第三章平面力系的平衡问题
- 格式:pdf
- 大小:827.86 KB
- 文档页数:29
平面力系平衡问题的步骤
以下是关于平面力系平衡问题的步骤。
平面力系平衡问题的步骤如下:
1.分析受力物体和施力物体:首先,要明确力系中涉及到的物体,以及它们之间的相互作用。
2.列出所有作用在受力物体上的力:根据力的作用点和方向,将所有力按照大小和方向列出。
3.合成合力:对于多个力作用在同一物体上,需要将它们进行合成,得到一个等效的合力。
合成方法有平行四边形法则、三角形法则等。
4.求解合力矩:计算合力在各坐标轴上的分力,以确定力对物体产生的力矩。
5.判断平衡条件:根据物体所处的平衡状态(静止或匀速运动),判断各力矩之和是否为零。
如果为零,说明物体处于平衡状态;如果不为零,说明物体不受平衡力。
6.验证平衡条件:如果需要,可以通过实际操作或数值计算来验证平衡条件的正确性。
7.结论:根据分析结果,得出物体在给定力系下的平衡状态,以及可能存在的运动状态。
。
平面力系平衡问题是工程力学中的一个重要内容,它主要研究平面内各点的受力情况,以及力的平衡条件。
在工程实践中,平面力系平衡问题的求解能够帮助工程师更好地设计和分析结构,保证其稳定性和安全性。
本文将围绕平面力系平衡问题的求解步骤展开,以便读者能够全面理解这一主题。
一、确定力的作用点和作用线在解决平面力系平衡问题时,首先需要确定力的作用点和作用线。
力的作用点是指力作用的具体位置,而作用线则是指力的作用线路。
这些确定下来之后,我们才能准确地分析和计算受力物体的平衡情况。
二、绘制受力图绘制受力图是解决平面力系平衡问题的重要步骤之一。
通过绘制受力图,可以清晰地展示各个受力物体的受力情况,包括作用力的大小、方向和作用线的位置。
这为后续的计算和分析提供了重要的基础。
三、应用平衡条件在确定了力的作用点和作用线、绘制了受力图之后,接下来需要应用力的平衡条件进行求解。
根据力的平衡条件,当一个物体处于静止或匀速直线运动时,它受到的合力和合力矩均为零。
可以通过平衡条件,求解出未知力的大小和方向,以及受力物体的平衡状态。
四、检验平衡条件在使用平衡条件求解出未知力后,需要进行检验以确保计算的准确性。
通过检验,可以验证所得结果是否符合平衡条件,以及受力物体的真实情况。
如果计算结果不符合平衡条件,需要重新检查和修正。
以上就是简要的平面力系平衡问题的求解步骤,读者可以通过以上步骤全面了解平面力系平衡问题的求解过程。
在工程实践中,我们经常会遇到各种复杂的受力情况,因此掌握平面力系平衡问题的求解方法对于工程师而言至关重要。
通过不断的练习和学习,我们可以更加灵活和准确地应用这些方法,为工程实践提供有力的支持。
平面力系平衡问题是工程力学中的一个重要内容,它主要研究平面内各点的受力情况,以及力的平衡条件。
在工程实践中,平面力系平衡问题的求解能够帮助工程师更好地设计和分析结构,保证其稳定性和安全性。
本文将围绕平面力系平衡问题的求解步骤展开,以便读者能够全面理解这一主题。
基础部分——静力学第3 章力系的平衡主要内容:§3-7 重心即:力系平衡的充分必要条件是,力系的主矢和对任一点3-2-1 平衡方程的一般形式∑=iF F R ∑=)(i O O F M M 已知∑=iF F R ∑=)(i O O F M M 投影式:平衡方程i即:力系中所有力在各坐标轴上投影的代数和分别等于零;所有力对各坐标轴之矩的代数和分别等于零。
说明:¾一般¾6个3个投影式,3个力矩式;¾一般形式基本形式3-2-2 平面一般力系的平衡方程xy zOF1F2Fn平面内,¾一般形式¾3个2个投影式,1个力矩式;¾ABAzzCC附加条件:不垂直附加条件:不共线Bx二矩式的证明必要性充分性合力平衡AA 点。
B 点。
过ABBx故必有合力为零,力系平衡证毕平面问题3个3个 解题思路BAMFo45l l[例3-1] 悬臂梁,2解:M A 校核:0)(=∑F MB满足!解题思路?AyF AxF[例3-2] 伸臂梁F AxF AyF BF q 解:0=∑x F 0)(=∑F AM3(F −+0=∑yF3(F −+(F −+0)(=∑F AM=∑yF0=∑x F F AxF AyF BF q 思考:如何用其他形式的平衡方程来求解?0=∑x F 3(F −+0)(=∑F AMF AxF F BF q 0)(=∑F BM(F −+二矩式思考练习][练习FFlll F ACB DlllACB DM=F l[思考][思考]lll F ACB DlllACB DF见书P54例3-1—约束lllACB DF—约束CBADEFM—约束—约束—整体平衡局部平衡CB ADEFM研究对象的选取原则¾仅取整体或某个局部,无法求解;¾一般先分析整体,后考虑局部;¾尽量做到一个方程解一个未知力。
qCBAm2m2m2m2MBCM[例3-3] 多跨梁,求:如何选取研究对象?F CqF CFAxF AyM ABAqF'BxF'ByM A F Ax F AyF Bx F By解:先将分布力用合力来代替。
第3章 力系的平衡条件与平衡方程3.1 平面力系的平衡条件与平衡方程3.1.1 平面一般力系的平衡条件与平衡方程如果一个平面一般力系的主矢和力系对任一点的主矩同时都等于零,物体将不会移动也不会转动,则该物体处于平衡状态。
力系平衡的充分必要条件:力系的主矢和力系对任一点的主矩都分别等于零,即 110()0i n R i n O O ii F F M M F ==⎫==⎪⎪⎬⎪==⎪⎭∑∑平衡条件的解析式:11100()0nix i niy i n O i i F F M F ===⎫=⎪⎪⎪=⎬⎪⎪=⎪⎭∑∑∑ 或 00()0x y O F F M F ⎫=⎪⎪=⎬⎪=⎪⎭∑∑∑ 平面一般力系的平衡方程该式表明,平面一般力系的平衡条件也可叙述为:力系中各力在任选的坐标轴上的投影的代数和分别等于零,以及各力对任一点的矩的代数和也等于零。
平面汇交力系:平面汇交力系对平面内任意一点的主矩都等于零,即恒满足()0O M F ≡∑物体在平面汇交力系作用下平衡方程:00x yF F ⎫=⎪⎬=⎪⎭∑∑例题3-1 图所示为悬臂式吊车结构图。
其中AB 为吊车大梁,BC为钢索,A 处为固定铰支座,B 处为铰链约束。
已知起重电动机E 与重物的总重量为PF (因为两滑轮之间的距离很小,PF 可视为集中力作用在大梁上)梁的重力为QF 已知角度30θ=。
求:1、电动机处于任意位置时,钢索BC所受的力和支座A处的约束力;2、分析电动机处于什么位置时。
钢索受力最大,并确定其数值。
解:1、选择研究对象以大梁为研究对象,对其作受力分析,并建立图示坐标系。
建立平衡方程 取A 为矩心。
根据()0A M F =∑sin 02Q P TB lF F x F l θ-⨯-⨯+⨯=222sin 2sin30P Q P Q P TB QlF x F F x F l F x F F l l l θ⨯+⨯+===+由xF =∑cos 0Ax TB F F θ-=2()cos303()2Q P P Ax Q F F x F x F F l l =+=+由yF =∑sin 0Ay Q P TB F F F F θ---+=122[()]2Q P Ay Q P TB Q P Q P F F x F F F F F F l F l xF l =--+=--++-=-+由 2P TB QF x F F l =+ 可知当x l =时钢索受力最大, 其最大值为 22P TB Q P QF lF F F F l =+=+在平面力系的情形下,力矩中心应尽量选在两个或多个未知力的交点上,这样建立的力矩平衡方程中将不包含这些未知力;坐标系中坐标轴取向应尽量与多数未知力相垂直,从而这些未知力在这一坐标轴上的投影等于零,这样可减少力的平衡方程中未知力的数目。
第三章平面任意力系一、要求1、掌握平面任意力系向一点简化的方法。
会应用解析法求主矢和主矩。
熟知平面任意力系简化的结果。
2、深入理解平面任意力系的平衡条件及平衡方程的三种形式。
3、能熟练地计算在平面任意力系作用下物体和物体系的平衡问题。
4、理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法。
二、重点、难点1、本章重点:平面任意力系向作用面内任一点的简化,力系的简化结果。
平面任意力系平衡的解析条件,平衡方程的各种形式。
物体及物体系平衡问题的解法。
2、本章难点:主矢与主矩的概念。
物体系的平衡问题。
三、学习指导1、力的平移定理,是力系向一点简化的理论基础。
一个力平移后,它对物体的作用效果发生了改变,要想保持原来力的作用效果,必须附加一个力偶。
2、平面任意力系向一点简化的方法:平面任意力系向一点简化,是依据力的平移定理,将作用在物体上的各力向任一点(称为简化中心)平移,得到作用在简化中心的一个平面汇交力系和平面力偶系(附加力偶系)。
两个力系合在一起与原力系等效。
这样,一个复杂的力系就分解成了两个简单的力系。
然后,分别求平面汇交力系的合力和平面力偶系的合力偶,则原力系由作用在简化中心的一个力和一个力偶所代替,该力的大小和方向等于力系的主矢,该力偶的力偶矩等于力系的主矩。
于是,平面任意力系的简化就成了计算力系的主矢和主矩的问题。
3、主矢和主矩:平面任意力系中,各力的矢量和称为力系的主矢,即平面任意力系中,各力对于简化中心的力矩的代数和称为力系的主矩,即关于主矢和主矩,需要弄清楚以下几点:(1)主矢不是力,主矩不是力偶。
主矢和主矩是描述平面任意力系对物体作用效果的量。
(2)主矢是自由矢量,只有大小和方向,描述平面任意力系使物体平动的作用效果。
平面任意力系的主矩是代数量,只有大小和正负,描述平面任意力系使物体绕点转动的作用效果。
(3)主矢与简化中心的选择无关。
从这个意义上讲,主矢是力系的一个不变量。
主矩与简化中心的选择有关。
第3章 平面力系的平衡条件3.1平面汇交力系的合成与平衡条件力系中各力的作用线都在同一平面内且汇交于一点,这样的力系称为平面汇交力系。
3.1.1 平面汇交力系合成的解析法设作用于O 点的平面汇交力系(F 1,F 2,…,F n ),其合力矢量为R F (图3-2)。
按合力投影定理求合力R F 在x , y 轴上的投影∑∑====ni yiRy ni xiRx F F F F 11y图3-2R F = cos RxRF F α=(3-1) cos Ry RF F β=式中α,β------合力矢量F R 与x 和y 轴的正向夹角。
3.1.2 平面汇交力系的平衡方程平面汇交力系平衡的必要与充分条件是力系的合力F R 等于零。
10nRx xi i F F ===∑10nRy yii F F===∑ (3-2)于是,平面汇交力系平衡的必要与充分条件可解析地表达为:力系中所有各力在两个坐标轴上投影的代数和分别为零。
式(3-2)称为平面汇交力系的平衡方程。
3.2平面力偶系的合成与平衡条件3.2.1 平面力偶系的合成应用力偶的等效条件,可将n 个力偶合成为一合力偶,合力偶矩记为M 。
∑==ni i M M 1(3-3)3.2.2 平面力偶系的平衡条件平面力偶系平衡的必要与充分条件:力偶系中所有各力偶的力偶矩的代数和等于零,即 10nii M M===∑ (3-4)3.3平面任意力系的合成与平衡条件3.3.1工程中的平面任意力系问题力系中各力的作用线在同一平面内,且任意地分布,这样的力系称为平面任意力系。
3.3.2 平面任意力系向一点的简化 主矢和主矩如图3-7(a )所示。
在力系作用面内任选一点O ,将力系向O 点简化,并称O 点为简化中心。
i ′图3-7由力12,,,n F F F '''L 所组成的平面汇交力系,可简化为作用于简化中心O 的一个力RF ',该力矢量∑==ni i RF F 1'(3-5)R F '称作平面任意力系的主矢。