.如图所示,一次函数y=kx+b的图象与反比例函数的图象交于M、N两点.(1)根据图中条件求出反比例函数和一次函数的解析式;(2)当x为何值时一次函数的值大于反比例函数的值.8.如图,已知反比例函数的图象与一次函数y2=k2x+b的图象交于A,B两点,且A(2,n),B(﹣1,﹣2).(1)求反比例函数和一次函数的关系式;(2)利用图象直接写出当x在什么范围时,y1>y2.9.如图,正比例函数y1=k1x的图象与反比例函数的图象相交于A、B两点,其中点A的坐标为(1,2).(1)分别求出这两个函数的表达式;(2)请你观察图象,写出y1>y2时,x的取值范围;(3)在y轴上是否存在点P,使△AOP为等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.10.已知反比例函数y=﹣和一次函数y=kx﹣2都经过点A(m,﹣3).(1)求m的值和一次函数的关系式.(2)若点M(a,y1)和N(a+2,y2)都在这个反比例函数的图象上,试通过计算或利用反比例函数的图象性质比较y1与y2的大小.11.如图,函数y=3x的图象与反比例函数的图象的一个交点为A(1,m),点B(n,1)在反比例函数的图象上.(1)求反比例函数的解析式;(2)求n的值;(3)若P是y轴上一点,且满足△POB的面积为6,求P点的坐标.12.如图,已知反比例函数的图象经过点A(﹣2,1),一次函数y2=kx+b(k≠0)的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B.(1)分别求出反比例函数与一次函数的解析式;(2)求点B的坐标.(3)根据图象写出使y1>y2的x的取值范围.13.直线y1=2x﹣7与反比例函数的图象相交于点P(m,﹣3).(1)求反比例函数的解析式.(2)试判断点Q是否在这个反比例函数的图象上?14.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于A(1,a)、B(﹣2,1)两点.(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积.15.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)根据图象,分别写出点A、B的坐标;(2)求出反比例函数的解析式;(3)求出线段AB的长度.16.如图,已知A(n,2),B(2,﹣4)是一次函数y1=kx+b的图象和反比例函数y2=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)当x取何值时,y1<y2?17.已知反比例函数的图象,经过一次函数y=x+1与的交点,求反比例函数的解析式.18.如图,一次函数y=kx+2与x轴交于点A(﹣4,0),与反比例函数y=的图象的一个交点为B(2,a).(1)分别求出一次函数与反比例函数的解析式;(2)作BC⊥x轴,垂足为C,求S△ABC.19.如图,一次函数y1=kx+b与反比例函数.(m、k≠0)图象交于A(﹣4,2),B(2,n)两点.(1)求m、n的值及反比例函数的表达式;(2)当x取非零的实数时,试比较一次函数值与反比例函数值的大小.20.一次函数y1=kx+b与反比例函数的图象相交于点A(﹣1,4)、B(﹣4,n),(1)求n的值;(2)连接OA、OB,求△OAB的面积;(3)利用图象直接写出y1>y2时x的取值范围.21.已知:如图,一次函数y=ax+b的图象与反比例函数的图象交于点A(m,4)和点B(﹣4,﹣2).(1)求一次函数y=ax+b和反比例函数的解析式;(2)求△AOB的面积;(3)根据图象,直接写出不等式的解集.22.如图,一次函数y=kx+b的图象与反比例函数的图象相交于A、B两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围;(3)你能求出图中△AOB的面积吗?若不能,请说明理由;若能,请写出求解过程.23.如图,直线y=kx+2k(k≠0)与x轴交于点B,与双曲线y=交于点A、C,其中点A在第一象限,点C在第三象限.(1)求点B的坐标;(2)若,求点A的坐标.24.已知一次函数与反比例函数y=﹣的图象交于点P(﹣3,m),Q(2,﹣3).求一次函数的解析式.25.已知正比例函数y=k1x(k1≠0)的图象经过A(2,﹣4)、B(m,2)两点.(1)求m的值;(2)如果点B在反比例函数(k2≠0)的图象上,求反比例函数的解析式.26.如图,已知正比例函数y=﹣3x与反比例函数的图象相交于A和B两点,如果有一个交点A的横坐标为2.(1)求k的值;(2)求A,B两点的坐标;(3)当_________时,.27.如图,已知A(﹣4,2)、B(n,﹣4)是一次函数y=kx+b的图象与反比列函数的图象的两个交点.(1)求m、n的值;(2)求一次函数的关系式;(3)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围.28.如图,一次函数y=x+3的图象与x轴、y轴分别交于点A、点B,与反比例函数的图象交于点C,CD⊥x轴于点D,求四边形OBCD的面积.29.如图,已知反比例函数的图象与一次函数y=k2+b的图象交于A、B两点,A(2,n),B(﹣l,﹣2).(1)求反比例函数和一次函数的关系式;(2)试证明线段AB分别与x轴、y轴分成三等分;(3)利用图象直接写出不等式的解集.30.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二、四象限内的A、B两点,点B的坐标为(6,n).线段OA=5,E为x轴负半轴上一点,且sin∠AOE=,求该反比例函数和一次函数的解析式.参考答案:1.(1)由x=4,得y=2;则k=xy=4×2=8;(2)∵A,B两点是正比例函数和反比例函数的交点,点A(4,2),∴B(﹣4,﹣2);(3)由图象可得在两个交点的左边,一次函数的值小于反比例函数的值,∴x<﹣4或0<x<42.(1)∵正比例函数y=kx 与反比例函数,的图象都过点A(1,3),则k=3,∴正比例函数是y=3x ,反比例函数是.(2)∵点A与点B关于原点对称,∴点B的坐标是(﹣1,﹣3).(3)∵正比例函数的图象过原点,所以令x=1,则y=3,图象过(1,3),描出此点即可;∵反比例函数的图象是双曲线,∴应在每一个双曲线上描出3各点,即可画出函数图象.3.(1)由题意得,2+1=a,解得,a=3,(1分)由题意得,,解得,k=3.(2分)反比例函数解析式为.(3分)(2)由题意得,,(4分)解得,,∴反比例函数和一次函数图象的另一个交点坐标是(﹣4.∵点B(a,﹣3a)在反比例函数图象上,∴﹣=﹣3a,解得a=1,a=﹣1(舍去),∴点B的坐标为(1,﹣3),∵一次函数y=kx+b图象经过点A(0,1),B(1,﹣3),∴,解得,∴一次函数解析式为y=﹣4x+1.5.(1)将A的横坐标4代入y1=x,得y1=×4=2,由题意可得A点坐标为(4,2),由于反比例函数y=的图象经过点A,∴k=2×4=8.(5分)(2)将两个函数的解析式组成方程组得:,解得,.所以A(4,2),B(﹣4,﹣2).所以B点坐标为B(﹣4,﹣2).(3分)(3)由于A点横坐标4,B点横坐标为﹣4,由图可知:当x>4或﹣4<x<0时,y1>y2.6.由已知得,(2分)解得.(4分)∴一次函数的解析式为y=2x+1,(5分)反比例函数的解析式为.(6分)由,解得x=﹣1或.(7分)当时,y=2.∴函数图象的另一个交点的坐标为()∴m=6,a=﹣6即N(﹣1,﹣6)且,解得∴反比例函数和一次函数的解析式的解析式分别为y=.y=2x﹣4.(2)由图象可知,当﹣1<x<0或x>3时一次函数的值大于反比例函数的值.8.(1)∵双曲线过点(﹣1,﹣2),∴k1=﹣1×(﹣2)=2.∵双曲线y1=,过点(2,n),∴n=1.由直线y2=k2x+b过点A,B 得,解得.∴反比例函数关系式为y1=,一次函数关系式为y2=x﹣1.(2)当x<﹣1或0<x<2时,y1>y2.9.(1)解:∵y1=k1x过点A(1,2),∴k1=2.(2分)∴正比例函数的表达式为y1=2x.(3分)∵反比例函数过点A(1,2),∴k2=2.(5分)∴反比例函数的表达式为y=.(6分)(2)﹣1<x<0或x>1.(8分)(3)∵点A的坐标为(1,2),∴OA=,当OA为腰时,OA=OP2=,P2点坐标为(0,4),当AP1=OA=,可知P1坐标为(0,),当OA=OP3=时,可得P3坐标为(0,﹣)由图可知,P1(0,),P2(0,﹣),P3(0,4),当OA为底时,OP4==,故P1(0,),P2(0,﹣),P3(0,4),P4(0,).10.(1)∵反比例函数y=﹣经过点A(m,﹣3).∴﹣3m=﹣6,∴m=2;∵一次函数y=kx﹣2经过点A(m,﹣3).∴2k﹣2=﹣3,∴k=﹣,∴一次函数的关系式为y=﹣x﹣2.(2)当a>0时,则a<a+2,∵反比例函数y=﹣的图象在第四象限内是增函数,∴y1<y2;当﹣2<a<0时,则a+2>0,由图象知y1>y2;当a<﹣2时,则a<a+2,∵反比例函数y=﹣的图象在第二象限内是增函数,∴y1<y211.(1)∵函数y=3x的图象过点A(1,m),∴m=3,∴A(1,3);∵点A(1,3)在反比例函数的图象上,∴k=1×3=3,∴反比例函数的解析式为y=;(2)∵点B(n,1)在反比例函数的图象上,(3)依题意得PO•3=6∴OP=4,∴P点坐标为(0,4)或(0,﹣4).12.(1)∵点A(﹣2,1)在反比例函数y1=mx的图象上,∴1=m﹣2,即m=﹣2,又A(﹣2,1),C(0,3)在一次函数y2=kx+b图象上,∴即k=1,b=3,∴反比例函数与一次函数解析式分别为:y=与y=x+3;(2)由得x+3=﹣,即x2+3x+2=0,∴x=﹣2或x=﹣1,∴点B的坐标为(﹣1,2).(3)当x<﹣2或﹣1<x<0时,反比例函数在一次函数图象的上方,即y1>y2…13.(1)把(m,﹣3)分别代入和y1=2x﹣7,得,解得m=2,k=﹣6,∴反比例函数的解析式.(2)把点Q代入反比例函数的解析式中,即=﹣=.故点Q在反比例函数的图象上14.(1)把B(﹣2,1)代入得:m=﹣2×1=﹣2,∴y=﹣,把A(1,a)代入得:a=﹣2,∴A(1,﹣2),把A(1,﹣2),B(﹣2,1)代入得:,解得:k=﹣1,b=﹣1,∴y=﹣x﹣1,答:一次函数和反比例函数的解析式分别是y=﹣,y=﹣x﹣1.(2)令y=0,则0=﹣x﹣1,∴x=﹣1,∴C(﹣1,0),∴OC=1,∴S△AOB=S△AOC+S△BOC =×1×2+×1×1=1.5 15.(1)A点坐标为(﹣6,﹣2),B点坐标为(4,3);(2)把B(4,3)代入y=得m=3×4=12,所以反比例函数的解析式为y=;(3)分别过点A、点B作y轴、x轴的垂线,两线交于点C,即AC⊥BC,如图,则点C的坐标为C(4,﹣2),在Rt△ACB中,AC=10,BC=5,∵AB2=BC2+AC2,∴AB==5.16.(1)∵B(2,﹣4)在函数y2=的图象上,∴m=﹣8.∴反比例函数的解析式为:y2=﹣.∵点A(n,2)在函数y2=﹣的图象上∴n=﹣4∴A(﹣4,2)∵y1=kx+b经过A(﹣4,2),B(2,﹣4),∴,解得.∴一次函数的解析式为:y1=﹣x﹣2(2)由交点坐标和图象可知,当﹣4<x<0或x>2取何值时,y1<y217.把y=x+1代入得:x+1=x+,解得:x=1,把x=1代入y=x+1得:y=2,把(1,2)代入y=得:k=2,即反比例函数的解析式是y=18.(1)将A(﹣4,0)代入y=kx+2得:﹣4k+2=0,即k=0.5,∴一次函数解析式为y=0.5x+2,将B(2,a)代入一次函数解析式得:a=1+2=3,即B (2,3),将B(2,3)代入反比例解析式得:m=2×3=6,则反比例解析式为y=;(2)∵OC=2,OA=4,∴AC=OC+OA=2+4=6,∵BC=3,∴S△ABC =AC•BC=919.(1)∵A(﹣4,2)在上,∴m=﹣8,∴反比例函数的解析式是y=﹣,∵B(2,n )在上,∴n=﹣4.(2)当x<﹣4或0<x<2时,y1>y2;当x=﹣4或x=2时,y1=y2;当﹣4<x<0或x>2时,y1<y2.20.(1)根据题意,反比例函数y2=的图象过(﹣1,4),(﹣4,n),易得m=﹣4,n=1;则y1=kx+b的图象也过点(﹣1、4),(﹣4,1);代入解析式可得k=1,b=5;∴y1=x+5;(2)设直线AB交x轴于C点,由y1=x+5得,∴C(﹣5,0),∵S△AOC =×5×4=10,S△BOC =×5×1=2.5,∴S△AOB=S△AOC﹣S△BOC=10﹣2.5=7.5;(3)根据图象,两个图象只有两个交点,根据题意,找一次函数的图象在反比例函数图象上方的部分;易得当x>0或﹣4<x<﹣1时,有y1>y2,故当y1>y2时,x的取值范围是x>0或﹣4<x<﹣1 21.(1)∵点B(﹣4,﹣2)在反比例函数的图象上,∴,k=8.∴反比例函数的解析式为.﹣﹣﹣﹣﹣﹣﹣﹣(1分)∵点A(m,4)在反比例函数的图象上,∴,m=2.∵点A(2,4)和点B(﹣4,﹣2)在一次函数y=ax+b 的图象上,∴解得∴一次函数的解析式为y=x+2.(2)设一次函数y=x+2的图象与y轴交于点C,分别作AD⊥y轴,BE⊥y轴,垂足分别为点D,E.(如图)∵一次函数y=x+2,当x=0时,y=2,∴点C的坐标为(0,2).∴S△AOB=S△AOC+S△BOC ===6(3)﹣4<x<0或x>2.阅卷说明:第(3)问两个范围各(1分)22.(1)设反比例函数的解析式是y=(a≠0),把A(﹣2,1)代入得:k=﹣2,即反比例函数的解析式是y=﹣;把B(1,n)代入反比例函数的解析式得:n=﹣2,即B的坐标是(1,﹣2),把A(﹣2,1)和B(1,﹣2)代入y=kx+b得:,解得:k=﹣1,b=﹣1.即一次函数的解析式是y=﹣x﹣1;(2)根据图象可知:一次函数的值大于反比例函数的值的x的取值范围是x<﹣2或0<x<1;(3)能求出△AOB的面积,把y=0代入y=﹣x﹣1得:0=﹣x﹣1,x=﹣1,即C的坐标是(﹣1,0),OC=1,∵A(﹣2,1),B(1,﹣2),∴△AOB的面积S=S△AOC+S△BOC=×1×1+×1×|﹣2|=1.523.(1)当y=0时,则kx+2k=0,又∵k≠0∴x=﹣2,∴点B坐标为(﹣2,0);(2)设点A的坐标为(x、y),∴S△AOB =•|﹣2|•|y|=,∴y=±,∵点A在第一象限,∴y=,把y=代入y=得x=,∴点A 的坐标为(,)24.∵把P(﹣3,m)代入反比例函数y=﹣得:m=2,∴点P的坐标为(﹣3,2),设一次函数的关系式为y=kx+b,∴把Q和P 的坐标代入得:,解得:k=﹣1,b=﹣1.故所求一次函数的关系式为y=﹣x﹣125.(1)因为函数图象经过点A(2,﹣4),所以2k1=﹣4,得k1=﹣2.(2分)所以,正比例函数解析式:y=﹣2x.(1分)(2)根据题意,当y=2时,﹣2m=2,得m=﹣1.(1分)于是,由点B 在反比例函数的图象上,得,解得k2=﹣2.所以,反比例函数的解析式是.26.(1)把x=2代入y=﹣3x得:y=﹣6,即A的坐标是(2,﹣6),把A的坐标代入y=得:﹣6=,解得:k=﹣13;(2)解方程组得:,,即A的坐标是(2,﹣6),B的坐标是(﹣2,6);(3)当﹣2<x<0或x>2时,>﹣3x,故答案为:﹣2<x<0或x>227.(1)把A(﹣4,2)代入y=得:m=﹣8,即反比例函数的解析式为y=﹣,把B(n,﹣4)代入得:n=2,即B(2,﹣4),即m=﹣8,n=2;(2)把A、B的坐标代入一次函数的解析式得:解得:k=﹣1,b=﹣2,即一次函数的解析式是y=﹣x﹣2;(3)一次函数的值小于反比例函数的值的x的取值范围是x>2或﹣4<x<028.解方程组得或,∴C点坐标为(1,4),∵CD⊥x轴,∴D点坐标为(1,0)对y=x+3,令x=0,y=3,∴B点坐标为(0,3),∴四边形OBCD的面积=(OB+CD)•OD=(3+4)×1=29.1)解:把B(﹣1,﹣2)分别代入反比例函数∴k1=﹣1×(﹣2)=2,∴反比例函数的解析式为y=;把A(2,n)代入上式,得n=1,∴A点坐标为(2,1),把A(2,1)和B(﹣l,﹣2)分别代入一次函数y=k2x+b 得,2k2+b=1,﹣k2+b=﹣2,解得k2=1,b=﹣1,∴一次函数的关系式为y=x﹣1;(2)证明:过A作AE⊥x轴于E,BF⊥y轴与F,AB 与坐标轴相交于C、D,如图,对于y=x﹣1,令x=0,y=﹣1;令y=0,x=1,∴C(1,0),D(0,﹣1),AC===,CD===,BD===,∴AC=CD=BD,∴线段AB分别与x轴、y轴分成三等分;(3)解:x<﹣1或0<x<230.过点A作AC⊥x轴于点C.∵sin∠AOE=,OA=5,∴AC=OA•sin∠AOE=4,由勾股定理得:CO==3,∴A(﹣3,4),把A(﹣3,4)代入到中得m=﹣12,∴反比例函数解析式为,∴6n=﹣12,∴n=﹣2,∴B(6,﹣2),∴有,解得:,∴,一次函数的解析式为。
中考数学总复习《反比例函数与一次函数综合》专题训练-附含答案学校:___________班级:___________姓名:___________考号:___________ 1.如图,在平面直角坐标系xOy 中,一次函数1y ax b (a ,b 为常数,且0a ≠)与反比例函数2m y x=(m 为常数,且0m ≠)的图象交于点()2,1A -和()1,B n .(1)求反比例函数与一次函数的解析式.(2)连接OA 、OB ,求△AOB 的面积.(3)直接写出当12y y <时,自变量x 的取值范围.2.定义:在平面直角坐标系中,如果一个点的纵坐标等于它的横坐标的三倍,则称该点为“纵三倍点”.例如()()()1,3,2,6,2,32--都是“纵三倍点”. (1)下列函数图象上只有一个“纵三倍点”的是______;(填序号)△21y x =-+;△21y x=;△21y x x =++. (2)已知抛物线2y x mx n =++(,m n 均为常数)与直线4y x =+只有一个交点,且该交点是“纵三倍点”,求抛物线的解析式;(3)若抛物线232y ax bx (,a b 是常数,0a >)的图象上有且只有一个“纵三倍点”,令226w b b a =-+,是否存在一个常数t ,使得当1t b t ≤≤+时,w 的最小值恰好等于t ,若存在,求出t 的值;若不存在,请说明理由.3.如图,点A 在反比例函数()0k y x x=>的图象上,AB y ⊥轴于点B ,且24OB AB ==.(1)求反比例函数的解析式; (2)点C 在这个反比例函数图象上,连接AC 并延长交x 轴于点D ,且45ADO ∠=︒,求点C 的坐标. 4.如图,在平面直角坐标系中,一次函数3yx 的图象与反比例函数(0)k y x x=>的图象交于点(,4)A a ,求此反比例函数的表达式.5.如图,一次函数()10y mx n m =+≠的图象与反比例函数()20k y k x=≠的图象交于(),1A a -,()1,3B -两点,且一次函数的图象交x 轴于点C ,交y 轴于点D .(1)求一次函数和反比例函数的解析式;(2)在第四象限的反比例图象上有一点P ,使得4=△△OCP OBD S S ,请求出点P 的坐标;(3)对于反比例函数()20k y k x=≠,当3y ≤时,直接写出x 的取值范围. 6.如图,已知反比例函数11k y x =的图象与直线22y k x b =+相交于()1,3A -,(3,)B n 两点.(1)求反比例函数与一次函数的解析式; (2)求△AOB 的面积;(3)直接写出当12y y >时,对应的x 的取值范围.7.如图,在平面直角坐标系中,一次函数1y k x b =+(10k ≠)的图象与反比例函数2k y x=(20k ≠)的图象相交于()3,4A ,()4,B m -两点.(1)求一次函数和反比例函数的解析式,并直接写出一次函数的值大于反比例函数的值时x 的取值范围;(2)若点D 在x 轴上,位于原点右侧,且OA OD =,求:ABO ABD S S △△.8.如图,一次函数5y x =-+的图象与函数(0,0)n y n x x=>>的图象交于点(4,)A a 和点B .(1)求n 的值;(2)若0x >,根据图象直接写出当5n x x-+>时x 的取值范围; (3)点P 在线段AB 上,过点P 作x 轴的垂线,交函数n y x =的图象于点Q ,若POQ △的面积为1,求点P 的坐标.9.如图,一次函数()110y k x b k =+≠与反比例函数()220k y k x=≠的图象交于点()2,3A 和(),1B a -,设直线AB 交x 轴于点C .(1)求反比例函数和一次函数的表达式;(2)若点P 是反比例函数图象上的一点,且POC △是以OC 为底边的等腰三角形,求P 点的坐标. 10.如图,在平面直角坐标系xOy 中,一次函数1152y x =+和22y x =-的图象相交于点A ,反比例函数3k y x =的图象经过点A .(1)则反比例函数的表达式为________;(2)当13y y <时,x 的取值范围为________.(3)求AOB 的面积.11.如图,已知反比例函数k y x=的图象与一次函数y mx =图象的一个交点为()4,,A m AB x ⊥轴,且AOB 的面积为4.(1)求k 和m 的值;(2)若两函数图象的另一交点为C ,直接写出点C 的坐标__________.12.已知 ()()4428A B --,,,是一次函数y kx b =+的图象和反比例函数m y x=的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求AOC 的面积;(3)结合图象直接写出不等式m kx b x +>的解集. 13.如图,直线32y x =与双曲线(0)k y k x=≠交于A ,B 两点,点A 的坐标为(,3)m -,点C 是双曲线第一象限分支上的一点,连结BC 并延长交x 轴于点D ,且2BC CD =.(1)求k 的值,并直接写出点B 的坐标;(2)点G 是y 轴上的动点,连结GB ,GC ,求GB GC +的最小值和点G 坐标;(3)P 是坐标轴上的点,Q 是平面内一点,是否存在点P ,Q ,使得四边形ABPQ 是矩形?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.14.如图,直线3y x b =+与x 轴交于点()1,0A -,与反比例函数()0ky x x=>的图象相交于点()1,B m .(1)求反比例函数的表达式;(2)C 是反比例函数()0k y x x=>的图象上的一点,连接AC ,若45CAO ∠=︒,求直线BC 的函数表达式. 15.如图,一次函数1=y ax b +的图象过点()40A -,,与y 轴交于点B ,与反比例函数(2>0)k y x x =的图象交于点C .D 为AB 的中点,过点D 作x 轴的平行线,交反比例函数的图象于点E ,连接OE .(1)当=3OB ,=6DE 时,求k 的值;(2)若635OB OE ==,,求一次函数的解析式和点C 的坐标.参考答案: 1.(1)2y x=- =1y x -- (2)1.5(3)20x -<<或1x >2.(1)△△(2)238y x x =-+(3)1t =3.(1)8y x= (2)()4,2C4.反比例函数的表达式为4y x =. 5.(1)一次函数的解析式为12y x =-+;(2)点P 的坐标为3,44⎛⎫- ⎪⎝⎭(3)1x ≤-或0x >6.(1)13y x=- 22y x =-+; (2)4;(3)10x -<<或3x >.7.(1)一次函数的关系式为1y x =+;40x -<<或3x >(2)1:68.(1)4(2)14x <<(3)(2,3)P 或(3,2)9.(1)6y x = 122y x =+(2)()2,3P --10.(1)38y x =-(2)8x <-或20x -<<(3)1511.(1)18,2k m ==(2)()4,2--12.(1)16y x = 24y x =+(2)8(3)40x -<<或2x >13.(1)623k B =,,(2)217(3)存在,点P 的坐标为1302⎛⎫ ⎪⎝⎭, 或1303⎛⎫⎪⎝⎭,14.(1)反比例函数的表达式为6y x =;(2)直线BC 的函数表达式为39y x =-+.15.(1)6k =(2)162y x =+,点C 的坐标为()29,。
1. (2014•广东,第23题9分)如图,已知A14,2⎛⎫- ⎪⎝⎭,B(﹣1,2)是一次函数y=kx+b与反比例函数myx=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.2. (2014•珠海,第19题7分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数kyx=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.3.(2014年四川资阳,第20题8分)如图,一次函数y=kx+b(k≠0)的图象过点P3, 02⎛⎫-⎪⎝⎭,且与反比例函数kyx=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?4.(2014•四川自贡,第22题12分)如图,一次函数y =kx +b 与反比例函数()60y x x=>的图象交于A (m ,6),B (3,n )两点.(1)求一次函数的解析式;(2)根据图象直接写出60kx b x+-<的x 的取值范围;(3)求△AOB 的面积.5.(2014•浙江湖州,第20题分)如图,已知在平面直角坐标系xOy 中,O 是坐标原点,点A (2,5)在反比例函数ky x=的图象上,过点A 的直线y =x +b 交x 轴于点B . (1)求k 和b 的值; (2)求△OAB 的面积.6. (2014•山东枣庄,第24题10分)如图,一次函数y =ax +b 与反比例函数y =的图象交于A 、B 两点,点A 坐标为(m ,2),点B 坐标为(﹣4,n ),OA 与x 轴正半轴夹角的正切值为,直线AB 交y 轴于点C ,过C 作y 轴的垂线,交反比例函数图象于点D ,连接OD 、BD . (1)求一次函数与反比例函数的解析式; (2)求四边形OCBD 的面积.7.(2014•四川遂宁,第23题,10分)已知:如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A (1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.8.(2014•四川成都,第19题10分)如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数8 yx =-的图象交于A(﹣2,b),B两点.(1)求一次函数的表达式;(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.9.(2014•四川广安,第20题6分)如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.10.(2014•四川绵阳,第22题12分)如图,已知反比例函数y=(k>0)的图象经过点A(1,m),过点A 作AB⊥y轴于点B,且△AOB的面积为1.(1)求m,k的值;(2)若一次函数y=nx+2(n≠0)的图象与反比例函数y=的图象有两个不同的公共点,求实数n的取值范围.11. (2014•乐山,第25题10分)如图,一次函数y=kx+b的图象l与坐标轴分别交于点E、F与双曲线,y=﹣(x<0)交于点P(﹣1,n),且F是PE的中点.(1)求直线l的解析式;(2)若直线x=a与l交于点A,与双曲线交于点B(不同于A),问a为何值时,P A=PB?12.(2014•广西来宾,第22题8分)一次函数y1=﹣x﹣1与反比例函数y2=的图象交于点A(﹣4,m).(1)观察图象,在y轴的左侧,当y1>y2时,请直接写出x的取值范围;(2)求出反比例函数的解析式.。
一次函数与反比例函数专题复习第一部分 知识梳理考点一、平面直角坐标系 (3分) 1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
考点二、不同位置的点的坐标的特征 (3分) 1、各象限内点的坐标的特征(1) 点P(x,y)在第一象限0,0>>⇔y x(2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数(2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数(3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等(2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征(1)位于平行于x 轴的直线上的各点的纵坐标相同。
(2)位于平行于y 轴的直线上的各点的横坐标相同。
5、关于x 轴、y 轴或远点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 (3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离 (1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +考点三、函数及其相关概念 (3~8分) 1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
26.26(4)专题:反比例函数与一次函数结合一.【知识要点】1.反比例函数与一次函数结合二.【经典例题】k S 的取值范围。
3.如图,已知直线l :6-=x y 与x 轴,y 轴交于点A,B 两点,与反比例函数xk y =(x >0)的图象交于点C (a,-1)和点D 。
(1)求k 的值及点D 的坐标。
(2)若点P 在反比例函数图象上且位于直线l 上方,过点P 作PM ⊥x 轴于点M 交AB 于E ,过点P 作PN ⊥y 轴于点N ,交AB 于点F ,求BE AF •的值。
4.如图,直线y=﹣x+4分别交x轴、y轴于A、B两点,P是反比例函数y=(x>0),图象上位于直线y=﹣x+4下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F,并且AF•BE=4(1)求k的值;(2)若反比例函数y=与一次函数y=﹣x+4交于C、D两点,求三角形OCD的面积.三.【题库】【A】1.如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.(1)求反比例函数的表达式;(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.2.二次函数y=ax2+bx+c的图象如图,则一次函数y=ax+b2﹣4ac与反比例函数y=.在同一坐标系内的图象大致为()A .B .C .D .【B 】【C 】 1.(绵阳2018第22题本题满分11分) 如图,一次函数2521+-=x y 的图像与反比例函数)0(>k xk y =的图像交与A ,B 两点,过A 点作x 轴的垂线,垂足为M ,△AOM 面积为1.(1)求反比例函数的解析式;(2)在y 轴上求一点P ,使P A +PB 的值最小,并求出其最小值和P 点坐标.2.在平面直角坐标系xOy 中,反比例函数y =(x >0)的图象经过点A (3,4),过点A 的直线y =kx +b 与x 轴、y 轴分别交于B ,C 两点.(1)求反比例函数的表达式;(2)若△AOB 的面积为△BOC 的面积的2倍,求此直线的函数表达式.【D 】1.(2020年绵阳期末第12题)如图,已知点A(m ,m+3),点B(n ,n-3)是反比例函数()0>=k xk y 在第一象限的图象上的两点,连接AB.将直线AB 向下平移3个单位得到直线l ,在直线l 上任取一点C , 则△ABC 的面积为( ) A.29 B.6 C. 215 D.92.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(,)称为点P 的“倒影点”,直线y =﹣x+1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =的图象上.若AB =2,则k = .。
查补重难点03反比例函数与一次函数的综合运用考点一:反比例函数与一次函数综合反比例函数与一次函数进行综合考查的题型是江苏历年中考数学对于函数考查的重点内容,那么关于反比例函数与一次函数的综合专题当中,我们主要涉及到函数共存问题,交点和不等式(比大小)问题、最值问题以及与几何综合压轴类的题型。
无论是哪一类型的题型,在综合的考察过程当中都是对于反比例函数与一次函数的图像和性质有充分的了解,借助数形结合思想、方程思想、化归思想等。
通过函数的图像来得到我们所需要的求解问题。
在这过程当中,如果对于这两类函数没有全面的了解,那么在解题过程当中就要花费大家很多的时间而导致其解题效率的降低,那么在解决这三大类型的提醒过程当中,该如何利用这些函数的性质来进行解题,该专题可供大家在备考阶段能够进行专项的突破。
题型1.反比例函数和一次函数图像共存问题函数图象共存问题是一次函数和反比例函数当中含有共同的参数,根据分类讨论的形式,由函数的图像特点来判定符合两个函数参数的图形。
解决这类型的题不仅是反比例函数和一次函数进行综合考查,连同二次函数在内的题型进行考查也是比较常见的,所以解决这类型的问题时,我们先要根据一次函数或反比例函数中参数的共性,通过分别进行讨论的形式逐一进行排除,最终确定满足要求的函数图像。
.B ...变式1.(2023年湖北省襄阳市中考数学真题)在同一平面直角坐标系中,一次函数y kx =k x的图象可能是().B .C .D .变式2.(2022·广西·中考真题)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是()A .B .C .D .题型2.反比例函数和一次函数的交点问题一次函数图像与反比例函数相关问题,牵扯到的知识点比较多,如求它们的函数解析式,或是通过两者的图像相交,需要考生结合两个函数解析式转化成一元二次方程,从而求得交点坐标等。
y x 0反比例函数与一次函数综合练习题1.如图是反比例函数 y=m+2x 的图象的一支,根据图象回答下列问题: (1)图象的另一支在哪个象限?常数m 的取值范围是什么? (2)已知点(-3,y 1), (-1,y 2), (2,y 3), 则函数值y 1、y 2、y 3的大小关系怎样?2.已知:如图,一次函数的图象经过第一、二、三象限,与y 轴交于点C ,与x 轴交于点D .OB =10 ,tan ∠DOB =13. ⑴求反比例函数的解析式:⑵设点A 的横坐标为m ,△ABO 的面积为S ,求S 与m的函数关系式,并写出自变量m 的取值范围;3.如图所示,已知反比例函数y= k x的图象经过点A (- 3 ,b ),过点A 作AB ⊥x 轴于点B ,△AOB 的面积为 3 。
⑴求k 、b 的值;⑵若一次函数y=ax+1的图象经过点A ,并且与x 轴相交于点M ,求AO ∶AM ; ⑶如果以AM 为一边的正三角形AMP 的顶点P 在二次函数y=-x 2+ 3 mx+m -9的图象上,求m 的值。
4.如图,已知C 、D 是双曲线y= m x 在第一像限内的分支上的两点,直线CD 分别交x 轴、y 轴于A 、B 两点,设C 、D 的坐标分别是(x 1,y 1),(x 2,y 2),连结OC 、OD 。
⑴求证:y 1<OC<y 1+ 1y m ; ⑵若∠BOC=∠AOD=α,tan α=13,OC=10 ,求直线CD 的解析式; ⑶在⑵的条件下,双曲线上是否存在一点P ,使得S △POC =S △POD ?若存在,请给出证明;若不存在,请说明理由。
5.已知一次函数y=mx+b 与反比例函数y= m x(m ≠0) ⑴k 满足什么条件时,这两个函数在同一坐标系xOy 中的图象有两个公共点?⑵设⑴中的两个公共点为A ,B ,试判断∠AOB 是锐角还是钝角?6.已知A (m ,2)是直线l 与双曲线y= 3x的交点。
反比例函数与一次函数综合一、单选题.....反比例函数()10y mx=的图象与一次函数2y x b =-+的图象交于A 、B 两点,其中),当12y y >时,的取值范围是().1x <B 12x <<.2x >D .01x <<或2>A .18-B .4.如图,双曲线my x=与直线的纵坐标为1-.根据图象信息可得关于A .1x =C .11x =-,21x =6.如图,一次函数2y x =-+与反比例函数(),1B n -,不等式2kx x-+>的解集为(A .1x <-或0x <<C .13x -<<7.直线2y x =+与双曲线A .78.如图,已知一次函数A .33二、填空题9.考察函数4y x=-10.如图,已知一次函数11.如图,直线2y x =与双曲线单位后,直线与双曲线交于点12.已知直线y x =与反比例函数C 为反比例函数图象第一象限上任意一点,连接点C 的坐标为.13.如图,直线3y x =-+与坐标轴分别相交于x14.如图,曲线l 是由函数y 到的,过点()42,42A -,B 面积是46,则k 的值为15.如图,一次函数y 点,则不等式1kx b x+-16.如图,点A 在双曲线y 0b >)上,A 与B 关于x 轴对称,直线有以下结论:①(),3A b b ②当三、解答题(1)请求出一次函数和反比例函数解析式:(2)连接OC,OD,求出(1)求反比例函数的关系式与(2)根据图象直接写出不等式(3)若动点P在x轴上,求PA(1)求反比例函数和一次函数的解析式;的面积;(2)求ABO(1)求反比例函数的解析式;(2)点C在这个反比例函数图象上,连接点C的坐标.参考答案:3.A【分析】本题考查一次函数与反比例函数的交点问题,直角三角形的性质,设点4,3a a ⎛⎫- ⎪⎝⎭,求出OA ,根据点角形的性质得到OC OA =程,解方程即可求解,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的令23y x =-中0x =,代入∴()0,3B -,∴3OB =,令23y x =-中0y =,得:由图象可知,反比例函数上,第二象限内的一支符合题意,即第四象限内,与直线交点及交点上方的图象符合题意,联立两函数解析式:41y x y ⎧=-⎪⎨⎪=-⎩解得:41x y =⎧⎨=-⎩即4x ≥,当0y =时,1042x =+,解得,8x =-,∴()80C -,,则D的坐标为2,22a a⎛⎫⎪ ⎪⎝⎭,直线2y x=向右平移3个单位后,直线与双曲线交于点∴B的坐标为23,22a a⎛⎫+⎪ ⎪⎝⎭.将0y =代入直线3y x =-+得解得3x =,②当2b =时,点A 的坐标为:∴23243k =⨯=,故②正确;③∵()3,Ab b ,A 与B 关于()3,B b b -∵28y x =+,∴令0x =,则8y =;令∴()()4,0,0,8A B -DOC AOB AOD BOC S S S S =-- 18.(1)反比例函数解析式为【点睛】本题考查了用待定系数法求反比例函数的关系式、题、利用图象求不等式的解集、轴对称性质、勾股定理,解题关键是熟练利用待定系数法求∠=∠=∠=ABO BOE AEO90。
专题训练7 一次函数及反比例函数一、选择题(每小题3分,共24分)1.函数y kx =-与y kx =(k ≠0)的图象的交点个数是( )A. 2B.1C. 0D.不确定2.若点(3,4)是反比例函数xm m y 122++=图象上一点,则此函数图象必经过点( )A.(3,-4)B.(2,-6)C.(4,-3)D. (2,6) 3. 函数y kx b =+与y kxkb =≠()0的图象可能是( )A B C D4.已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是 ( )A.正数B.负数C.非正数D. 不能确定5..在同一坐标系中,函数x ky =和3+=kx y 的图像大致是 ( )A B C D6.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温(℃)与时间(时)之间的关系如右图所示.若y (℃)表示0时到t 时内骆驼体温的温差(0时到t 时最高温度与最低温度的差).则y 与t 之间的函数关系用图象表示,大致正确的是( )(A ) (B ) (C ) (D ) (第6题)7.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是 ( )A B C D8.正比例函数与反比例函数的图象都经过点(1,4),在第一象限内正比例函数的图象在反比例函数图象上方的自变量x 的取值范围是( )(A )1x >. (B )01x <<. (C )4x >. (D )04x <<. 二、填空题(每小题3分,共18分)9.函数4y x =-与4y x=-的图象交于A 、B 两点,过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为___________. 10、若函数y=4x 与y=x 1的图象有一个交点是(21,2),则另一个交点坐标是 _。
一次函数与反比例函数综合题训练
1.如图,直线y =k 1x +b 与双曲线y =2
k x
相交于A (1,2)、B (m ,﹣1)两点. (1)求直线和双曲线的解析式;
(2)若A 1(x 1,y 1),A 2(x 2,y 2),A 3(x 3,y 3)为双曲线上的三点,且x 1<x 2<0<x 3,请直接写出y 1,y 2,y 3的大小关系式; (3)观察图象,请直接写出不等式k 1x +b >
2
k x
的解集.
2.如图,在平面直角坐标系xoy 中,函数()4
y=
x 0x
>的图象与一次函数y =kx -k 的图象 交点为A (m ,2).(1)求一次函数的解析式;
(2)设一次函数y =kx -k 的图象与y 轴交于点B ,若P 是x 轴上一点, 且满足△PAB
的面积是4,直接写出点P 的坐标.
3.平行四边形ABCD 在平面直角坐标系中的位置如图所示,其中A (﹣4,0),B (2,0),C (3,3)反比例函数y=
m
x
的图象经过点C . (1)求此反比例函数的解析式;
(2)将平行四边形ABCD 沿x 轴翻折得到平行四边形AD ′C ′B ,请你通过计算说明点D ′在双曲线上;
(3)请你画出△AD ′C ,并求出它的面积.
4.如图,一次函数y 1=﹣x ﹣1的图象与x 轴交于点A ,与y 轴交于点B ,与反比例函数2
k
y x
=
图象的一个交点为M (﹣2,m ).(1)求反比例函数的解析式;(2)求点B 到直线OM 的距离.
5.如图,一次函数y =-2x +b (b 为常数)的图象与反比例函数k
y=x
(k 为常数,且k ≠0)的图象交于A ,B 两点,且点A 的坐标为(1-,4).
(1)分别求出反比例函数及一次函数的表达式; (2)求点B 的坐标.
6.如图,直线y =2x +2与y 轴交于A 点,与反比例函数k
y=
x
(x >0)的图象交于点M ,过M 作MH ⊥x 轴于点H ,且tan ∠AHO =2.(1)求k 的值;(2)点N (a ,1)是反比例函数k
y=x (x
>0)图象上的点,在x 轴上是否存有点P ,使得PM +PN 最小?若存有,求出点P 的坐标;若不存有,请说明理由.
7.如图在平面直角坐标系xoy 中,一次函数y x =-的图象与反比例函数k
y x
=
图象交于A 、B 两点. ①根据图像求k 的值; ②点P 在y 轴上,且满足以点A 、B 、P 为顶点的三角形是直
角三角形,试写出点P 所有可能的坐标.
y
O
A B
-1
8.已知一次函数1y x m =+的图象与反比例函数2
6
y x
=
的图象交于A 、B 两点,.已知当x 1>时,12y y >;当0x 1<<时,12y y <.⑴求一次函数的解析式;
⑵已知双曲线在第一象限上有一点C 到y 轴的距离为3,求△ABC 的面积.
9. 如图所示,在直角坐标系中,点A 是反比例函数1k
y x
=
的图象上一点,AB x ⊥轴的正半轴于B 点,C 是OB 的中点;一次函数2y ax b =+的图象经过A 、C 两点,并交y 轴于点()02D -,,若4AOD S =△.(1)求反比例函数和一次函数的解析式; (2)观察图象,请指出在y 轴的右侧,当12y y >时,
x 的取值范围.
10.如图,已知函数43y x =
与反比例函数(0)k y x x
=>的图象交于点A .将43y x =的图象向下平移6个单位后与双曲线k
y x
=交于点B ,与x 轴交于点C .
(1)求点C 的坐标; (2)若
2OA
CB
=,求反比例函数的解析式. y
x
C
B
A
O
11.如图,在平面直角坐标系中,一次函数2(0)y
nx n 的图象与反比例函数
(0)m y
m x
在第一象限内的图象交于点A ,与x 轴交于点B ,线段OA =5,C 为x 轴正半
轴上一点,且s i n ∠AOC =4
5.(1)求一次函数和反比例函数的解析式;
(2)求△AOB 的面积.
y x
C B
A D
O
12.如图,一次函数2y kx =+的图象与反比例函数m
y x
=
的图象交于点P ,点P 在第一象限.P A ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D , 且S △PBD =4,12OC OA
=.(1)求点D 的坐标;
(2)求一次函数与反比例函数的解析式;
(3)根据图象写出当0x >时,一次函数的值大于反比例 函数的值的x 的取值范围.
13.如图,矩形OABC 的顶点,A C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线
(0)k
y x x
=
>的图像经过BC 的中点D ,且与AB 交于点E ,连接DE 。
(1)求k 的值及点E 的坐标;(2)若点F 是边OC 上一点,且FBC DEB ,求直线FB 的解析式
14.如图,已知正比例函数y=2x 和反比例函数的图象交于点A (m ,﹣2). (1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x 的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移个单位长度得到点B ,判断四边形OABC 的形状并证明你的结论.
x
B
A O
y
C
y x
P
B D
A
O C。