北京市房山区中考数学二模试题 人教新课标版
- 格式:doc
- 大小:455.50 KB
- 文档页数:13
北京市房山区中考数学二模试卷一、选择题(本大题共30分,每小题3分):下列各题均有四个选项,其中只有一个使符合题意的,请把正确答案的字母在答题卡相应位置涂黑.1.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()A.617×105B.6.17×106C.6.17×107D.0.617×1082.实数a,b,c,d在数轴上对应点的位置如图所示,这四个数中,倒数最大的是()A.b B.d C.a D.c3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.小明掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,那么向上一面的点数大于4的概率为()A.B.C.D.5.如果一个正多边形的每个外角为72°,那么这个正多边形的边数为()A.5 B.6 C.7 D.86.如图,AB是⊙O的直径,C、D两点在⊙O上,如果∠C=40°,那么∠ABD的度数为()A.40° B.90° C.80° D.50°7.国家气象局监测2015年某日24小时PM2.5的值,其中6个时刻的数值如表:时刻4时5时6时7时8时9时PM2.5(毫克∕立方米)342 342 333 329 325 324则这组数据的中位数和平均数分别是()A.331;332.5 B.329;332.5 C.331;332 D.333;3328.函数y=kx﹣k与在同一坐标系中的大致图象是()A .B .C .D .9.在科技迅猛发展的今天,移动电话成为了人们生活中非常普及的通讯工具,选择经济实惠的计费方式成为了人们所关心的具有实际意义的问题.下表是两种移动电话的计费方式:月使用费(元) 主叫限定时间(分钟)主叫超时费/(元/分) 被叫方式一 58 150 0.25 免费 方式二883500.19免费 若小明的爸爸每月打电话的时间在300分钟,请问选择哪种方式省钱( ) A .方式一 B .方式二 C .两种方式一样 D .无法确定 10.如图,正方形ABCD 的顶点A (0,),B (,0),顶点C ,D 位于第一象限,直线x=t ,(0≤t≤),将正方形ABCD 分成两部分,设位于直线l 左侧部分(阴影部分)的面积为S ,则函数S 与t 的图象大致是( )A .B .C .D .二、填空题(本大题共18分,每小题3分): 11.分解因式y 3﹣2y 2+y= .12.如图,公园内有一小湖,为了测量湖边B、C 两点间的距离,小明设计如下方案,选取一个合适的A 点,分别找到AB 、AC 的中点D 、E ,若测得DE 的长为35米,则B 、C 两点间的距离为 米.13.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.一位家住十渡地区的张老师持卡乘车,上车时站名上对应的数字是6,下车时站名上对应的数字是24,那么,张老师乘车的费用是元.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,则△ABC的面积为.15.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:已知:如图1,Rt△ABC,∠C=90°.求作:Rt△DEF,使∠DFE=90°,DE=AB,FE=CB.小芸的作图步骤如下:如图2:(1)作线段FE=CB;(2)过点F作GF⊥FE于点F;(3)以点E为圆心、AB的长为半径作弧,交射线FG于点D,连接DE,所以△DEF即为所求作的直角三角形.老师说:“小芸的作图步骤正确,且可以得到DF=AC”.请回答:得到DF=AC的依据是.16.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1,使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P5的坐标为,点P2016的坐标为.三、解答题(本大题共72分,其中第17-26题,每小题5分,第27题7分,第28题7分,第29题8分):17.计算:.18.已知4a2﹣a﹣1=0.求代数式(3a+1)(3a﹣1)﹣a(a+2)﹣1的值.19.解不等式x+1<6(x﹣2)﹣2,并把它的解集在数轴上表示出来.20.已知:如图,在△ABC中,点D、E分别在边AB,AC上,且∠AED=∠ABC,DE=3,BC=5,AC=12.求AD 的长.21.为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.22.已知:如图,▱ABCD,延长边AB到点E,使BE=AB,连接DE、BD和EC,设DE交BC于点O,∠BOD=2∠A,求证:四边形BECD是矩形.23.当雾霾出现红色预警时,全市中小学就随即展开“停课不停学”的活动,这一活动倍受家长们的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对“停课不停学”的态度(态度分为:A:无所谓;B:赞成;C:反对),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了名中学生家长;(2)将图①补充完整;(3)请就雾霾期间如何学习的问题说说你的看法.24.我们定义:关于x的一次函数y=ax+b与y=bx+a叫做一对交换函数,例如y=3x+4与y=4x+3就是一对交换函数(1)写出一次函数y=﹣2x+b的交换函数.(2)当b≠﹣2时,写出(1)中两函数图象的交点的横坐标.(3)如果(1)中两函数图象与y轴围成三角形的面积为3,求b的值.25.在平面直角坐标系xOy中,函数y=(k≠0,x>0)的图象如图所示.已知此图象经过A(m,n),B (2,2)两点.过点B作BD⊥y轴于点D,过点A作AC⊥x轴于点C,AC与BD交于点F.一次函数y=ax+b (a≠0)的图象经过点A、D,与x轴的负半轴交于点E.(1)如果AC=OD,求a、b的值;(2)如果BC∥AE,求BC的长.26.如图,△ABC 中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作⊙O的切线交AC于点F.(1)求证:DF⊥AC;(2)如果sinC=,AE的长为2.求⊙O的半径.27.如图,在平面直角坐标系xOy中,已知点P(﹣1,0),C(﹣1,1),D(0,﹣3),A,B在x轴上,且P为AB中点,S△CAP=1.(1)求经过A、D、B三点的抛物线的表达式.(2)把抛物线在x轴下方的部分沿x轴向上翻折,得到一个新的图象G,点Q在此新图象G上,且S△APQ=S,求点Q坐标.△APC(3)若一个动点M自点N(0,﹣1)出发,先到达x轴上某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点D,求使点M运动的总路程最短的点E、点F的坐标.28.在△ABC中,BD平分∠ABC(∠ABC<60°)(1)如图1,当点D在AC边上时,若∠ABC=42°,∠ACB=32°,请直接写出AB,DC和BC之间的数量关系.(2)如图2,当点D在△ABC内部,且∠ACD=30°时,①若∠BDC=150°,直接写出AB,AD和BC之间的数量关系,并写出结论成立的思路.②若∠ABC=2α,∠ACB=60°﹣α,请直接写出∠ADB的度数(用含α的式子表示).29.类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究小红提出了一个猜想:对角线互相平分且相等的“等邻边四边形”是正方形.她的猜想正确吗?请说明理由.(3)如图2,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,.试探究线段BC,CD,BD之间的数量关系,并证明你的结论.北京市房山区中考数学二模试卷参考答案与试题解析一、选择题(本大题共30分,每小题3分):下列各题均有四个选项,其中只有一个使符合题意的,请把正确答案的字母在答题卡相应位置涂黑.1.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,能搜索到与之相关的结果的条数约为61700000,这个数用科学记数法表示为()A.617×105B.6.17×106C.6.17×107D.0.617×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将61700000用科学记数法表示为6.17×107.故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.实数a,b,c,d在数轴上对应点的位置如图所示,这四个数中,倒数最大的是()A.b B.d C.a D.c【考点】实数与数轴.【分析】首先根据数轴的特征,判断出实数a,b,c,d的取值范围,然后再根据倒数比较大小.【解答】解:由数轴可得:a=﹣3,﹣2<b<﹣1,0<c<1,d=4,故这四个数中,倒数最大的是c,故选:D.【点评】本题考查了实数与数轴,解决本题的关键是根据数轴判断出实数a,b,c,d的取值范围.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.4.小明掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,那么向上一面的点数大于4的概率为()A.B.C.D.【考点】概率公式.【分析】先求出点数大于4的数,再根据概率公式求解即可.【解答】解:∵点数大于4的数为:5,6,∴向上一面的点数大于4的概率==.故选C.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.5.如果一个正多边形的每个外角为72°,那么这个正多边形的边数为()A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】正多边形的外角和是360°,这个正多边形的每个外角相等,因而用360°除以外角的个数,就得到外角和中外角的个数,外角的个数就是多边形的边数.【解答】解:∵多边形的外角和为360°,∴边数=360°÷72°=5,故这个正多边形的边数是5.故选:A.【点评】考查了多边形内角与外角,根据正多边形的外角和求多边形的边数是常用的一种方法,需要熟记.6.如图,AB是⊙O的直径,C、D两点在⊙O上,如果∠C=40°,那么∠ABD的度数为()A.40° B.90° C.80° D.50°【考点】圆周角定理.【分析】由在同圆或等圆中,同弧或等弧所对的圆周角相等,求得∠DAB的度数.由AB是⊙O的直径,根据直径所对的圆周角是直角求得∠ADB的度数,进而即可求得∠ABD的度数.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠C=40°,∴∠DAB=∠C=40°,∴∠ABD=90°﹣∠DAB=50°.故选D.【点评】此题考查了圆周角定理.此题难度不大,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.7.国家气象局监测2015年某日24小时PM2.5的值,其中6个时刻的数值如表:时刻4时5时6时7时8时9时PM2.5(毫克∕立方米)342 342 333 329 325 324则这组数据的中位数和平均数分别是()A.331;332.5 B.329;332.5 C.331;332 D.333;332【考点】中位数;算术平均数.【分析】根据中位数和平均数的定义结合选项选出正确答案即可.【解答】解:这组数据按从小到大的顺序排列为:324,325,329,333,342,342,所以这组数据的中位数是=331,平均数==332.5,故选A.【点评】本题考查了中位数和平均数的知识,属于基础题,解题的关键是熟练掌握其概念.8.函数y=kx﹣k与在同一坐标系中的大致图象是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】比例系数相等,那么这两个函数图象必有交点,进而根据一次函数与y轴的交点判断正确选项即可.【解答】解:当k>0时,一次函数过一三四象限,反比例函数过一三象限,符合选项C,故选C.【点评】本题考查反比例函数与一次函数的图象性质:比例系数相等,必有交点;一次函数与y轴的交点是一次函数的常数项.9.在科技迅猛发展的今天,移动电话成为了人们生活中非常普及的通讯工具,选择经济实惠的计费方式成为了人们所关心的具有实际意义的问题.下表是两种移动电话的计费方式:月使用费(元)主叫限定时间(分钟)主叫超时费/(元/分)被叫方式一58 150 0.25 免费方式二88 350 0.19 免费若小明的爸爸每月打电话的时间在300分钟,请问选择哪种方式省钱()A.方式一B.方式二C.两种方式一样 D.无法确定【考点】有理数的混合运算.【专题】应用题;实数.【分析】根据表格中的数据求出两种方式的费用,比较即可.【解答】解:方式一费用为:58+0.25×150=95.5元;方式二费用为:88元,则方式二省钱.故选B【点评】此题考查了有理数的混合运算,弄清两种方式计费方法是解本题的关键.10.如图,正方形ABCD的顶点A(0,),B(,0),顶点C,D位于第一象限,直线x=t,(0≤t ≤),将正方形ABCD分成两部分,设位于直线l左侧部分(阴影部分)的面积为S,则函数S与t的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】压轴题.【分析】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.【解答】解:根据图形知道,当直线x=t在BD的左侧时,如果直线匀速向右运动,左边的图形是三角形;因而面积应是t的二次函数,并且面积增加的速度随t的增大而增大;直线x=t在B点左侧时,S=t2,t在B点右侧时S=﹣(t﹣)2+1,显然D是错误的.故选C.【点评】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程.二、填空题(本大题共18分,每小题3分):11.分解因式y3﹣2y2+y= y(y﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式y,再对余下的多项式利用完全平方公式继续分解.【解答】解:y3﹣2y2+y,=y(y2﹣2y+1),=y(y﹣1)2.故答案为:y(y﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.如图,公园内有一小湖,为了测量湖边B、C两点间的距离,小明设计如下方案,选取一个合适的A点,分别找到AB、AC的中点D、E,若测得DE的长为35米,则B、C两点间的距离为70 米.【考点】三角形中位线定理.【分析】根据三角形中位线定理可知DE=BC,由此即可解决问题.【解答】解:∵AD=DB,AE=EC,∴DE=BC,∵DE=35m,∴BC=70m,故答案为70.【点评】本题考查三角形中位线性质,解题的关键是灵活应用三角形中位定理识解决问题,属于中考常考题型.13.随着北京公交票制票价调整,公交集团更换了新版公交站牌,乘客在乘车时可以通过新版公交站牌计算乘车费用.新版站牌每一个站名上方都有一个对应的数字,将上下车站站名所对应数字相减取绝对值就是乘车路程,再按照其所在计价区段,参照票制规则计算票价.具体来说:乘车路程计价区段0﹣10 11﹣15 16﹣20 …对应票价(元) 2 3 4 …另外,一卡通普通卡刷卡实行5折优惠,学生卡刷卡实行2.5折优惠.一位家住十渡地区的张老师持卡乘车,上车时站名上对应的数字是6,下车时站名上对应的数字是24,那么,张老师乘车的费用是 2 元.【考点】有理数的减法;绝对值.【分析】先求得上下车站站名所对应数字之差的绝对值,然后根据表格可得到对应的票价,然后再打5折即可.【解答】解:|24﹣6|=18,∵16<18<20,∴对应票价为4元.∵一卡通普通卡刷卡实行5折优惠,∴张老师乘车的费用=4×0.5=2元.故答案为:2.【点评】本题主要考查的是有理数的减法、绝对值,求得张老师本题乘车对应的票价是解题的关键.14.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,则△ABC的面积为.【考点】三角形的面积.【专题】推理填空题.【分析】根据图象可以利用割补法,得到△ABC的面积等于大正方形的面积减去三个直角三角形的面积.【解答】解:∵在正方形网格中,每个小正方形的边长均为1,∴△ABC的面积为:3×3﹣﹣﹣=,故答案为:.【点评】本题考查三角形的面积,解题的关键是明确三角形面积的计算公式,会运用割补法求三角形的面积.15.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:已知:如图1,Rt△ABC,∠C=90°.求作:Rt△DEF,使∠DFE=90°,DE=AB,FE=CB.小芸的作图步骤如下:如图2:(1)作线段FE=CB;(2)过点F作GF⊥FE于点F;(3)以点E为圆心、AB的长为半径作弧,交射线FG于点D,连接DE,所以△DEF即为所求作的直角三角形.老师说:“小芸的作图步骤正确,且可以得到DF=AC”.请回答:得到DF=AC的依据是斜边、直角边(基本事实),全等三角形对应边相等,或全等三角形对应边相等,勾股定理.【考点】作图—复杂作图.【分析】由作法直接得到判断Rt△ACB≌Rt△DFE的条件即可.【解答】解:由作法得,FE=CB,DE=AB,GF⊥FE,∴∠DFE=∠ACB=90°,在Rt△ACB和Rt△DFE中,∴Rt△ACB≌Rt△DFE,∴AC=DF,故答案为:斜边、直角边(基本事实),全等三角形对应边相等,或全等三角形对应边相等,勾股定理.【点评】此题是作图﹣﹣﹣复杂作图,主要考查了全等三角形的判定和性质,勾股定理,解本题的关键是读懂作法,也是本题的难点.16.如图,在平面直角坐标系中,点A、B、C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点O出发,第一次跳跃到点P1,使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P5的坐标为(﹣2,0),点P2016的坐标为(0,0).【考点】规律型:点的坐标.【分析】根据中心对称的性质找出部分P n的坐标,根据坐标的变化找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(﹣2,2),P6n+3(0,﹣2),P6n+4(2,2),P6n+5(﹣2,0)(n为自然数)”,依此规律即可得出结论.【解答】解:观察,发现规律:P0(0,0),P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),…,∴P6n(0,0),P6n+1(2,0),P6n+2(﹣2,2),P6n+3(0,﹣2),P6n+4(2,2),P6n+5(﹣2,0)(n为自然数).当n=5时,P5(﹣2,0);∵2016=6×336,∴P2016(0,0).故答案为:(﹣2,0);(0,0).【点评】本题考查了规律型中的点的坐标以及中心对称的性质,解题的关键是找出变化规律“P6n(0,0),P6n+1(2,0),P6n+2(﹣2,2),P6n+3(0,﹣2),P6n+4(2,2),P6n+5(﹣2,0)(n为自然数)”.本题属于基础题,难度不大,解决该题型题目时,根据题意列出部分P n点的坐标,根据坐标的变化找出变化规律是关键.三、解答题(本大题共72分,其中第17-26题,每小题5分,第27题7分,第28题7分,第29题8分):17.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=9+2+1﹣3=10﹣.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.已知4a2﹣a﹣1=0.求代数式(3a+1)(3a﹣1)﹣a(a+2)﹣1的值.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式代入计算即可求出值.【解答】解:(3a+1)(3a﹣1)﹣a(a+2)﹣1=9a2﹣1﹣a2﹣2a﹣1=8a2﹣2a﹣2=2(4a2﹣a﹣1),∵4a2﹣a﹣1=0,∴原式=0.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.解不等式x+1<6(x﹣2)﹣2,并把它的解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】首先去掉括号,然后移项、合并同类项,最后化系数为1即可求解.【解答】解:x+1<6x﹣12﹣2,x﹣6x<﹣12﹣2﹣1,﹣5x<﹣15,∴x>3,这个不等式的解集在数轴上表示为:【点评】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.20.已知:如图,在△ABC中,点D、E分别在边AB,AC上,且∠AED=∠ABC,DE=3,BC=5,AC=12.求AD 的长.【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定和性质即可得到结论.【解答】解:∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,∴,∵DE=3,BC=5,AC=12,∴.∴AD=.【点评】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.21.为帮助灾区人民重建家园,某校学生积极捐款.已知第一次捐款总额为9000元,第二次捐款总额为12000元,两次人均捐款额相等,但第二次捐款人数比第一次多50人.求该校第二次捐款的人数.【考点】分式方程的应用.【专题】应用题.【分析】求的是数量,捐款总额明显,一定是根据人均捐款数来列等量关系,本题的关键描述语是:提两次人均捐款额相等.等量关系为:第一次人均捐款钱数=第二次捐款人均捐款钱数.【解答】解:设第二次捐款人数为x人,则第一次捐款人数为(x﹣50)人,根据题意,得解这个方程,得x=200(4分)经检验,x=200是所列方程的根答:该校第二次捐款人数为200人.(6分)【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.已知:如图,▱ABCD,延长边AB到点E,使BE=AB,连接DE、BD和EC,设DE交BC于点O,∠BOD=2∠A,求证:四边形BECD是矩形.【考点】矩形的判定;平行四边形的性质.【专题】证明题.【分析】根据平行四边形的判定与性质得到四边形BECD为平行四边形,再由已知条件证出BC=ED,即可得出结论.【解答】证明:在平行四边形ABCD中,AD=BC,AB=CD,AB∥CD,则BE∥CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD,∴OC+OB=OD+OE,即BC=ED,∴平行四边形BECD为矩形.【点评】本题考查了平行四边形的性质和判定,矩形的判定,三角形的外角性质等知识点的综合运用;熟练掌握平行四边形的判定与性质是解决问题的关键.23.当雾霾出现红色预警时,全市中小学就随即展开“停课不停学”的活动,这一活动倍受家长们的关注.为此某媒体记者随机调查了某市城区若干名中学生家长对“停课不停学”的态度(态度分为:A:无所谓;B:赞成;C:反对),并将调査结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调査中,共调査了200 名中学生家长;(2)将图①补充完整;(3)请就雾霾期间如何学习的问题说说你的看法.【考点】条形统计图;扇形统计图.【分析】(1)用无所谓的人数除以其所占的百分比即可得到调查的总数;(2)总数减去A、B两种态度的人数即可得到C态度的人数;(3)只要合情合理即可.【解答】解:(1)调查家长总数为:50÷25%=200人;(2)持反对态度的学生家长有200﹣50﹣120=30人,补全统计图如图:(3)如:饮食清淡,多吃蔬菜,少开门窗,减少出门,口罩要戴.故答案为:(1)200.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.我们定义:关于x的一次函数y=ax+b与y=bx+a叫做一对交换函数,例如y=3x+4与y=4x+3就是一对交换函数(1)写出一次函数y=﹣2x+b的交换函数y=bx﹣2 .(2)当b≠﹣2时,写出(1)中两函数图象的交点的横坐标 1 .(3)如果(1)中两函数图象与y轴围成三角形的面积为3,求b的值.【考点】两条直线相交或平行问题.【分析】(1)根据交换函数的定义即可求解;(2)将y=﹣2x+b代入y=bx﹣2,解关于x的方程即可求出x的值;(3)根据(1)中两函数图象与y轴围成三角形的面积为3,结合三角形的面积公式的求法即可得出答案.【解答】解:(1)一次函数y=﹣2x+b的交换函数为y=bx﹣2.故答案为y=bx﹣2;(2)将y=﹣2x+b代入y=bx﹣2,得﹣2x+b=bx﹣2,整理得,(b+2)x=b+2,∵b≠﹣2,∴b+2≠0,方程两边同时除以b+2,得x=1,故(1)中两函数图象的交点的横坐标为1.故答案为1;(3)设函数y=﹣2x+b与y轴的交点A的坐标为(0,b),函数y=bx﹣2与y轴的交点B的坐标为(0,﹣2).∵两函数图象与y围成三角形的面积为3,两直线交点到y轴的距离为1,∴AB×1=3,∴AB=6,∴b﹣(﹣2)=6或﹣2﹣b=6,∴b=4或b=﹣8.【点评】此题考查了两条直线相交的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.理解交换函数的意义是解题的关键.也考查了三角形面积的计算.25.在平面直角坐标系xOy中,函数y=(k≠0,x>0)的图象如图所示.已知此图象经过A(m,n),B (2,2)两点.过点B作BD⊥y轴于点D,过点A作AC⊥x轴于点C,AC与BD交于点F.一次函数y=ax+b (a≠0)的图象经过点A、D,与x轴的负半轴交于点E.。
房山区中考二模数学试题答案 数学试卷参考答案和评分标准一、选择题(本题共32分,每小题4分) CBDC ABDA二、填空题(本题共16分,每小题4分)9. 0 10. 20 11. 有两个不相等的实数根 12. 2,,,413三、解答题(本题共30分,每小题5分)13、原式333231=-+-----------------------------------------4分 534= -----------------------------------------------------5分 14、 2(1)2(2)(2)(1)x x x x +--=-+------------------------------1分2221242x x x x x ++-+=------------------------------------3分7x =- -----------------------------------4分经检验,7x =-是原方程的根.----------------------------------5分15、∵AB ∥ED,∴∠ABC=∠DEF. -----------------------------------------------------1分 ∵BE=CF,∴ BC=EF. --------------------------------------------------------------2分 又∠ACB=∠F, ---------------------------------------------------------3分 ∴△ABC ≌△DEF .--------------------------------------------------4分 ∴AC=DF .-------------------------------------------------------------5分16、原式22221943x x x x x =-++-+-+------------------------3分2364x x =-+ -------------------------------------------------4分∵2220x x --=F EDCBA∴ 222x x -= ∴原式23(2)4x x =-+64=+10=-------------------------------------------------------------5分17、依题意得,反比例函数k y x =的解析式为3y x=-.-------------2分 因为点A (-1,n )在反比例函数3y x=-的图象上, 所以n=3. -----------------------------------------------------------------5分 18、解法1:设第一天捐款x 人,则第二天捐款(x +50)人,------1分依题意得 x4800=506000+x . ---------------------------------------2分解得 x =200. -----------------------------------------------3分 经检验x =200是原方程的解. ----------------------------------------4分 两天捐款人数x +(x +50)=450, 人均捐款x4800=24(元). 答:两天共参加捐款的有450人,人均捐款24元. ------------5分解法2:设人均捐款x 元, 由题意列方程 6000x -4800x=50 . 解得 x =24. 以下略.四、解答题(本题共20分,第19题5分,第20题5分,第21题6分,第22题4分) 19、过点D 作DF ∥AB 交BC 于点F,---------------------------------------1分 ∵AD ∥BC ,∴四边形ABFD 是平行四边形. ∴BF=AD=1,AB=DF ∴FE=BE-BF=4-1=3.C---------------------------------------2分∵DF ∥AB ,∴∠DFC=30B ∠=.在Rt △DFC 中,3tan 303DC FC FC =⋅=, 在Rt △DEC 中,tan603DC EC EC =⋅=,∴3FC= )EC +=, ∴EC=32.-----------------------------------------------------------------4分∴AB=DF=33cos303FC+==--------------5分20、(1)连结OP,AP. ∵AB 是⊙O 的直径, ∴∠APB=90. ∴∠APC=90. ∵Q 为AC 的中点 ∴PQ=AQ=QC.-------------------------------------------1分 ∴∠PAQ=∠APQ ∵OA=OP, ∴∠OAP=∠OPA∴∠PAQ+∠OAP=∠APQ+∠OPA 即∠OAQ=∠OPQ∵∠BAC=90, ∴∠OPQ=90, ∴PQ ⊥OP∴PQ 与⊙O 相切.--------------------------2分 (2)∵PQ=2 ∴AC=4.∵∠BAC=90,AP ⊥BC 于P ,∴△ACP ∽△BCA.------------------------------------3分 ∴AC PCBC AC= ∴2AC PC BC =⋅ ∵BP=6, ∴16=PC(6+PC)∴ PC=2 (负值舍去)--------------------------------4分 ∴BC=8,∴=∴所求圆的半径为.----------------5分21、(1)15,20,略 -----------------------------------3分 (2)60020%120⨯= ----------------------------5分 答:由于“长时间看电视”影响眼睛健康的有120人. (3)略. ---------------------------------------------------------------------------6分 22、-6-6-1-2-3-5-412345-46-5-3-2-1654321yxCBAO DP Q注1:画出“矩形”或“等腰梯形”,各给1分;画出另一类图形(后两种可以看作一类),给2分;注2:如果在类似图③或图④的图中画出凹四边形,同样给分(两种都画,只给一种的分).五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23、(1)因为点(4)C n ,在直线334y x =+上, 所以n=6.---------------------------------------------------------------------1分由点(4)C n ,在反比例函数ky x=的图象上, 可求得k=24.∴反比例函数的解析式为24y x=.------------------------------------------------3分(2) A(-4,0), B(0,3) C(4,6) ,AD=8,CD=6,AC=10,AQ=10-m ,AO=4,OB=3,AB=5当△APQ ∽△AOB,即AP AQAO AB =, 1045m m -∴=, 409m =-------------------5分当△AQP ∽△AOB, 即AP AQAB AO=,1054m m -∴=, 509m = -------------------7分综上所述,当409m =或509m =时,以A 、P 、Q 为顶点的三角形与△AOB 相似.24.(1)PQ=PB.过点P 作PC ⊥x 轴于点C,PD ⊥y 轴于点D . ∵点P 在直线1y x =-上, ∴PC=PD.∵∠PCO=∠COD=∠ODP=90, ∴∠CPD=90. 又∵∠BPQ=90,∴∠BPC=∠QPD,------------1分 ∵∠PCB=∠PDQ=90, ∴△PCB ≌△PDQ.∴PB = PQ .(2)△POQ 可能成为等腰三角形.设P(-x, x)①当点P 与点A 重合时,PQ =QO ,△POQ 是等腰三角形,此时P (-1,1); ------------------------------------------3分 ②当点Q 在x 轴负半轴上,且OP =OQ 时,△POQ 是等腰三角形(如图). 此时,QN =PM =1-x ,ON =x ,DE所以OQ=QN-ON=1-2x,当时,解得x=.∴P().-------5分(3) OB+OQ ---------6分OB-OQ= ----------7分25、(1)证明:过E点作EN⊥CH于∵E F⊥BD,CH⊥BD,∴四边形EFHN是矩形.∴EF=NH,FH∥EN.∴∠DBC=∠NEC.∵四边形ABCD是矩形,∴AC=BD,且互相平分∴∠DBC=∠ACB. ∴∠NEC =∠ACB.∵EG⊥A C,EN⊥CH,∴∠EGC=∠CNE=90°,又EC=EC,∴△EGC≌△CNE. -------------------------------------------------------3分∴EG=CN .∴C H=CN+NH=EG+EF -----------------------------------------------4分(2)猜想CH=EF-EG.------------------------------------------------------5分(3)EF+EG=12BD . -----------------------------------------------------------6分(4)点P是等腰三角形底边所在直线上的任意一点,点P到两腰的距离的和(或差)等于这个等腰三角形腰上的高. 如图①,有CG=PF-PN.注:图1分(画一个图即可),题设的条件和结论1分.。
北京市房山区初三二模数学试题及参考答案2020.6学校班级姓名考号考生须知1.本试卷共11页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个.1. 在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标.过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为()A. 8.2 ×109B. 0.82 ×109C. 8.2 ×108D. 82 ×1072. 如图是某个几何体的三视图,该几何体是()A.长方体B.三棱柱C.正方体D.圆柱3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|b|<a B.﹣a<b C.a+b>0 D.|a|>b4.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是()A B C D5. 李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如下统计表:在每天所走的步数这组数据中,众数和中位数分别是( ) A .1.6,1.5 B .1.7,1.6 C .1.7,1.7 D .1.7,1.55 6. 如图,在□ABCD 中,延长AD 至点E ,使AD=2DE ,连接BE 交CD 于点F ,交AC 于点G ,则AGCG的值是()A .32B .31C .21D .437. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果:抛掷次数“正面向上”的频率100.450.550100150200250300350400下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;GFDAE③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45. 其中合理的是( ) A .①B .②C .①②D .①③8.2020年是5G 爆发元年,三大运营商都在政策的支持下,加快着5G 建设的步伐.某通信套餐 类型 月费(元/月) 套餐内包含内容套餐外资费 国内数据流量(GB ) 国内主叫(分钟) 国内流量 国内主叫 套餐1 12830200每5元1GB ,用满3GB 后每3元1GB ,不足部分按照0.03元/MB 收取0.19 元/分钟套餐2 158 40 300 套餐3 198 60 500 套餐423880600小武每月大约使用国内数据流量49GB ,国内主叫350分钟,若想使每月付费最少,则他应预定的套餐是( )A .套餐1B .套餐2C .套餐3D .套餐4二、填空题(本题共16分,每小题2分) 9. 若分式1-1+x x 值为0,则x 的值是 .10.如图,扇形AOB ,通过测量、计算,得弧AB 的长约为 cm. (π取3.14 ,结果保留一位小数)11. 如图,若在象棋棋盘上建立直角坐标系,使“帥”位于 点(-3,-2),“炮”位于点(-2.0),则“兵”位于的点的坐 标为 .AB O已知:平面内一点A . 求作:∠A ,使得∠A =30°.作法:如图,(1)作射线AB ;(2)在射线AB 上取一点O ,以O 为圆心,OA 为半径作圆,与射线AB 相交于点C ; (3)以C 为圆心,OC 为半径作弧,与⊙O 交于点D ,作射线AD . 则∠DAB 即为所求的角.12. 如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据 图形,写出一个含有a ,b 的正确的等式______________________.13. 如果4=+n m ,那么代数式nm mn m n m +2•)2++(22的值为 . 14. 已知一组数据1x ,2x ,3x ,…,n x 的方差是2S ,那么另一组数据3-1x ,3-2x ,3-3x ,…,3-n x 的方差是 .15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中记载了一个“折竹抵地”问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”译文:“有一根竹子,原高二丈(1丈=10尺),现被风折断,竹梢触地面处与竹根的距离为6尺,问折断处离地面的高度为多少尺?”如图,我们用点A ,B ,C 分别表示竹梢,竹根和折断处,设折断处离地面的高度BC 为x 尺,则可列方程为_________________ . 16. 下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是_______________________________________ .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,,第27-28题,每小题7分)17. 计算:1-2+30sin 4+51-18°1-)(18. 解不等式组:19. 如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,DE ∥AB 交BC 于点E ,F 是BD 中点. 求证:EF 平分∠BED .20.已知关于x 的一元二次方程0=3+4-2x kx 有两个不相等的实数根. (1)当k =1时,求此方程的根;(2)若此方程有两个不相等的实数根,求k 的取值范围.21. 如图,菱形ABCD 中, 分别延长DC ,BC 至点E ,F ,使CE =CD ,CF =CB ,联结DB ,BE ,EF ,FD .(1)求证:四边形DBEF 是矩形;(2)若AB =5,53=∠cos ABD ,求DF 的长.2x<1)+(3x .2+<21-x x FEACBACFD22. 在平面直角坐标系xOy 中,反比例函数)0(>=x xky 的图象与直线1-=x y 交于点 A (3,m ) (1)求k 的值(2)已知点P (n ,0)(n > 0),过点P 作垂直于x 轴的直线,交直线1-=x y 于点B ,交函数)0(>=x xky 图象于点C . ①当n = 4时,判断线段PC 与BC 的数量关系,并说明理由;②若PC ≤BC ,结合图象,直接写出n 的取值范围.23. 如图,在△ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 中点, 连接DE .(1)判断DE 与⊙O 的位置关系并说明理由;(2)设CD 与OE 的交点为F ,若AB =10,BC =6,求OF 的长.24. GDP 是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标. 截止2020年4月27日,对除西藏外的30个省区市第一季度有关GDP 的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市GDP 数据的频数分布直方图,如图24-1(数据分成6组,各组是,,,,,):EDCOAxy–1123456–1123456AOb.2020年第一季度GDP 数据在8≤<4x 这一组的是:4.6 4.95.0 5.1 5.3 5.46.37.4 7.5 7.8 7.8c.30个省区市2020年第一季度及2019年GDP 增速排名统计图,如图24-2:d.北京2020年第一季度GDP 数据约为7.5千亿,GDP 增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度GDP 的数据排名第_______.(2)在30个省区市2020年第一季度及2019年GDP 增速排名统计图中,请在图中用“○”图24-1图24-2圈出代表北京的点.(3)2020年第一季度GDP增速排名位于北京之后的几个省份中,2019年GDP增速排名的最好成绩是第_______.(4)下列推断合理的是_______.①与2019年GDP增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D代表的湖北排名下滑最多.②A、B、C分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流入,经济发展主要依靠本地劳动力供给,疫后复工复产效率相对较高,相对于2019年GDP增速排名位置靠前.25.已知线段AB = 6cm,点M是线段AB上一动点,以AB为直径作⊙O,点C是圆周上一点且AC = 4cm,连接CM,过点A做直线CM的垂线,交⊙O于点N,连接CN,设AM的长为xcm,线段AN 的长为cm,线段CN 的长为cmNO BAMC小华同学根据学习函数的经验,,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小华同学的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x(cm)0 1 2 3 4 5 6 (cm) 4.47 5.24 5.86 5.96 4.72 4.00 (cm) 6.00 5.86 5.23 3.98 2.46 1.06 0 请你补全表格的相关数值,保留两位小数.(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数 y 1,y 2的图象(函数y 2的图象如图,请你画出y 1的图象)(3)结合画出的函数图象,解决问题:当ΔCAN 是等腰三角形时时,AM 的长度约为______________cm .(保留两位小数)26.在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点A 、B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D . (1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);(3)已知点()4,4P -,若抛物线与线段PD 只有一个交点,求a 的取值范围.27. 点C 为线段AB 上一点,以AC 为斜边作等腰ADC Rt Δ,连接BD ,在ABD Δ外侧,以BD 为斜边作等腰Rt BED △,连接EC . (1)如图1,当30DBA =︒∠时: ① 求证:AC BD =;② 判断线段EC 与EB 的数量关系,并证明;A图1(2) 如图2,当°45<∠<°0DBA 时,EC 与EB 的数量关系是否保持不变? 对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1: 尝试将点D 为旋转中心. 过点D 作线段BD 的垂线,交BE 延长线于点G ,连接CG ;通过证明三角形ADB Δ≌CDG Δ全等解决以上问题;想法2: 尝试将点D 为旋转中心. 过点D 作线段AB 的垂线,垂足为点G ,连接EG .通过证明ADB Δ∽GDE Δ解决以上问题;想法3:尝试利用四点共圆. 过点D 作AB 垂线段DF ,连接EF ,通过证明D 、F 、B 、E 四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC =EB (一种方法即可)图2EA C28. 过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC △中,90A =︒∠,2AB AC ==. ① 在下图中画出一条Rt ABC △的形内弧;② 在Rt ABC △中,其形内弧的长度最长为____________.ABC(2)在平面直角坐标系中,点()2,0D -,()2,0E ,()0,1F ,点M 为DEF △形内弧所在圆的圆心. 求点M 纵坐标M y 的取值范围;(3)在平面直角坐标系中,点(2,M ,点G 为x 轴上一点. 点P 为OMG △最长形内弧所在圆的圆心,求点P 纵坐标P y 的取值范围.北京市房山区初三二模数学试题及参考答案 2020.6一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.1- ; 10.1.3 ; 11.),(15-; 12. 222+2+=b +a b ab a )(;13.8; 14.2S ; 15.222-20=6+)(x x ; 16.同圆或等圆半径相等,三边相等的三角形是等边三角形,等边三角形的内角是60°,一条弧所对的圆周角是它所对圆心角的一半.(直径所对的圆周角是直角,正弦定义,三角函数值)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28,每小题7分) 17.解:1-2+30sin 4+51-18°1-)(1-2+21×4+5-23= ………………………………………………4分4-24=……………………………………………………… 5分18. 解不等式①: ……………………………………………………1分 得-3<x ……………………………………………………2分解不等式②: ……………………………………………………3分 得-5>x ……………………………………………………4分不等式组的解集是 3-<<5-x ………………………………………………5分19.证明:∵BD平分∠ABC∴∠ABD =∠CBD ………………………………………………1分 ∵DE ∥AB∴∠ABD =∠BDE ………………………………………………2分 ∴∠CBD =∠BDE ………………………………………………3分 ∴EB = ED ………………………………………………4分 ∵F 是BD 中点∴EF 平分∠BED ………………………………………………5分 20.x x 2<3+34+2<1-x x AC(1) 当k =1时,此方程为0=3+4-2x x ……………………………………1分0=3)-(1)-(x x3= 1=21x x ,……………………………………2分 (2) 由题意得0≠k , ……………………………………3分0>12-16=Δk ……………………………………4分∴34<k ∴34<k 且 0≠k …………………………………5分21.(1)证明:∵CE =CD ,CF =CB∴四边形DBEF 是平行四边形 ………………………………………………1分 DE =2CD ,BF =2BC ∵菱形ABCD 中, CD = CB∴ DE = BF ………………………………………………2分 ∴四边形DBEF 是矩形 ………………………………………………3分 (2)∵AB =5∴BF =10∵菱形ABCD 中, 53=∠cos ABD ,∠DBF =∠ABD ∴53=∠cos DBF ∵∠BDF =90°∴DB =6 ………………………………………………4分 ∴DF = 8 ………………………………………………5分22. (1)把3=x 代入1-=x y 得2=y ∴),(23A又)0(>=x xky 图象过点),(23A 解得6=k ……………………………………………1分 (2)① PC = BC ……………………………………………2分当n = 4时, ),(34B ),(234C 23=PC ,23=BC ………………………………………3分 ② 1≤<0n 或 4≥n ………………………………5分23. (1)DE 与⊙O 相切 ………………………………1分连接OD 、CD 、OE∵ BC 为⊙O 的直径∴∠CDA =∠CDB =90° ∵E 是AC 中点 ∴ED =EC ∵OC =O D ,OE =O E ∴ΔOCE ≌ΔO DE∴∠O DE =∠OCE =90°………………………………2分 ∴O D ⊥DE∴DE 与⊙O 相切 ………………………………3分 (2)∵∠ACB =90°,AB =10,BC =6∴AC =8,CE =4, OC =3 ………………………………4分 ∵DE 、CE 与⊙O 相切 ∴DE=CE ,∠CEO =∠DEO∴O E ⊥CD ………………………………5分 ∴ OE =5∵CF OE CE OC •=•∴512=CF ∴59=OF ………………………………6分24. (1) 11 ………………………………2分(2) 如图 ………………………………3分(3) 8 ………………………………4分 (4) ①② ………………………………6分 25. (1) (cm)x12 3 4 5 6 (cm) 4.475.245.865.965.484.72 4.00 (cm)6.005.865.233.982.461.06………………………………2分(2)………………………………4分(3)AM 的长度约为 2.98cm 或1.50cm ………………………………6分 26.(1)对称轴-1=22-=aax ……………………………………1分(2)∵4AB =A (-3,0),B (1,0) ……………………………………2分 把(1,0)代入表达式:0=c +2a +a 得:a 3-=c ……………3分 ∴C (0,-3a )∴ D (0,-3a+1), 31D y a =-+ …………………………4分(3)当0a >时将点()4,4P -代入抛物线223y ax ax a =+-得:41683a a a =--, 45a =∴当45a ≥时,抛物线与线段PD 只有一个交点 …………………5分当0a <时抛物线的顶点为()1,4a -- 当44a -=时1a =- …………………6分综上所述,当45a ≥或1a =-时,抛物线与线段PD 只有一个交点.27.(1)① 过点D 作DF ⊥AC 于F ……………………………………1分 ∵30DBA =︒∠ ∴BD DF 21=∵以AC 为斜边作等腰ADC Rt Δ ∴FC AF =∴AC DF 21= ∴AC BD = ……………………………………2分② ∵ 等腰ADC Rt Δ与等腰Rt BED △中AC BD =∴DE DC =,ο45=∠=∠CDE FDC ∵30DBA =︒∠∴ο60=∠FDB ,ο15=∠CDB ∴ο60=∠CDE∴CDE Δ是等边三角形 ……………………………………3分 ∵DE EB =∴EB EC = ……………………………………4分(2)法1. 添加辅助线 ……………………………5分证出ADB Δ≌CDG Δ ……………………………6分 ∴ο45=∠=∠A DCG∴ο90=∠GCB ∵EB EG =∴ EB EC = ………………………………7分法2. 添加辅助线 ……………………………5分证出ADB Δ⁓GDE Δ …………………………6分 ∴ο45=∠=∠A DGE∴GE 平分DGC ∠ ∴GE 是DC 的中垂线∴ EB EC ED == ………………………………7分法3. 添加辅助线 ……………………………5分证出ο45=∠EDB =∠EFB ……………………6分∴FE 是DC 的中垂线∴ EB EC ED == ……………………7分 28.(1)①类似以上作答,只要弧上所有点都出现在三角形内部,均给分.………………………………2分②当2OB =时,Rt ABC △的形内弧最长,此时弧长=π=.(学生不必画出图象)………………………………3分(2)当圆心在x 轴下方时,此时最长形内弧与线段DF ,EF 相切∵1DOF DOM △∽△∴21OF OM OD ⋅=∴14OM = ∴4M y ≤- ………………………………4分当圆心在x 轴上方时,此时最长形内弧与x 轴相切∵2EGM HEG △∽△∴22HG HM HE ⋅=∴52 EH=∴252EM=∴52My≥………………………………5分综上所述,4My≤-或52My≥(3)当4Gx≤-时,此时最长形内弧与x轴相切∵1GOP GHO△∽△∴143GP=∴143Py≥当40Gx-<<时,此时最长形内弧与线段OM相切解得243Py≥21 当04G x <<时,此时最长形内弧与线段MG 相切解得343P y ≥ ………………………………6分 当4G x ≥时,此时最长形内弧与线段MG 相切解得433P y ≤- ………………………………7分综上所述,43P y ≥23P y ≤。
2022本调研卷共 8 页,共 100 分,时长 120 分钟。
考生务必将答案答在答题卡上,在调研卷上作答无效。
调研结束后,将答题卡交回,调研卷自行保存。
一、选择题(共 16 分,每题 2 分)第 1-8 题均有四个选项,符合题意的选项只有一个.1 .某物体的展开图如图1,它的左视图为( B )2.中国空间站俯瞰地球的高度约为400000 米,将400000 用科学记数法表示应为( A ) 4 × 105 ( B ) 4 × 106 ( C ) 40 × 104 ( D ) 0.4 × 1063.当多边形的边数增加1 时,它的内角和与外角和( A ) 都不变( B ) 都增加180°( C ) 内角和增加180°,外角和减少180°( D ) 内角和增加180°,外角和不变B A4.如图,AB∥ CD,点E在直线CD上,若∠B=57°,∠AED=38°,则∠AEB的度数为( A ) 38° ( B ) 57°( D ) 95°5.如图,数轴上A,B两点的位置如图所示,则下列说法中能判断原点一定位于A,B两点之间的是( B ) ab<0( D ) a,b互为倒数EA Ba bD九年级数学试卷第1 页(共8 页)姓名班级学校( A ) a+b>0( C ) |a|>|b|密封线内不能答题( C ) 85°( D )( A ) ( C ) 图18. 如图,一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢 车行驶的时间为 x (小时) ,两车之间的距离为 y (千米) , 图中的折线表示 y 与 x 之间的函数关系,下列说法中错误的是( A ) 甲乙两地相距 1000 千米 ( B ) 点 B 表示此时两车相遇 ( C ) 慢车的速度为 100 千米 / 时( D ) 折线 B —C —D 表示慢车先加速再减速最后到达终点 二、填空题(共 16 分,每题 2 分) 9 .若在实数范围内有意义,则实数 x 的取值范围是 .10 .分解因式: mx 2+ 2mx + m = . 11 .方程组〈 的解是 .12.如图, 用直尺、三角尺按“边—直角、边—直角、边—直角、边”这样四步画出一个四边形, 这个四边形是 形, 依据是 .①②④③九年级数学试卷第 2 页(共 8 页)6. 如图, 在 7 ×7 的方格纸中, 格点三角形甲经 过旋转后得到格点三角形乙,则其旋转中心是 ( A ) 点 M ( B )格点 N ( C )格点 P ( D )格点 Q7. 口袋里有三枚除颜色外都相同的棋子, 其中两枚是白色的, 一枚是黑色的 . 从中随机摸 出一枚记下颜色,不放回,再从剩余的两枚 棋子中随机摸出一枚记下颜色,摸出的两枚 棋子颜色相同的概率是( A ) ( B ) ( C )PNQ 甲乙23( D )九年级数学试卷第 3 页(共 8 页)13. 已知点A (-2 , y 1 ), B ( -1 , y 2 )在反比例函数 y = (k ≠0) 的图象上,x且 y 1 < y 2 ,则 k 的值可以是 .(只需写出符合条件的一个 k 的值)A14.如图, 在△ ABC 中,点 D 在 AB 上(不与点A ,B 重合) ,过点 D 作 DE ∥ BC 交 AC 于点 E , 若 = 1 , 则 = .15 .如图, PA ,PB 切⊙ O 于 A ,B 两点. 连接AB ,连接 OP 交 AB 于点 C ,若 AB=8,OC=2,则⊙ O 半径为 , PA 的长为 .16.某公司生产一种营养品, 每日购进所需食材 500 千克, 制成 A ,B 两种包装的营养品, 并恰好全部用完 . 信息如下表:已知生产的营养品当日全部售出.若 A 包装的数量不少于 B 包装的数量, 则 A 为 包时,每日所获总售价最大,最大总售价为 元 .三、解答题(共 68 分, 第 17—20题,每题 5分,第 21 题6分,第22-23题,每题 5 分,第 24 题 6 分,第 25 题 6 分,第 26 题 6 分,第 27—28 题,每题 7 分) 解答应写出文字说明、演算步骤或证明过程 . 17 .计算: tan60°+( 3 - π ) 0 +| 1 −| +.18 .解19.已20. 已求作( (证E k CB P(|4x−5 > 3(x−2),19.已知2x2 +3y2 = 2 ,求代数式(x+ y)(x−y) + (x+2y)2 −4xy的值.20.已知:如图,四边形ABCD是平行四边形.求作:菱形AECF,使点E,F分别在BC,AD上.作法:①连接AC;②作AC的垂直平分线EF分别交BC,AD于点E,F;AC,EF交于点O;③连接AE,CF.所以,四边形AECF就是所求作的菱形.( 1)使用直尺和圆规,依作法补全图形(保留作图痕迹);( 2)完成下面的证明.证明:∵四边形ABCD是平行四边形,∴ AF∥ EC.∴ ∠FAO=∠ECO.又∵∠AOF=∠COE,AO=CO,∴△AOF≌△COE.∴ FO=EO.∴四边形AECF是平行四边形( )(填推理的依据).又∵EF⊥ AC,∴平行四边形AECF是菱形( )(填推理的依据).九年级数学试卷第4 页(共8 页) 密封线内不能答题18 .解不等式组:〈x+ 10| 3 > 2x.21. 已知关于 x 的一元二次方程 x 2 − 3x + 2m − 1 = 0 有两个不相等的实数根.( 1)求 m 的取值范围;( 2)若 m 为正整数,求方程的根.22. 已知:如图,在四边形 ABCD 中, AB//DC ,AC ⊥ BD ,垂足为 M ,过点 A 作AE ⊥ AC ,交 CD 的延长线于点 E. ( 1)求证:四边形 ABDE 是平行四边形; ( 2)若 AC=8 ,sin ∠ABD= ,求 BD 的长 .E D CA B23. 已知,在平面直角坐标系 xOy 中,直线 l : y = ax + b (a ≠ 0) 经过点 A ( 1 ,2 ),与 x 轴交于点 B ( 3 ,0 ). ( 1)求该直线的解析式;( 2)过动点 P ( 0 ,n )且垂直于 y 轴的直线与直线l 交于点 C ,若 PC ≥ AB ,直接写出 n 的取值范围.九年级数学试卷第 5 页(共 8 页)M姓名班级学校 密封 线 内 不 能 答 题24. 如图,已知 AB 是半⊙ O 的直径,点 H 在⊙ O 上, E 是B 的中 点,连接 AE ,过点 E 作 EC ⊥ AH 交 AH 的延长线于点 C .过点 E 作 EF ⊥ AB 于点 F . ( 1)求证: CE 是⊙ O 的切线; ( 2)若 FB=2 ,=,求 OF 的长.AO F25. 某校九年级甲、乙两班各有 40 名学生,为了了解这两个班学生身体素质情况,进行了抽样调查,并对数据进行收集、整理、描述和分析 . 下面给出了部分信息 .收集数据 从甲、乙两个班各随机抽取 10 名学生进行身体素质测试, 测试成绩(百分制)如下甲班 65 75 75 80 60 50 75 90 85 65 乙班 90 55 80 70 55 70 95 80 65 70整理、描述数据 按如下分数段整理、描述这两组样本数据:分析数据 两组样本数据的平均数、众数、中位数、方差如下表所示:得 出结论( 1 ) m= ; ( 2 ) b= ;( 3)在此次身体素质测试中, 身体素质更好的是 班(填“甲”或“乙”) ,理由是 .( 4)若规定测试成绩在 80 分以上(含 80 分)的学生身体素质为优秀,请估计乙班 40 名学生中身体素质为优秀的学生的人数.九年级数学试卷第 6 页(共 8 页)CE26.在平面直角坐标系xOy 中,点A ( 2,-1)在二次函数y = x 2− (2m + 1)x + m 的图象上 .( 1)直接写出这个二次函数的解析式;( 2)当 n ≤ x ≤ 1 时,函数值 y 的取值范围是-1 ≤ y ≤ 4-n ,求 n 的值; ( 3)将此二次函数图象平移,使平移后的图象经过原点 O. 设平移后的图象对应的28. 对函数表达式为 y = a (x − h )2 + k , 当 x < 2 时, y 随 x 的增大而减小,求 k 的取 值范围 .九年级数学试卷第 7 页(共 8 页)27 .如图 1,在四边形 ABCD 中, ∠ABC= ∠BCD ,过点 A 作 AE ∥ DC 交 BC 边于点 E ,过点 E 作 EF ∥ AB 交 CD 边于点 F ,连接 AF ,过点 C 作 CH ∥ AF 交 AE 于点 H , 连接 BH .( 1)求证:△ABH ≌△EAF ;( 2)如图 2,若 BH 的延长线经过 AF 的中点 M ,求 的值.C图2( 1( 2图 1C EEBB 时图密封 线 内 不 能 答 题密封 线 内 不 能 答 题九年级数学试卷第 8 页(共 8 页)姓名 班级 学校( 1 ) 线段 MN 关于点 M ( 1 , 1)的“垂直图形”为线段 MP.①若点 N 的坐标为(1 ,2),则点 P 的坐标为 ; ②若点 P 的坐标为(4 , 1),则点 N 的坐标为 ;( 2 ) E (- 3 ,3 ), F (-2 ,3 ), H ( a ,0 ) . 线段 EF 关于点 H 的“垂直图形”记为 E'F',点 E 的对应点为 E',点 F 的对应点为 F'. ①求点 E' 的坐标(用含 a 的式子表示);②若⊙ O 的半径为 2 ,E'F' 上任意一点都在⊙ O 内部或圆上,直接写出满足条 件的 EE' 的取值范围 .y28 .对于平面直角坐标系 xOy 中的图形 G 和点 Q ,给出如下定义:将图形 G 绕点 Q 顺时针旋转 90°得到图形 N ,图形 N 称为图形 G 关于点 Q 的 “垂直图形”. 例如, 图 1 中线段 OD 为线段 OC 关于点 O 的“垂直图形”.y–5 –4 –3 –2 – 1 O– 1–2 –3 –4 –5O D x1 2 3 4 5 x5 4 3 21图 1C房山区2022年初中学业水平考试模拟测试(二)九年级数学学科参考答案一、 选择题(共16分,每题2分)二、 填空题(共16分,每题2分)9.2x ≥ ; 10.2(1)m x + ;11. 21x y=⎧⎨=-⎩; 12.矩形,三个角是直角的四边形是矩形.13.答案不唯一 ; 14.12; 15. ,; 16. 400,22800. 三、解答题(共68分,第17—20题,每题5分,第21题6分,第22—23题,每题5分,第24题6分,第25题6分,第26题6分,第27—28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:原式11=++ ……………………………….…….………. … 4分= ………………………………….…….…….…….…….…….…. 5分18. 解:解不等式①,得x >﹣1, ……………………………………………………… 2分 解不等式②,得x < 2, ………………………………………………………4分 所以,不等式组的解集为﹣1 < x < 2 …………………………………… 5分 19.解:原式=2222444x y x xy y xy -+++-=2223x y + ·········································································· 4分 当2223=2x y +时,原式=2.∴代数式的值为2. ···················································20.解:补全图形如图所示; ······················································· 3分对角线互相平分的四边形是平行四边形; ·································对角线互相垂直的平行四边形是菱形. ·····································21. 解:(1)∵关于x 的一元二次方程23210x x m -+-=有两个不相等的实数根,∴2(3)4(21)0m ∆=---≥>0.…………………….…………..1分 解得m <138.…………………………………….…………2分 ∴m 的取值范围为m <138.(2)∵m <138,且m 为正整数,∴1m =. …………………………………………….……3分此时,方程为2310x x -+=. …………………….………4分∴解得方程的根为12x x =………..………6分 22.(1)证明:∵AC ⊥BD ,AE ⊥AC∴AE ∥DB ∵AB //DC∴四边形ABDE 是平行四边形 ………………………(2)解:∵四边形ABDE 是平行四边形∴∠ABD=∠E ,DB=AE ………….……….……….…3分 ∵AE ⊥AC ,sin ∠ABD =45∴在Rt △EAC 中,∠EAC=90°,sin ∠E =4=5AC EC = ∵AC =8∴EC =10 …………………….…………….…4分 ∴AE =6∴DB =6 …………………….…………….…5分23.解:(1)∵(0)y ax b a =+≠经过点A (1,2),点B (3,0).∴230a b a b +=⎧⎨+=⎩解得 13a b =-⎧⎨=⎩…………………….………2分∴该直线的解析式为3y x =-+ ……………….………3分 (2)3n n -≥或≤………………….………5分24.(1)证明:连结OE . ∵ 点E 为的中点, ∴ ∠1=∠2. ∵ OE =OA , ∴ ∠3=∠2. ∴ ∠3=∠1. ∴ OE ∥AC , ∴∠OEC +∠C=180°. ∵ AC ⊥CE , ∴∠C=90°, ∴∠OEC=90°, ∴ OE ⊥CE . ∵ 点E 在⊙O 上,∴ CE 是⊙O 的切线. ……………………………… 3分 (2)解:连结EB . ∵ AB 是⊙O 的直径, ∴ ∠AEB =90°. ∵ EF ⊥AB 于点F , ∴ ∠AFE =∠EFB =90°.∴ ∠2+∠AEF =∠4+∠AEF =90°. ∴ ∠2=∠4=∠1. ∵ EF AF =22, ∴BF EF=22. ∵FB=2 ∴ EF = (4)分设 OE =x ,则OB = x . ∴ OF =x -2.∵ 在Rt △OEF 中,∠EFO =90°, ∴ x 2=(x -2)2+(2. ∴ x =3(负值舍去).∴ OF =1. …………………………………………… 6分HB A25. (1)m =3; ……………………………………………… 1分 (2)b =75; ………………………………………………2分(3)甲,在平均数相差不大的情况下,甲班的中位数和众数都高于乙班. ………………4分(4)16人 ……………………………………………… 6分 26.解:(1)y =x 2−3x +1 (2)(2) 图象的对称轴为直线23=x . 当n ≤x ≤1时,函数值y 随自变量x 的增大而减小,∵ 函数值y 的取值范围是-1≤y ≤4-n , ∴ 当x =1时,函数值为- 1. 当x =n 时,函数值为4-n.∴ n 2 – 3n +1 = 4-n.,解得n = - 1或n = 3∴ n 的值为- 1. ……………………………………………4分(3)由(1)可知,a =1. ∵函数图象经过原点 ∴k =-h 2∵当x <2时,y 随x 的增大而减小, ∴h ≥ 2∴k ≤-4 ……………………………………………6分27.(1)证明:∵∠ABC =∠BCD ,AE ∥DC ,EF ∥AB∴∠ABE =∠AEB ,∠FEC =∠FCE , ∠BAH =∠FEA ∴AB =AE ,FE =FC 又∵CH ∥AF∴四边形AHCF 为平行四边形∴FE =FC =AH∴△ABH ≌△EAF ………………………………3分 (2)∵△ABE 和△FEC 为等腰三角形,∠ABC =∠BCD ∴△ABE ~△FCE ∴AB FC =AE EF =BE CE设CE =1,BE =x ,FC =FE =aB则AB =AE =ax ,AH =CF =a∴EH =AE -AH =ax -a =a (x-1) ∵AB ∥EF ∴∠ABG =∠G ∵M 为AF 的中点 ∴AM =FM∴△ABM ≌△FGM (AAS ) ∴FG =AB =ax∴EG=EF+FG=a+ax= a (x+1) ∵AB ∥EG∴△ABH ~△EGH ∴AB EG =AH HE即:ax a (1+x )=aa (x−1)x 2−2x −1=0∴x =1+√2或x =1−√2(舍)∴BE EC =AB FC =ax a =x 即:BEEC 的值为1+√2 ………………………7分28. (1)①(2,1)………………………………1分②(1,4)………………………………2分(2)①过点E 作EA ⊥x 轴于点A ,过点E ’作E ’B ⊥x 轴于点B . 由题意可知EH =E’H ,∠EHE’=90° △EAH ≌△E’BH ∴EA =HB ,AH =E’B ∵E (-3,3),H (a ,0) ∴A (-3,0)∴E’B = AH =|a +3|, EA =HB =3 ∴OB =|a +3|∴E’(a+3,a+3)……………………………5分②≤EE’………………………7分。
北京市房山区初三下学期第二次统一测试数学二模试题及参考答案2020年6月一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个.1. 在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标.过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为()A. 8.2 ×109B. 0.82 ×109C. 8.2 ×108D. 82 ×1072. 如图是某个几何体的三视图,该几何体是()A.长方体B.三棱柱C.正方体D.圆柱3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|b|<a B.﹣a<b C.a+b>0 D.|a|>b4.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是()A B C D5. 李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如下统计表:在每天所走的步数这组数据中,众数和中位数分别是( ) A .1.6,1.5 B .1.7,1.6 C .1.7,1.7 D .1.7,1.55 6. 如图,在□ABCD 中,延长AD 至点E ,使AD=2DE ,连接BE 交CD 于点F ,交AC 于点G ,则AGCG的值是()A .32B .31C .21D .437. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果:抛掷次数“正面向上”的频率100.450.550100150200250300350400下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45. 其中合理的是( )GFDAEA .①B .②C .①②D .①③8.2020年是5G 爆发元年,三大运营商都在政策的支持下,加快着5G 建设的步伐.某通套餐 类型 月费(元/月) 套餐内包含内容套餐外资费 国内数据流量(GB ) 国内主叫(分钟) 国内流量 国内主叫套餐1 12830200每5元1GB ,用满3GB 后每3元1GB ,不足部分按照0.03元/MB 收取0.19 元/分钟套餐2 158 40 300 套餐3 198 60 500 套餐423880600小武每月大约使用国内数据流量49GB ,国内主叫350分钟,若想使每月付费最少,则他应预定的套餐是( )A .套餐1B .套餐2C .套餐3D .套餐4二、填空题(本题共16分,每小题2分)9. 若分式1-1+x x 值为0,则x 的值是 .10.如图,扇形AOB ,通过测量、计算,得弧AB 的长约为 cm. (π取3.14 ,结果保留一位小数)11. 如图,若在象棋棋盘上建立直角坐标系,使“帥”位于 点(-3,-2),“炮”位于点(-2.0),则“兵”位于的点的坐 标为 .12. 如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据AB O已知:平面内一点A . 求作:∠A ,使得∠A =30°.作法:如图,(1)作射线AB ;(2)在射线AB 上取一点O ,以O 为圆心,OA 为半径作圆,与射线AB 相交于点C ; (3)以C 为圆心,OC 为半径作弧,与⊙O 交于点D ,作射线AD . 则∠DAB 即为所求的角.图形,写出一个含有a ,b 的正确的等式______________________.13. 如果4=+n m ,那么代数式nm mn m n m +2•)2++(22的值为 . 14. 已知一组数据1x ,2x ,3x ,…,n x 的方差是2S ,那么另一组数据3-1x ,3-2x ,3-3x ,…,3-n x 的方差是 .15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中记载了一个“折竹抵地”问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”译文:“有一根竹子,原高二丈(1丈=10尺),现被风折断,竹梢触地面处与竹根的距离为6尺,问折断处离地面的高度为多少尺?”如图,我们用点A ,B ,C 分别表示竹梢,竹根和折断处,设折断处离地面的高度BC 为x 尺,则可列方程为_________________ . 16. 下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是_______________________________________ .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,,第27-28题,每小题7分)17. 计算:1-2+30sin 4+51-18°1-)(18. 解不等式组:19. 如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,DE ∥AB 交BC 于点E ,F 是BD 中点. 求证:EF 平分∠BED .20.已知关于x 的一元二次方程0=3+4-2x kx 有两个不相等的实数根. (1)当k =1时,求此方程的根;(2)若此方程有两个不相等的实数根,求k 的取值范围.21. 如图,菱形ABCD 中, 分别延长DC ,BC 至点E ,F ,使CE =CD ,CF =CB ,联结DB ,BE ,EF ,FD .(1)求证:四边形DBEF 是矩形;(2)若AB =5,53=∠cos ABD ,求DF 的长.2x<1)+(3x .2+<21-x x FEACBACFDE22. 在平面直角坐标系xOy 中,反比例函数)0(>=x xky 的图象与直线1-=x y 交于点 A (3,m ) (1)求k 的值(2)已知点P (n ,0)(n > 0),过点P 作垂直于x 轴的直线,交直线1-=x y 于点B ,交函数)0(>=x xky 图象于点C .①当n = 4时,判断线段PC 与BC 的数量关系,并说明理由;②若PC ≤BC ,结合图象,直接写出n 的取值范围.23. 如图,在△ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 中点, 连接DE .(1)判断DE 与⊙O 的位置关系并说明理由;(2)设CD 与OE 的交点为F ,若AB =10,BC =6,求OF 的长.24. GDP 是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标. 截止2020年4月27日,对除西藏外的30个省区市第一季度有关GDP 的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市GDP 数据的频数分布直方图,如图24-1(数据分成6组,各组是,,,,,):EDCOAxy–1123456–1123456AOb.2020年第一季度GDP 数据在8≤<4x 这一组的是:4.6 4.95.0 5.1 5.3 5.46.37.4 7.5 7.8 7.8c.30个省区市2020年第一季度及2019年GDP 增速排名统计图,如图24-2:d.北京2020年第一季度GDP 数据约为7.5千亿,GDP 增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度GDP 的数据排名第_______.(2)在30个省区市2020年第一季度及2019年GDP 增速排名统计图中,请在图中用“○”图24-1图24-2圈出代表北京的点.(3)2020年第一季度GDP增速排名位于北京之后的几个省份中,2019年GDP增速排名的最好成绩是第_______.(4)下列推断合理的是_______.①与2019年GDP增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D代表的湖北排名下滑最多.②A、B、C分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流入,经济发展主要依靠本地劳动力供给,疫后复工复产效率相对较高,相对于2019年GDP增速排名位置靠前.25.已知线段AB = 6cm,点M是线段AB上一动点,以AB为直径作⊙O,点C是圆周上一点且AC = 4cm,连接CM,过点A做直线CM的垂线,交⊙O于点N,连接CN,设AM的长为xcm,线段AN 的长为cm,线段CN 的长为cmNO BAMC小华同学根据学习函数的经验,,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小华同学的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x(cm)0 1 2 3 4 5 6 (cm) 4.47 5.24 5.86 5.96 4.72 4.00 (cm) 6.00 5.86 5.23 3.98 2.46 1.06 0 请你补全表格的相关数值,保留两位小数.(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数 y 1,y 2的图象(函数y 2的图象如图,请你画出y 1的图象)(3)结合画出的函数图象,解决问题:当ΔCAN 是等腰三角形时时,AM 的长度约为______________cm .(保留两位小数)26.在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点A 、B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D . (1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);(3)已知点()4,4P -,若抛物线与线段PD 只有一个交点,求a 的取值范围.27. 点C 为线段AB 上一点,以AC 为斜边作等腰ADC Rt Δ,连接BD ,在ABD Δ外侧,以BD 为斜边作等腰Rt BED △,连接EC . (1)如图1,当30DBA =︒∠时: ① 求证:AC BD =;② 判断线段EC 与EB 的数量关系,并证明;A图1(2) 如图2,当°45<∠<°0DBA 时,EC 与EB 的数量关系是否保持不变? 对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1: 尝试将点D 为旋转中心. 过点D 作线段BD 的垂线,交BE 延长线于点G ,连接CG ;通过证明三角形ADB Δ≌CDG Δ全等解决以上问题;想法2: 尝试将点D 为旋转中心. 过点D 作线段AB 的垂线,垂足为点G ,连接EG .通过证明ADB Δ∽GDE Δ解决以上问题;想法3:尝试利用四点共圆. 过点D 作AB 垂线段DF ,连接EF ,通过证明D 、F 、B 、E 四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC =EB (一种方法即可)图2EA C28. 过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC △中,90A =︒∠,2AB AC ==. ① 在下图中画出一条Rt ABC △的形内弧;② 在Rt ABC △中,其形内弧的长度最长为____________.ABC(2)在平面直角坐标系中,点()2,0D -,()2,0E ,()0,1F ,点M 为DEF △形内弧所在圆的圆心. 求点M 纵坐标M y 的取值范围;(3)在平面直角坐标系中,点(2,M ,点G 为x 轴上一点. 点P 为OMG △最长形内弧所在圆的圆心,求点P 纵坐标P y 的取值范围.北京市房山区初三下学期第二次统一测试数学二模试题及参考答案2020年6月二、填空题(本题共16分,每小题2分)9.1- ; 10.1.3 ; 11.),(15-; 12. 222+2+=b +a b ab a )(; 13.8; 14.2S ; 15.222-20=6+)(x x ; 16.同圆或等圆半径相等,三边相等的三角形是等边三角形,等边三角形的内角是60°,一条弧所对的圆周角是它所对圆心角的一半.(直径所对的圆周角是直角,正弦定义,三角函数值)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28,每小题7分) 17.解:1-2+30sin 4+51-18°1-)(1-2+21×4+5-23= ………………………………………………4分4-24=……………………………………………………… 5分18. 解不等式①:……………………………………………………1分 得-3<x……………………………………………………2分解不等式②: ……………………………………………………3分得-5>x ……………………………………………………4分不等式组的解集是 3-<<5-x ………………………………………………5分 19.证明:∵BD 平分∠ABC∴∠ABD =∠CBD ………………………………………………1分x x 2<3+34+2<1-x x B∵DE ∥AB∴∠ABD =∠BDE ………………………………………………2分 ∴∠CBD =∠BDE ………………………………………………3分 ∴EB = ED ………………………………………………4分 ∵F 是BD 中点∴EF 平分∠BED ………………………………………………5分 20.(1) 当k =1时,此方程为0=3+4-2x x ……………………………………1分0=3)-(1)-(x x3= 1=21x x ,……………………………………2分 (2) 由题意得0≠k , ……………………………………3分0>12-16=Δk ……………………………………4分∴34<k ∴34<k 且 0≠k …………………………………5分 21.(1)证明:∵CE =CD ,CF =CB∴四边形DBEF 是平行四边形 ………………………………………………1分 DE =2CD ,BF =2BC ∵菱形ABCD 中, CD = CB∴ DE = BF ………………………………………………2分 ∴四边形DBEF 是矩形 ………………………………………………3分 (2)∵AB =5∴BF =10∵菱形ABCD 中, 53=∠cos ABD ,∠DBF =∠ABD ∴53=∠cos DBF ∵∠BDF =90°∴DB =6 ………………………………………………4分 ∴DF = 8 ………………………………………………5分22. (1)把3=x 代入1-=x y 得2=y ∴),(23A 又)0(>=x xky 图象过点),(23A 解得6=k ……………………………………………1分 (2)① PC = BC ……………………………………………2分当n = 4时, ),(34B ),(234C 23=PC ,23=BC ………………………………………3分 ② 1≤<0n 或 4≥n ………………………………5分23. (1)DE 与⊙O 相切 ………………………………1分连接OD 、CD 、OE∵ BC 为⊙O 的直径∴∠CDA =∠CDB =90° ∵E 是AC 中点 ∴ED =EC∵OC =O D ,OE =O E ∴ΔOCE ≌ΔO DE∴∠O DE =∠OCE =90°………………………………2分 ∴O D ⊥DE∴DE 与⊙O 相切 ………………………………3分 (2)∵∠ACB =90°,AB =10,BC =6∴AC =8,CE =4, OC =3 ………………………………4分 ∵DE 、CE 与⊙O 相切 ∴DE=CE ,∠CEO =∠DEO∴O E ⊥CD ………………………………5分 ∴ OE =5∵CF OE CE OC •=•∴512=CF ∴59=OF ………………………………6分24. (1) 11 ………………………………2分(2) 如图 ………………………………3分(3) 8 ………………………………4分 (4) ①② ………………………………6分 25. (1) (cm)x12 3 4 5 6 (cm) 4.475.245.865.965.484.72 4.00 (cm)6.005.865.233.982.461.06………………………………2分(2)………………………………4分(3)AM 的长度约为 2.98cm 或1.50cm ………………………………6分 26.(1)对称轴-1=22-=aax ……………………………………1分(2)∵4AB =A (-3,0),B (1,0) ……………………………………2分把(1,0)代入表达式:0=c +2a +a 得:a 3-=c ……………3分∴ C (0,-3a )∴ D (0,-3a+1), 31D y a =-+ …………………………4分(3)当0a >时将点()4,4P -代入抛物线223y ax ax a =+-得:41683a a a =--, 45a =∴当45a ≥时,抛物线与线段PD 只有一个交点 …………………5分当0a <时抛物线的顶点为()1,4a -- 当44a -=时1a =- …………………6分综上所述,当45a ≥或1a =-时,抛物线与线段PD 只有一个交点.27.(1)① 过点D 作DF ⊥AC 于F ……………………………………1分 ∵30DBA =︒∠ ∴BD DF 21=∵以AC 为斜边作等腰ADC Rt Δ ∴FC AF =∴AC DF 21= ∴AC BD = ……………………………………2分② ∵ 等腰ADC Rt Δ与等腰Rt BED △中AC BD =∴DE DC =,ο45=∠=∠CDE FDC ∵30DBA =︒∠∴ο60=∠FDB ,ο15=∠CDB ∴ο60=∠CDE∴CDE Δ是等边三角形 ……………………………………3分 ∵DE EB =∴EB EC = ……………………………………4分(2)法1. 添加辅助线 ……………………………5分证出ADB Δ≌CDG Δ ……………………………6分 ∴ο45=∠=∠A DCG∴ο90=∠GCB ∵EB EG =∴ EB EC = ………………………………7分法2. 添加辅助线 ……………………………5分证出ADB Δ⁓GDE Δ …………………………6分 ∴ο45=∠=∠A DGE∴GE 平分DGC ∠ ∴GE 是DC 的中垂线∴ EB EC ED == ………………………………7分法3. 添加辅助线 ……………………………5分证出ο45=∠EDB =∠EFB ……………………6分∴FE 是DC 的中垂线∴ EB EC ED == ……………………7分 28.(1)①类似以上作答,只要弧上所有点都出现在三角形内部,均给分.………………………………2分②当2OB =时,Rt ABC △的形内弧最长,此时弧长=π=.(学生不必画出图象)………………………………3分(2)当圆心在x 轴下方时,此时最长形内弧与线段DF ,EF 相切∵1DOF DOM △∽△ ∴21OF OM OD ⋅= ∴14OM = ∴4M y ≤- ………………………………4分当圆心在x 轴上方时,此时最长形内弧与x 轴相切∵2EGM HEG △∽△ ∴22HG HM HE ⋅= ∴52EH =∴252EM =∴52M y ≥………………………………5分综上所述,4M y ≤-或52M y ≥(3)当4G x ≤-时,此时最长形内弧与x 轴相切∵1GOP GHO △∽△ ∴143GP = ∴143P y ≥ 当40G x -<<时,此时最长形内弧与线段OM 相切解得243P y ≥当04G x <<时,此时最长形内弧与线段MG 相切解得3433P y ≥ ………………………………6分 当4G x ≥时,此时最长形内弧与线段MG 相切解得423P y ≤ ………………………………7分综上所述,433P y ≥或33P y ≤-。
PQCAB时间温度(°C )2226303128232220时18时16时14时12时10时8时40302010O市房山区2018年中考数学二模试题一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 若代数式22x x -有意义,则实数x 的取值X 围是A. 0x = B .2x =C .0x ≠D .2x ≠2.如图,在△ABC 中,过点B 作PB ⊥BC 于B ,交AC 于P ,过点C 作CQ ⊥AB ,交AB 延长线于Q ,则△ABC 的高是 A .线段PB B .线段BC C .线段CQ D .线段AQ3. 某城市几条道路的位置关系如图所示,已知AB ∥CD ,AE 与AB 的夹角为48°,若CF 与EF 的长度相等,则∠C 的度数为A .48°B.40° C .30° D .24°4. 右图是某个几何体的三视图,该几何体是A .圆锥B .四棱锥C .圆柱D .四棱柱5. 如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是A .30,28B .26,26C .31,30D .26,226. 如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为,顶端距离地面.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米.则小巷的宽度为.A. B. C. D.7. 某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为A.20,4030650x yx y+=⎧⎨+=⎩B.20,4020650x yx y+=⎧⎨+=⎩C.20,3040650x yx y+=⎧⎨+=⎩D.70,4030650x yx y+=⎧⎨+=⎩8.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误..的是A.AB两地相距1000千米B.两车出发后3小时相遇C.动车的速度为D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶20003千米到达A1000 3OA BCDE 25元10元18元30%50%地二、填空题(本题共16分,每小题2分)9. 估计无理数11在连续整数__________与__________之间.10. 若代数式26x x b -+可化为2()5x a +-,则a b +的值为.11. 某校广播台要招聘一批小主持人,对A 、B 两名小主持人进行了专业素质、创新能力、外语水平和应变能力进行了测试,他们各项的成绩(百分制)如下表所示: 应聘者 专业素质 创新能力 外语水平 应变能力 A 73 85 78 85 B81828075如果只招一名主持人,该选用;依据是.12.某校体育室里有球类数量如下表,如果随机拿出一个球(每一个球被拿出来的可能性是一样的),那么拿出一个球是足球的可能性是__________.13. 某花店有单位为10元、18元、25元三种价格的花卉,如图是该花店某月三种花卉销售量情况的扇形统计图,根据该统计图可算得该花店销售花卉的平均单价为__________元.14. 如图,AB 为⊙O 的直径,弦CD ⊥AB ,垂足为点E ,连结OC ,若OC =5,CD =8,则AE =.15. 如图,在正方形网格中,线段A′B′可以看作是线段AB 经过若干次图形的变化(平移、旋转、轴对称)得到的,写出一种由线段AB 得球类 篮球 排球 足球 数量354到线段A′B′的过程:. 16.阅读下面材料:老师说:“小亮的作法正确”请回答:小亮的作图依据是_________________________________________________. 三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分). 解答应写出文字说明,演算步骤或证明过程.17.解不等式组:⎪⎩⎪⎨⎧<++>-.529),2(213x x x x18.如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE=CD .19. 已知2212x x --=. 求代数式2(1)(4)(2)(2)x x x x x -+-+-+的值.20.已知:关于x 的一元二次方程2(41)kx k x -++ (1)求证:方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值.A BC A21.已知:如图,四边形ABCD 中,AD ∥BC ,AD =CD ,E 是对角线BD 上一点,且EA =EC . (1)求证:四边形ABCD 是菱形;(2)如果∠BDC =30°,DE =2,EC =3,求CD 的长.22. 如图,在平面直角坐标系xOy 中,直线y kx m =+与双曲线2-y x=相交于点 A (m ,2).(1)求直线y kx m =+的表达式; (2)直线y kx m =+与双曲线2-y x=的另一个交点为 B ,点P 为x 轴上一点,若AB BP =,直接写出P 点坐标.23.如图,△ABC 内接于⊙O ,AB =AC ,CO 的延长线交AB 于点D (1)求证:AO 平分∠BAC ; (2)若BC =6,sin ∠BAC =35,求AC 和CD 的长.备用图A24. 某商场甲、乙两名业务员10个月的销售额(单位:万元)如下:根据上面的数据,将下表补充完整:(说明:月销售额在8.0万元及以上可以获得奖金,7.0~7.9万元为良好,6.0~6.9万元为合格,6.0万元以下为不合格)两组样本数据的平均数、中位数、众数如下表所示:人员 平均数(万元)中位数(万元)众数(万元)甲 乙结论 (1)估计乙业务员能获得奖金的月份有个;(2)可以推断出业务员的销售业绩好,理由为.(至少从两个不同的角度说明推断的合理性)25. 有这样一个问题:探究函数3126y x x =-的图象与性质. 小东根据学习函数的经验,对函数3126y x x =-的图象与性质进行了探究.下面是小东的探究过程,请补充完整: (1)函数3126y x x =-的自变量x 的取值X 围是; (2) 下表是y 与x 的几组对应值x …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 …y …83- 748- 32 83 116 0116- 83- m 74883…则m 的值为;(3) 如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质.26. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++(0a ≠)的图象经过A (0,4),B (2,0),C (-2,0)三点.(1)求二次函数的表达式;(2)在x 轴上有一点D (-4,0),将二次函数的图象沿射线DA 方向平移,使图象再次经过点B .①求平移后图象顶点E 的坐标;②直接写出此二次函数的图象在A ,B 两点之间(含A ,B 两点)yxO的曲线部分在平移过程中所扫过的面积.27.已知AC =DC ,AC ⊥DC ,直线MN 经过点A ,作DB ⊥MN ,垂足为B ,连接CB . (1)直接写出∠D 与∠MAC 之间的数量关系;(2)① 如图1,猜想AB ,BD 与BC 之间的数量关系,并说明理由;② 如图2,直接写出AB ,BD 与BC 之间的数量关系;(3)在MN 绕点A 旋转的过程中,当∠BCD =30°,BC 的值.28. 已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (-12,32 ),M (0,-1)中,⊙O 的“关联点”为;(2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为 5 ,求n的值;图1图2(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线443y x =-+与 x 轴,y 轴分别交于点A ,B .若线段AB 上存在⊙D 的“关联点”,求m 的取值X 围.九年级数学参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9. 3,4; 10. 1 ; 11. 答案不唯一,理由支撑选项即可; 12. 13 ; 13. 17;14. 2 ; 15. 如:将线段AB 绕点B 逆时针旋转90°,再向左平移2个单位长度; 16. 两点确定一条直线;同圆或等圆中半径相等;三、解答题(本题共68分,第17、18题,每小题5分;第19题4分;第20-23题,每小题5分;第24、25题,每小题6分;第26、27题,每小题7分;第28题8分).17.解:⎪⎩⎪⎨⎧<++>-x x x x 529)2(213 解不等式①得,x >5;……………………………………………………………………2′解不等式②得,x >1;……………………………………………………………………4′ ∴不等式组的解集为x >5.………………………………………………………………5′ 18.解:∵AD ∥BC∴∠ADB =∠DBC …………………………………………………………………1′ ∵DC ⊥BC 于点C ,AE ⊥BD 于点E∴∠C =∠AED =90°………………………………………………………………2′①②又∵DB =DA∴△AED ≌△DCB ………………………………………………………………4′ ∴AE =CD …………………………………………………………………………5′ 19. 原式=2222144x x x x x -++-+-=2363x x --.……………………………………………………………………3′ ∵2212x x --=∴原式=2363x x --23(21)x x =--6=.………………………………………4′ 20.解:(1)()()()22=4143321k k k k ∆-+-+=-⎡⎤⎣⎦……………………………………1′ ∵k 为整数 ∴()2210k -> 即0∆>∴方程有两个不相等的实数根…………………………………………………2′ (2)由求根公式得,()41212k k x k+±-=∴13x =,2111k x k k+==+………………………………………………3′ 由题意得,1k =或1-…………………………………………………………5′ 21. 解:(1)∵AD =CD ,EA =EC ,DE =DE ∴△ADE ≌△CDE ∴∠ADE =∠CDE ∵AD ∥BC ∴∠ADB =∠DBC ∴∠DBC =∠BDC ∴BC =CD ∴AD =BC 又∵AD ∥BC∴四边形ABCD 是平行四边形…………………………………………………2′ ∵AD =CD∴四边形ABCD 是菱形…………………………………………………………3′(2)作EF ⊥CD 于F ∵∠BDC =30°,DE =2∴EF =1,DF = 3 ……………………………………………………………………4′ ∵CE =3 ∴CF =2 2∴CD =2 2 + 3 …………………………………………………………………5′ 22. 解:(1)∵点A (m ,2)在双曲线2y x=-上, ∴m = -1. ………………………………………………………………………1′∴A (-1,2),直线1y kx =-………………………………………………2′∵点A (-1,2)在直线1y kx =-上,∴-3-1y x =…………………………………………………………………3′ (2)()15,0P ,211,03P ⎛⎫- ⎪⎝⎭…………………………………………………………5′ 23. 解:(1)证明:如图,延长A O 交BC 于H ,连接B O. ∵AB =AC ,O B =O C∴A 、O 在线段BC 的中垂线上 ∴A O ⊥BC 又∵AB =AC∴A O 平分∠BAC …………………………………………………………………2′ (2)如图,过点D 作D K ⊥A O 于K ∵由(1)知AO ⊥BC ,OB =OC ,BC =6 ∴BH =CH =12BC=3 ,∠C O H =12∠BOC∵∠BAC =12∠BOC ∴∠C O H =∠BAC在Rt △COH 中,∠OHC =90°,sin ∠COH =HC CO∵CH =3∴sin ∠COH =3CO = 35∴CO =AO =5………………………………………………………………………3′ ∴CH=3,4OH == ∴AH =AO +OH =9,tan ∠COH = tan ∠DOK =34在Rt △ACH 中,∠AHC =90°,AH =9,CH =3 ∴tan ∠CAH =CH AH = 13,AC ==4′由(1)知∠C O H =∠B O H , tan ∠BAH = tan ∠CAH =13设DK =3a ,在Rt △ADK 中,tan ∠BAH =13 ,在Rt △DOK 中,tan ∠DOK =34∴OK =4 a , DO =5 a , AK =9 a ∴OA =13 a =5∴a =513 ,DO =2513 ,CD =OC +OD =9013 ………………………………………………5′∴AC =310 ,CD =901324. 解:……………………………………………………………………………………2′(1)6;………………………………………………………………………………………4′ (2)答案不唯一,理由结合数据支撑选项即可…………………………………………6′ 25. (1)任意实数;…………………………………………………………………………1′(2)32-;………………………………………………………………………………2′ (3)略……………………………………………………………………………………4′ (4)答案不唯一…………………………………………………………………………6′26. 解:(1)∵A (0,4),B (2,0),C (-2,0) ∴二次函数的图象的顶点为A (0,4) ∴设二次函数表达式为24y ax =+ 将B (2,0)代入,得44=0a + 解得,1a =-∴二次函数表达式24y x =-+……………………………………2′ (2)①设直线DA :()0y kx b k =+≠ 将A (0,4),D (-4,0)代入,得440b k b =⎧⎨-+=⎩ 解得,14k b =⎧⎨=⎩∴直线D A : 4y x =+……………………………………………………3分 由题意可知,平移后的抛物线的顶点E 在直线DA 上 ∴设顶点E (m ,m +4)∴平移后的抛物线表达式为()24y x m m =--++ 又∵平移后的抛物线过点B (2,0) ∴将其代入得,()224=0m m --++ 解得,15m =,20m =(不合题意,舍去)∴顶点E (5,9)…………………………………………………………5分 ② 30.………………………………………………………………………………7分27. 解:(1)相等或互补;……………………………………………………………………2分(注:每个1分)(2)①猜想:BD +AB =2BC …………………………………………………………3分如图1,在射线AM 上截取AE =BD ,连接CE .又∵∠D =∠EAC ,CD =AC ∴△BCD ≌△ECA ∴BC =EC ,∠BCD =∠ECA ∵AC ⊥CD ∴∠ACD =90° 即∠ACB +∠BCD =90° ∴∠ACB +∠ECA =90° 即∠ECB =90° ∴BE =2BC ∵AE +AB =BE =2BC ∴B D +A B =2BC ……………………………………………………………4分 ②A B -B D =2BC ……………………………………………………………5分(3)BC =3+1 或3-1 ……………………………………………………………7分28. 解:(1)①F ,M.………………………………………………………………………2′(注:每正确1个得1分) (2)如图1,过点Q 作QH ⊥x 轴于H . ∵PH =1,QH =n ,PQ = 5 ∴由勾股定理得,PH 2+QH 2=PQ 2即22215n +=解得,2n =或-2. ………………………………………………………4′(3)由443y x =-+,知A (3,0),B (0,4)∴可得AB =5I.如图2(1),当⊙D 与线段AB 相切于点T 时,连接DT .NM图1ECADBy xT DBAOH 1则DT ⊥AB ,∠DTB =90° ∵OA DTsin OBA AB BD∠== ∴可得DT =DH 1=65∴165m =…………………………………………………5′II. 如图2(2), 当⊙D 过点A 时,连接AD . 由勾股定理得DA =OD 2+OA 2=DH 2=13 ……………………6′ 综合I ,II可得:65m ≤-或65m ≤8′。
2022年北京市房山区中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是( )A .B .C .D . 2、要使式子2x x -有意义,则( ) A .0x ≠B .2x ≠C .2x >D .0x > 3、已知抛物线()20y ax bx c a =++≠的对称轴为直线1x =,与x 轴的一个交点坐标为()3,0A ,其部分图象如图所示,下列结论中:①0abc <;②240b ac ->;③抛物线与x 轴的另一个交点的坐标为·线○封○密○外()1,0-;④方程21ax bx c ++=有两个不相等的实数根.其中正确的个数为( )A .1个B .2个C .3个D .4个4、已知有理数,,a b c 在数轴上的位置如图所示,且||||a b =,则代数式||||||||a c a c b b --+---的值为( ).A .2aB .0C .2c -D .222a b c -+5、已知23m x y 和312n x y 是同类项,那么m n +的值是( ) A .3 B .4 C .5 D .66、二次函数y =(x +2)2+5的对称轴是( )A .直线x =12B .直线x =5C .直线x =2D .直线x =﹣27、文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话. 小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x 元,由题意可列方程为( )A .(38﹣x )(160+3x ×120)=3640B .(38﹣x ﹣22)(160+120x )=3640C .(38﹣x ﹣22)(160+3x ×120)=3640D .(38﹣x ﹣22)(160+3x ×120)=3640 8、下列命题正确的是( ) A .零的倒数是零 B .乘积是1的两数互为倒数C .如果一个数是a ,那么它的倒数是1aD .任何不等于0的数的倒数都大于零 9、如图是一个正方体展开图,将其围成一个正方体后,与“罩”字相对的是( ).A .勤B .洗C .手D .戴10、下列说法正确的是( )A .不相交的两条直线叫做平行线B .过一点有且仅有一条直线与已知直线垂直C .平角是一条直线D .过同一平面内三点中任意两点,只能画出3条直线第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1________.·线○封○密○外2、如图,已知ABC 中,90ACB ∠=︒,30BAC ∠=︒,1BC =,作AC 的垂直平分线交AB 于点1B 、交AC 于点1C ,连接1B C ,得到第一条线段1B C ;作1AC 的垂直平分线交AB 于点2B 、交AC 于点2C ,连接21B C ,得到第二条线段21B C ;作2AC 的垂直平分线交AB 于点3B 、交2AC 于点3C ,连接32B C ,得到第三条线段32B C ;……,如此作下去,则第n 条线段1n n B C -的长为______.3、若37a -与22a +互为相反数,则代数式223a a -+的值是_________.4、如图,将△ABC 绕点A 顺时针旋转,使点C 落在边AB 上的点E 处,点B 落在点D 处,联结BD ,如果∠DAC =∠DBA ,那么∠BAC =___度.5、己知等腰三角形两条边长分别是4和10,,则此三角形的周长是___________________三、解答题(5小题,每小题10分,共计50分)1、如图,直线AB 与CD 相交于点O ,OE 是∠COB 的平分线,OE ⊥OF .(1)图中∠BOE 的补角是 ;(2)若∠COF =2∠COE ,求△BOE 的度数;(3)试判断 OF 是否平分∠AOC ,请说明理由.2、一副三角板按如图1方式拼接在一起,其中边OA 、OC 与直线EF 重合,∠AOB =45°,∠COD =60°. (1)求图1中∠BOD 的度数. (2)如图2,三角板COD 固定不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α(即∠AOE =α),在转动过程中两个三角板一直处于直线EF 的上方. ①当OB 平分OA 、OC 、OD 其中的两边组成的角时,求满足要求的所有旋转角度α的值; ②在转动过程中是否存在∠BOC =2∠AOD ?若存在,求此时α的值;若不存在,请说明理由.3、某药店在防治新型冠状病毒期间,购进甲、乙两种医疗防护口罩,已知每件甲种口罩的价格比每件乙种口罩的价格贵8元,用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同. (1)求甲、乙两种口罩每件的价格各是多少元? ·线○封○密○外(2)计划购买这两种口罩共80件,且投入的经费不超过3600元,那么,最多可购买多少件甲种口罩?4、关于 x 的方程 x 2﹣2(k ﹣1)x +k 2=0 有两个实数根 x 1,x 2.(1)求 k 的取值范围;(2)请问是否存在实数 k ,使得 x 1+x 2=1﹣x 1x 2 成立?若存在,求出 k 的值;若不存在, 说明理由.5、解方程组:042325560x y z x y z x y z -+=⎧⎪++=⎨⎪++=⎩.-参考答案-一、单选题1、A【分析】根据简单几何体的三视图的意义,得出从正面看所得到的图形即可.【详解】解:从正面看深圳湾“春笋”大楼所得到的图形如下:故选:A .【点睛】本题考查简单几何体的三视图,理解视图的意义,掌握简单几何体三视图的画法是正确解答的关键.2、B【分析】根据分式有意义的条件,分母不为0,即可求得答案.【详解】 解:要使式子2x x -有意义, 则20x -≠ 2x ∴≠ 故选B 【点睛】 本题考查了分式有意义的条件,理解分式有意义的条件是“分母不为0”是解题的关键. 3、C 【分析】 根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【详解】 解:①如图,开口向上,得0a >, 12b x a =-=,得20b a =-<, 抛物线与y 轴交于负半轴,即0,0x y c ==<, 0abc ∴>, 故①错误; ②如图,抛物线与x 轴有两个交点,则240b ac ->; 故②正确; ③由对称轴是直线1x =,抛物线与x 轴的一个交点坐标为(3,0)A ,得到:抛物线与x 轴的另一个交点坐标为(1,0)-, ·线○封○密○外故③正确;④如图所示,当1x =时,0y <,21ax bx c ∴++=根的个数为1y =与2y ax bx c =++图象的交点个数,有两个交点,即21ax bx c ++=有两个根,故④正确;综上所述,正确的结论有3个.故选:C .【点睛】主要考查抛物线与x 轴的交点,二次函数图象与二次函数系数之间的关系,解题的关键是会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.4、C【分析】首先根据数轴的信息判断出有理数,,a b c 的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解.【详解】解:由图可知:0a c b <<<,∴0a <,0c a ->,0c b -<,0b -<, ∴()()2a c a c b b a c a b c b c --+---=---+--=-,故选:C .【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌握化简绝对值的方法以及整式的加减运算法则是解题关键. 5、C【分析】把字母相同且相同字母的指数也分别相同的几个项叫做同类项,根据同类项的定义即可解决. 【详解】 由题意知:n =2,m =3,则m +n =3+2=5 故选:C 【点睛】 本题主要考查了同类项的概念,掌握同类项的概念是解答本题的关键. 6、D 【分析】 直接根据二次函数的顶点式进行解答即可. 【详解】 解:由二次函数y =(x +2)2+5可知,其图象的对称轴是直线x =-2. 故选:D . 【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.7、D【分析】由这种工艺品的销售价每个降低x 元,可得出每个工艺品的销售利润为(38-x -22)元,销售量为·线○封○密○外(160+3x ×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:∵这种工艺品的销售价每个降低x 元,∴每个工艺品的销售利润为(38-x -22)元,销售量为(160+3x ×120)个.依题意得:(38-x -22)(160+3x×120)=3640.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8、B【分析】根据倒数的概念、有理数的大小比较法则判断.【详解】解:A 、零没有倒数,本选项说法错误;B 、乘积是1的两数互为倒数,本选项说法正确;C 、如果0a =,则a 没有倒数,本选项说法错误;D 、2-的倒数是12-,102-<,则任何不等于0的数的倒数都大于零说法错误; 故选:B .【点睛】本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键.9、C【分析】本题要有一定的空间想象能力,可通过折纸或记口诀的方式找到“罩”的对面应该是“手”.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“罩”相对的面是“手”;故选:C .【点睛】可以通过折一个正方体再给它展开,通过结合立体图形与平面图形的转化,建立空间观念,解决此类问题.还可以直接记口诀找对面:"跳一跳找对面;找不到,拐个弯". 10、B 【分析】 根据平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质依次判断. 【详解】 解:同一平面内,不相交的两条直线叫做平行线,故选项A 错误; 过一点有且仅有一条直线与已知直线垂直,故选项B 正确; 平角是角的两边在同一直线上的角,故选项C 错误; 过同一平面内三点中任意两点,能画出1条或3条直线故选项D 错误;故选:B .【点睛】此题考查语句的正确性,正确掌握平行线的定义,垂直的性质,平角的定义,两点确定一条直线的性质是解题的关键. 二、填空题 1、345 ·线○封○密·○外【分析】 根据分数指数幂的意义,利用nm a =m 、n 为正整数)得出即可.【详解】 345=. 故答案是:345.【点睛】本题考查了分数指数幂,解决本题的关键是熟记分数指数幂的定义.2、112n -⎛⎫ ⎪⎝⎭或112n - 【分析】由题意依据垂直平分线性质和等边三角形性质以及60°直角三角形所对应的邻边是斜边的一半得出2111122B C AB ==,232211()22B C AB ==,进而总结规律即可得出第n 条线段1n n B C -的长. 【详解】解:∵90ACB ∠=︒,30BAC ∠=︒,1BC =,∴22AB BC ==,∵1B 1C 垂直平分AC ,∴111,30AB B C BAC B CA ︒=∠=∠=, ∴11160BB C B BC BCB ︒∠=∠=∠=, ∴111112B C AB BB BC AB =====, 同理2111122B C AB ==,232211()22B C AB ==, 344411()22B C AB == 可得第n 条线段1n n B C -的长为:112n -⎛⎫ ⎪⎝⎭或112n -. 故答案为:112n -⎛⎫ ⎪⎝⎭或112n -. 【点睛】 本题考查图形规律,熟练掌握垂直平分线性质和等边三角形性质以及60°直角三角形所对应的邻边是斜边的一半是解题的关键.3、2【分析】利用互为相反数的两个数的和为0,计算a 的值,代入求值即可.【详解】∵37a -与22a +互为相反数,∴3a -7+2a +2=0,解得a =1,∴223a a -+=1-2+3=2,∴代数式223a a -+的值是2,故答案为:2.【点睛】·线○封○密·○外本题考查了相反数的性质,代数式的值,利用互为相反数的两个数的和为零确定字母的值是解题的关键.4、36【分析】设∠BAC=x,依据旋转的性质,可得∠DAE=∠BAC=x,∠ADB=∠ABD=2x,再根据三角形内角和定理即可得出x.【详解】解:设∠BAC=x,由旋转的性质,可得∠DAE=∠BAC=x,∴∠DAC=∠DBA=2x,又∵AB=AD,∴∠ADB=∠ABD=2x,△ABD中,∠BAD+∠ABD+∠ADB=180°,∴x+2x+2x=180°,∴x=36°,即∠BAC=36°,故答案为:36.【点睛】本题主要考查了旋转的性质以及三角形内角和定理,解题时注意:旋转前、后的图形全等.5、24【分析】分两种情考虑:腰长为4,底边为10;腰长为10,底边为4.根据这两种情况即可求得三角形的周长.【详解】当腰长为4,底边为10时,因4+4<10,则不符合构成三角形的条件,此种情况不存在; 当腰长为10,底边为4时,则三角形的周长为:10+10+4=24. 故答案为:24 【点睛】 本题考查了等腰三角形的性质及周长,要注意分类讨论. 三、解答题 1、(1)∠AOE 和∠DOE ;(2)∠BOE =30°;(3)OF 平分AOC .理由见解析. 【分析】 (1)根据补角的定义,依据图形可直接得出答案; (2)根据互余和∠COF =2∠COE ,可求出∠COF 、∠COE ,再根据角平分线的意义可求答案; (3)根据互余,互补、角平分线的意义,证明∠FOA =∠COF 即可.【详解】解:(1)∵∠AOE +∠BOE =∠AOB =180°,∠COE +∠DOE =∠COD =180°,∠COE =∠BOE ∴∠BOE 的补角是∠AOE ,∠DOE故答案为:∠AOE 或∠DOE ;(2)∵OE ⊥OF .∠COF =2∠COE ,·线○封○密○外∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF平分∠AOC.【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.2、(1)75(2)①旋转角α的值为30°,90°,105°;②当α=105°或125°时,存在∠BOC=2∠AOD.【分析】(1)根据平平角的定义即可得到结论;(2)①根据已知条件和角平分线的定义即可得到结论;②当OA在OD的左侧时,当OA在OD的右侧时,列方程即可得到结论.(1)解:∵∠AOB=45°,∠COD=60°,∴∠BOD =180°-∠AOB -∠COD =75°,故答案为:75;(2)解:①当OB 平分∠AOD 时,∵∠AOE =α,∠COD =60°,∴∠AOD =180°-∠AOE -∠COD =120°-α,∴∠AOB =12∠AOD =60°-12α=45°, ∴α=30°, 当OB 平分∠AOC 时, ∵∠AOC =180°-α, ∴∠AOB =90°-12α=45°, ∴α=90°; 当OB 平分∠DOC 时, ∵∠DOC =60°, ∴∠BOC =30°, ∴α=180°-45°-30°=105°, 综上所述,旋转角度α的值为30°,90°,105°; ②当OA 在OD 的左侧时,则∠AOD =120°-α,∠BOC =135°-α, ∵∠BOC =2∠AOD , ∴135°-α=2(120°-α), ∴α=105°; ·线○封○密·○外当OA在OD的右侧时,则∠AOD=α-120°,∠BOC=135°-α,∵∠BOC=2∠AOD,∴135°-α=2(α-120°),∴α=125°,综上所述,当α=105°或125°时,存在∠BOC=2∠AOD.【点睛】本题考查了角的计算,特殊角,角平分线的定义,正确的理解题意是解题的关键.3、(1)每件乙种商品的价格为40元,每件甲种商品的价格为48元.(2)最多可购买50件甲种商品.【分析】(1)设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,根据数量=总价÷单价结合用1200元购买甲种口罩的件数恰好与用1000元购买乙种口罩的件数相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设购买y件甲种商品,则购买(80-y)件乙种商品,根据总价=单价×购买数量结合投入的经费不超过3600元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最大正整数即可.(1)解:设每件乙种商品的价格为x元,则每件甲种商品的价格为(x+8)元,根据题意得:120010008x x=+,解得:x=40,经检验,x=40原方程的解,∴x+8=48.答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.(2)解:设购买y 件甲种商品,则购买(80-y )件乙种商品,根据题意得:48y +40(80-y )≤3600,解得:y ≤50.答:最多可购买50件甲种商品.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x 的分式方程;(2)根据总价=单价×购买数量,列出关于y 的一元一次不等式. 4、 (1)12k ≤ (2)存在,3k =- 【分析】 (1)根据关于 x 的方程 x 2﹣2(k ﹣1)x +k 2=0 有两个实数根,∆≥0,代入计算求出k 的取值范围. (2)根据根与系数的关系,12= x b x a +-,12=c x x a ,根据题意列出等式,求出k 的值,根据k 的值是否在取值范围内做出判断. (1) 解:∵关于 x 的方程 x 2﹣2(k ﹣1)x +k 2=0 有两个实数根根据题意得()22414480k k k ∆=--=-≥, 解得12k ≤. (2)·线○封○密○外解:存在.根据根与系数关系122()1x x k +=-,212x x k =,∵x 1+x 2=1﹣x 1x 2,∴2()211k k -=-,解得1231k k =-=,, ∵12k ≤. ∴存在实数k =-3,使得x 1+x 2=1﹣x 1x 2.【点睛】本题考查一元二次方程根的判别式及根与系数的关系,解一元二次方程,要注意根据k 的取值范围来进取舍.5、325x y z =⎧⎪=-⎨⎪=-⎩【分析】由②-①,得:333x y +=④,由③-②,得:21357x y +=⑤,再由由⑤-④,得:3x =,再将3x =代入④,可得2y =-,然后将3x =,2y =-代入①,可得5z =-,即可求解.【详解】解:042325560x y z x y z x y z -+=⎧⎪++=⎨⎪++=⎩①②③ , 由②-①,得:333x y +=④,由③-②,得:21357x y +=⑤,由⑤-④,得:1854x =,解得:3x =,将3x =代入④,得:933y +=,解得:2y =-,将3x =,2y =-代入①,得:320z ++= , 解得: ∴方程组的解为:325x y z =⎧⎪=-⎨⎪=-⎩. 【点睛】 本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键. ·线○封○密·○外。
D.C.B.A.房山区2011年九年级学题统一练习(二)一、选择题(本大题共32分,每小题4分): 1.-3的相反数等于A .3B .-3C .31 D .-312.上海世博会永久地标建筑世博轴获“全球生态建筑奖”,该建筑占地面积约为104500平方米.其中104500这个数用科学记数法表示为A .1.045610⨯ B .0.1045 510⨯ C .10.45410⨯ D .1.045510⨯ 3.下列说法正确的是A .3B .对角线相等的四边形是矩形C .近似数0.2050有4个有效数字D .两个底角相等的梯形一定是等腰梯形 4.如果正多边形的每个外角等于40°,则这个正多边形的边数是 A .10 B .9 C .8 D .75.已知两圆的半径分别为3cm ,和5cm , 圆心距是6cm ,则两圆的位置关系 A .相离 B .外切 C .相交 D .内切6.如图所示,电路图上有A 、B 、C 三个开关和一个小灯泡,闭合开关C 或者同时闭合开关A 、B ,都可使小灯泡发光.现在任意闭合其中一个开关,则小灯泡发光的概率等于 A .14 B .13 C .23 D .127.对于一组数据:75,73,75,71,76,下列说法正确的是A .这组数据的平均数是75B .这组数据的方差是3.2C .这组数据的中位数是74D .这组数据的众数是76 8.将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部分围成一个立体模型,以阴影部分为底面放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是二、填空题(本大题共16分,每小题4分):CDF EBA 9.若分式121x x +-有意义,则x_____________. 10.因式分解:39x x -=______________.11.如图,正方形ABCD 的边长为4cm ,正方形AEFG 的边长为1cm .如果正方形AEFG 绕点A 旋转,那么C 、F 两点之间的最小距离是____________.12.如图,正方形ABCD ,E 为AB 上的动点,(E 不与A 、B 重合)联结DE ,作DE 的中垂线,交AD 于点F . (1)若E 为AB 中点,则DFAE= . (2)若E 为AB 的n 等分点(靠近点A), 则DFAE= . 三、解答题(本大题共30分,每小题5分) 13.(本小题满分5分)计算:01(π4)tan 602----. 解:14.(本小题满分5分)解不等式5122(43)x x --≤,并把它的解集在数轴上表示出来. 解:15.(本小题满分5分)已知:如图,在△ABC 中,∠ACB=90°点D 是AB 的中点,延长BC 到点F , 延长CB 到点E ,使CF=BE ,联结DE 、DC 、DF .求证:DE=DF . 证明:16.(本小题满分5分)已知2(2)(2)40x x x y ---+=,求代数式2x -解:FEDCAy-52x 13-4123-1-2-3-1-2O17.(本小题满分5分)列方程或方程组解应用题:九年级(1)班的学生周末乘汽车到游览区游览,游览区到学校120千米,一部分学生乘慢车先行,出发1小时后,另一部分学生乘快车前往,结果他们同时到达,已知快车速度是慢车速度的1.5倍,求慢车的速度. 解:18.(本小题满分5分)已知反比例函数y = kx 的图象与二次函数y =ax 2+x -1的图象相交于点A (2,2)(1)求反比例函数与二次函数的解析式;(2)设二次函数图象的顶点为B ,判断点B 是否在反比例函数的图象上,并说明理由;(3)若反比例函数图象上有一点P ,点P 的横坐标为1,求△AOP 的面积. 解:(1)(2)(3)四、解答题(本大题共20分,每小题5分): 19.(本小题满分5分)在△ABC 中,AB=AC ,∠BAC=120°,过点C 作CD ∥AB ,且CD=2AB ,联结BD ,BD=2.求△ABC 的面积. 解:D C20.(本小题满分5分)已知:如图,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.(1)判断直线BD 与O 的位置关系,并证明你的结论;(2)若2BC =,BD =52,求ADAO的值.解:(1)判断:证明:(2)21.(本小题满分5分)“校园手机”现象越来越受到社会的关注.“春节”期间,小记者刘凯随机调查了我区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:D BD CB A图① 图②(1)求这次调查的家长人数,并补全图①; (2)求图②中表示家长“赞成”的圆心角的度数;(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少? 解:(1)(3) 22.(本小题满分5分)已知菱形纸片ABCD 的边长为8,∠A=60°,E 为AB 边上的点,过点E 作EF ∥BD 交AD 于点F .将菱形先沿EF 按图1所示方式折叠,点A 落在点A '处,过点A '作GH ∥BD 分别交线段BC 、DC 于点G 、H,再将菱形沿GH 按图1所示方式折叠,点C 落在点C '处, C G '与C 'H 分别交A E '与A F '于点M 、N .若点C '在△A 'EF 的内部或边上,此时我们称四边形A MC N ''(即图中阴影部分)为“重叠四边形”.图1 图2 备用图(1)若把菱形纸片ABCD 放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A 、B 、C 、D 、E 恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形A MC N ''的面积;(2)实验探究:设AE 的长为m ,若重叠四边形A MC N ''存在.试用含m 的代数式表示重叠四边形A MC N ''的面积,并写出m 的取值范围(直接写出结果,备用图供实验,探究使用). 解:(1)重叠四边形A MC N ''的面积为 ;(2)用含m 的代数式表示重叠四边形A MC N ''的面积为______________;m 的取值范围为_____________.五、解答题(本大题共22分,其中第23小题7分,第24小题7分,第25小题8分): 23.(本小题满分7分)已知:二次函数y=22(2)x n m x m mn +-+-. (1)求证:此二次函数与x 轴有交点;(2)若m-1=0,求证方程22(2)0x n m x m mn +-+-=有一个实数根为1;(3)在(2)的条件下,设方程22(2)0x n m x m mn +-+-=的另一根为a,当x=2时,关于n 的函数1y nx am=+与222(2)y x n m ax m mn =+-+-的图象交于点A 、B (点A 在点B 的左侧),平行于y 轴的直线L 与1y nx am =+、222(2)y x n m ax m mn =+-+-的图象分别交于点C 、D ,若CD=6,求点C 、D 的坐标.(1)证明:(2)解:(3)解:24.(本小题满分7分)如图,已知二次函数()220y ax ax c a =-+<的图象与x 轴负半轴交于点A (-1,0),与y轴正半轴交与点B ,顶点为P ,且OB=3OA ,一次函数y=kx+b 的图象经过A 、B . (1)求一次函数解析式; (2)求顶点P 的坐标; (3)平移直线AB 使其过点P ,如果点M在平移后的直线上,且3tan 2OAM ∠=,求点M 坐标; (4)设抛物线的对称轴交x 轴与点E ,联结AP 交y 轴与点D ,若点Q 、N 分别为两线段PE 、PD 上的动点,联结QD 、QN ,请直接写出QD+QN 的最小值. 解:(1)(2)(3)(4) 25.(本小题满分8分)如图,在平面直角坐标系中,点O 是坐标原点,四边形AOCB 是梯形,AB ∥OC ,点A 在y 轴上,点C 在x 轴上,且2OA 80-=(),OB =OC . (1)求点B 的坐标;(2)点P 从C 点出发,沿线段CO 以5个单位/秒的速度向终点O 匀速运动,过点P 作PH ⊥OB ,垂足为H ,设△HBP 的面积为S (S≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(直接写出自变量t 的取值范围); (3)在(2)的条件下,过点P 作PM ∥CB 交线段AB 于点M ,过点M 作MR ⊥OC ,垂足为R ,线段MR 分别交直线PH 、OB 于点E 、G ,点F 为线段PM 的中点,联结EF .①判断EF 与PM 的位置关系; ②当t 为何值时,2EG =?解:(1)(2)(3)房山区2011年九年级数学统一练习(二)答案及评分标准二、 填空题:9. 12≠; 10. (+3)(3)x x x -; 11. 12.251,42n n + .三、解答题:13.解:原式=112- -----------------------------------------------------------4分=32- ----------------------------------------------------------------------5分 14.解:去括号:5x-1286x ≤- --------------------------------------------------------------1分移项: 58126x x -≤- ------------------------------------------------------------------2分 合并同类项:36x -≤ ---------------------------------------------------------------------3分 系数化1:2x ≥- --------------------------------------------------------------------4分 这个不等式的解集在数轴上表示如下:数轴表示(略) ----------------------------------------------5分 15.证明:∵在△ABC 中,∠ACB=90°,点D 是AB 的中点∴CD=BD ------------------------------------------------------------1分 ∴∠DCE=∠DBF------------------------------------------------------2分 ∵CF=BE , ∴CE = BF ---------------------------------3分 ∴△DCE ≌△DBF------------------------------------4分∴DE=DF . -------------------------------------------------5分 16.解:∵2(2)(2)40x x x y ---+=∴222240x x x y --++= --------------------------------------------------2分 ∴2x y -= ---------------------------------------------------3分 当2x y -=时,222x xy y -+=2()x y - ---------------------------------------------------4分 =4 ----------------------------------------------------------------5分 17.解:设慢车的速度为x 千米/小时,则快车速度为1.5x 千米/小时,由题意得:12012011.5x x-= -------------------------------2分 解得: x=40 ------------------------------4分 经经验x=40是所列方程的根,且符合题意 ------------------5分 答:慢车的速度为40千米/小时.18.解:(1)∵反比例函数y = kx的图象与二次函数y =ax 2+x -1的图象相交于点A (2,2) ∴k =4 ,a =14∴反比例函数的解析式为:4y x =二次函数的解析式为:2114y x x =+- ------------------------------------2分(2)∵二次函数2114y x x =+-的图象的顶点为B (-2,-2),在4y x= 中,当x=-2时,y=422=-- ∴顶点B (-2,-2)在反比例函数的图象上----------------------------------------------3分 (3)∵点P 在4y x=的图象上,且点P 的横坐标为1 ∴P (1,4) ------------------------------------------------------------------------- 4分FEDCA∴AOP 3S ∆= ------------------------------------------------------------------------ 5分19.解:过点B 作BE ⊥AC 交CD 于E ,过点A 作AF ⊥CB 于F∵CD ∥AB ,AB=AC , ∴四边形ABEC 是菱形---------------------------------------1分∴BE=CE=AB∵∠BAC=120° ∴∠ABC=30°,∠ABE=60°,∠BED=60° ∵CD=2AB ,BD=2∴△ABC 是等边三角形 ,AB=2 --------------------------------------------------------------------2分 在△ABF 中,∠AFB=90°, ∠ABC=30°,AB =2 ∴AF=1 ---------------------------------------------------------------------------3分 ∴-------------------------------------------------------------------------------4分 ∴△ABC-------------------------------------------------------------------------------5分20.解:(1)直线BD 与O 相切.------------------------------------------------------------------1分证明:如图1,连结OD .OA OD =,∴A ADO ∠=∠.90C ∠=, ∴90CBD CDB ∠+∠=.又CBD A ∠=∠,∴90ADO CDB ∠+∠=. ∴90ODB ∠=. ∴直线BD 与O 相切. ---------------------------------------------------------------------------2分(2)解法一:如图1,连结DE .90C ∠=, 2BC =,BD =52∴4cos 5BC CBD BD ∠==. ---------------------------------------------------------------------------3分AE 是O 的直径, ∴90ADE ∠=.∴cos ADA AE=. ∵CBD A ∠=∠, ∴AD AE =BC BD =45.----------------------------------------------------------------------------------------4分 ∵AE=2AO ∴AD AO =85---------------------------------------------------------------------------------------------------5分 F E A BCD解法二:如图2,过点O 作OH AD ⊥于点H . ∴12AH DH AD ==. ∴cos AH A AO = 90C ∠=, 2BC =,BD =52 ∴4cos 5BC CBD BD ∠==.-------------------------------------------------------------------------- 3分∵CBD A ∠=∠, ∴AHAO =BCBD =45.-------------------------------------------------------------------------------------4分 ∴ADAO =85 -----------------------------------------------------------------------------------------5分21.解:(1)家长人数为80÷20%=400 ----------------------------------------1分正确补图① -----------------------------------------------------------2分(2)表示家长“赞同”的圆心角度数为︒=︒⨯3636040040--------------------3分(3)学生持“无所谓”态度的人数为30人,调查的学生数为140+30+30=200人-------------------------------------------4分学生恰好持“无所谓”态度的概率是15.0303014030=++ -----------------5分22.解:(1)重叠四边形A MC N ''的面积为 32; - -----------------------------------2分(2)用含m 的代数式表示重叠四边形A MC N ''的面积为 2m -823)(;-----4分m 的取值范围为 316≤m <8 ----------------------------5分23.(1)证明:令0y =,则有22(2)0x n m x m mn +-+-=△=222(2)4()n m m mn n ---= -----------------------------------------------------------1分∵20n ≥∴△≥0 -----------------------------------------------2分∴二次函数y=22(2)x n m x m mn +-+-与x 轴有交点(2)解:解法一:由101m m -==得,方程22(2)0x n m x m mn +-+-=可化为 2(2)10x n x n +-+-=解得:11x x n ==-或 -------------------------------------------------------------------3分∴方程22(2)0x n m x m mn +-+-=有一个实数根为1 ----------------------------------4分解法二:由101m m -==得,方程22(2)0x n m x m mn +-+-=可化为 2(2)10x n x n +-+-=当x=1时,方程左边=1+(n-2)+1-n=0方程右边=0∴左边=右边 -----------------------------------------------------------3分∴方程22(2)0x n m x m mn +-+-=有一个实数根为1 -------------------4分(3)解:方程22(2)0x n m x m mn +-+-=的根是:121,1x x n ==- ∴1a n =-当x =2时,11y n =+,22251y n n =-++ ----------------------------------5分设点C (,1b b +)则点D (2,251b b b -++)∵CD=6 , ∴221(251)62b 51(1)6b b b b b +--++=-++-+=或∴31b b ==-或 -----------------------------------------------------------6分∴C 、D 两点的坐标分别为C (3,4),D (3,-2)或C (-1,0),D (-1,-6)------7分24.解:(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)----------------------------------------------------------------------------1分∴图象过A 、B 两点的一次函数的解析式为:y=3x+3 -----------------------------------------2分(2)∵二次函数()220y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3), ∴c=3,a=-1∴二次函数的解析式为:223y x x =-++ ------------------------------------------------------3分∴抛物线223y x x =-++的顶点P (1,4)-----------------------------------------------------4分(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11(,2)3M --------------------------------------------------------------------5分 ②当点M 在x 轴下方时,有31312x x +-=+,∴59x =- ∴25(,9M -23-) ----------------------------------------------------------------6分 (4)作点D 关于直线x=1的对称点D’,过点D’作D’N ⊥PD 于点N-----------------------------------------------------------7分25.解:(1)如图1,过点B 作BN ⊥OC ,垂足为N∵2OA 80-+=(),OB=OC ∴OA=8,OC=10 -------------------------------1分∴OB=OC=10, BN=OA=8 ∴.6==22BN -OB ON∴B(6,8) ----------------------------------------------2分(2)如图1,∵∠BON=∠POH, ∠ONB=∠OHP=90°.∴△BON ∽△POH ∴PHBN OH ON PO BO == ∵PC=5t. ∴OP=10-5t. ∴OH=6-3t. PH=8-4t.∴BH=OB-OH=10-(6-3t)=3t+4 ∴1646)48)(43(2++-=-+=t t t t 21S ------------------------------------ 3分 ∴t 的取值范围是:0≤t <2 ------------------------------------------4分(3)①EF ⊥PM ----------------------------------------------------5分∵MR ⊥OC ,PH ⊥OB∴∠RPM+∠RMP=90°,∠HPD+∠HDP=90°∵OC=OB ∴∠OCB=∠OBC.∵BC ∥PM∴∠RPM=∠HDP ,∴∠RMP=∠HPD ,即:∠ EMP=∠HPM∴EM=EP∵点F 为PM 的中点 ∴EF ⊥PM ----------6分②如图2过点B 作BN′⊥OC ,垂足为 N′,BN′=8,CN′=4∵BC ∥PM,MR ⊥OC∴△MRP ≌△B N′C∴PR=C N′=4设EM=x,则EP=x在△PER 中,∠ERP=90°,RE=MR-ME=8-x有222(8)4x x --=,∴x=5∴ME=5∵△MGB ∽△N′BO ∴ON MB B N MG '=' ∵ PM ∥CB ,AB ∥OC∴四边形BMPC 是平行四边形. ∴ BM=PC=5t.第一种情况:当点G 在点E 上方时(如图2)∵EG=2,∴MG=EM-EG=5-2=3 ∴3586t = ∴t=209 --------------------7分第二种情况:当点G 在点E 下方时(如图3) MG=ME+EG=5+2=7, ∴7586t = ,∴t=2021 -------------------------------------------8分 ∴当t=209或2021时,EG =2.。
北京市房山区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数2 45y x x =-++的图象如图所示,若()1 3A y -,,()()2301B y C y ,,,是这个函数图象上的三点,则123y y y ,,的大小关系是( )A .123 y y y <<B .213 y y y <<C .312 y y y <<D .132y y y <<2.若实数 a ,b 满足|a|>|b|,则与实数 a ,b 对应的点在数轴上的位置可以是( ) A .B .C .D .3.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A .0.5B .1C .3D .π42(2)2a a -=-,那么( ) A .2x <B .2x ≤C .2x >D .2x ≥5.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为A.40海里B.60海里C.70海里D.80海里6.对于不等式组1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1,2,3B .此不等式组的解集为716x-<≤C.此不等式组有5个整数解D .此不等式组无解7.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC8.下列生态环保标志中,是中心对称图形的是()A.B.C.D.9.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ10.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°11.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位C :﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣112.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为()A.115°B.120°C.125°D.130°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADC=4,反比例函数y=kx(x>0)的图像经过点E,则k=_______ 。
20XX年北京房山区中考二模数学试题及答案
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
帮助考生把握考试要点。
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
整理了以下中考二模数学试题及答案,帮助考生把握考试要点。
帮助考生把握考试要点。
2022年北京市房山区中考数学第二次模拟试题考试时间:90分钟;命题人:数学教研组考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟 2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将抛物线y =2x 2向下平移3个单位后的新抛物线解析式为( ) A .y =2(x ﹣3)2B .y =2(x +3)2C .y =2x 2﹣3D .y =2x 2+32、如图,OM 平分AOB ∠,2MON BON ∠=∠,72AON BON ∠-∠=︒,则AOB ∠=( ).A .96°B .108°C .120°D .144°3、观察下列图形:它们都是由同样大小的圆圈按一定的规律组成,其中第1个图形有5个圆圈,第2个图形有9个圆圈,第3个图形有13个圆圈,……,按此规律,第7个图形中圆圈的个数为( )·线○封○密○外A .21B .25C .28D .294、如图,在Rt ABC 中,90C ∠=︒,5sin 13A =,则cos A 的值为( )A .512B .125C .1213D .13125、在平面直角坐标系xOy 中,点A (2,1)与点B (0,1)关于某条直线成轴对称,这条直线是( ) A .x 轴B .y 轴C .直线1x =(直线上各点横坐标均为1)D .直线1y =(直线上各点纵坐标均为1) 6、已知点A (m ,2)与点B (1,n )关于y 轴对称,那么m +n 的值等于( ) A .﹣1B .1C .﹣2D .27、如图,点C 、D 分别是线段AB 上两点(CD AC >,CD BD >),用圆规在线段CD 上截取CE AC =,DF BD =,若点E 与点F 恰好重合,8AB =,则CD =( )A .4B .4.5C .5D .5.58、如图,E 为正方形ABCD 边AB 上一动点(不与A 重合),AB =4,将△DAE 绕着点A 逆时针旋转90°得到△BAF,再将△DAE沿直线DE折叠得到△DME.下列结论:①连接AM,则AM∥FB;②连接FE,当F,E,M共线时,AE=4;③连接EF,EC,FC,若△FEC是等腰三角形,则AE=4,其中正确的个数有()个.A.3 B.2 C.1 D.09、下列四个实数中,无理数是()AB.0.131313…C.227D10、若x=1是关于x的一元二次方程x2+ax﹣2b=0的解,则4b﹣2a的值为()A.﹣2 B.﹣1 C.1 D.2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知关于x,y的二元一次方程组2586235x y ax y a+=+⎧⎨-=-⎩的解x,y互为相反数,则a的值为______.2、深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有 _____个.3、一次函数y=﹣x+1的图象与反比例函数y=kx的图象交点的纵坐标为2,当﹣3<x<﹣1时,反比例函数y=kx中y的取值范围是 _____.·线○封○密○外4、已知21x y =-⎧⎨=⎩是二元一次方程233x ay +=的一个解,那么=a _______.5、中午放学后,有a 个同学在学校一食堂门口等侯进食堂就餐,由于二食堂面积较大,所以配餐前二食堂等待就餐的学生人数是一食堂的2倍,开始配餐后,仍有学生续前来排队等候就餐,设一食堂排队的学生人数按固定的速度增加,且二食堂学生人数增加的速度是一食堂的2倍,两个食堂每个窗口阿姨配餐的速度是一样的,一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放2个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕;若需要在15分钟内配餐完毕,则两个食堂至少需要同时一共开放___个配餐窗口. 三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,ABC 顶点的横、纵坐标都是整数.若将ABC 以某点为旋转中心,顺时针旋转90°得到DEF ,其中A 、B 、C 分别和D 、E 、F 对应. (1)请通过画图找出旋转中心M ,点M 的坐标为______. (2)直接写出点A 经过的路径长为______.2、在ABC 中,120BAC ∠=︒,AB AC =,AD 为ABC 的中线,点E 是射线AD 上一动点,连接CE ,作60CEM ∠=︒,射线EM 与射线BA 交于点F . (1)如图1,当点E 与点D 重合时,求证:2AB AF =; (2)如图2,当点E 在线段AD 上,且与点A ,D 不重合时, ①依题意,补全图形;②用等式表示线段AB ,AF ,AE 之间的数量关系,并证明.(3)当点E 在线段AD 的延长线上,且ED AD ≠时,直接写出用等式表示的线段AB ,AF ,AE 之间的数量关系.3、如图,抛物线y =x 2﹣2x +c 与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C (0,﹣3). (1)求AB 的长.(2)将点A 向上平移n 个单位至点E ,过点E 作DF ∥x 轴,交抛物线与点D ,F .当DF =6时,求n的值.4、如图,一次函数b y x 与反比例函数ky x=(k ≠0)交于点A 、B 两点,且点A 的坐标为(1,3),一次函数b y x 与x 轴交于点C ,连接OA 、OB .·线○封○·密○外(1)求一次函数和反比例函数的表达式;(2)求点B的坐标及AOB的面积;(3)过点A作y轴的垂线,垂足为点D.点M是反比例函数kyx=第一象限内图像上的一个动点,过点M作x轴的垂线交x轴于点N,连接CM.当Rt ADO与Rt△CNM相似时求M点的坐标.5、计算:(1)(2a﹣b)2﹣b(2a+b);(2)(2aa1-﹣a﹣1)÷221-aa.-参考答案-一、单选题1、C【分析】根据“上加下减”的原则进行解答即可.【详解】解:将抛物线y =2x 2向下平移3个单位后的新抛物线解析式为:y =2x 2-3. 故选:C . 【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键. 2、B 【分析】设BON x ∠=,利用关系式2MON BON ∠=∠,72AON BON ∠-∠=︒,以及图中角的和差关系,得到3MOB x ∠=、722AOB x ∠=︒+,再利用OM 平分AOB ∠,列方程得到18x =︒,即可求出AOB ∠的值. 【详解】 解:设BON x ∠=, ∵2MON BON ∠=∠, ∴2MON x ∠=,∴23MOB MON BON x x x ∠=∠+∠=+=. ∵72AON BON ∠-∠=︒, ∴72AON x ∠=︒+, ∴72722AOB AON BON x x x ∠=∠+∠=︒++=︒+.∵OM 平分AOB ∠, ∴12MOB AOB ∠=∠,∴()137222x x =︒+,解得18x =︒.72272218108AOB x ∠=︒+=︒+⨯︒=︒.故选:B . 【点睛】·线○封○密○外本题通过图形中的角的和差关系,利用方程的思想求解角的度数.其中涉及角的平分线的理解:一般地,从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.3、D【分析】根据已知图形得出第n个图形中圆圈数量为1+4×n=4n+1,再将n=7代入即可得.【详解】解:∵第1个图形中圆圈数量5=1+4×1,第2个图形中圆圈数量9=1+4×2,第3个图形中圆圈数量13=1+4×3,……∴第n个图形中圆圈数量为1+4×n=4n+1,当n=7时,圆圈的数量为29,故选:D.【点睛】本题考查规律型-图形变化类问题,解题的关键是学会从特殊到一般的探究方法,学会利用规律解决问题.4、C【分析】由三角函数的定义可知sinA=ac,可设a=5k,c=13k,由勾股定理可求得b,再利用余弦的定义代入计算即可.【详解】解:在直角三角形ABC中,∠C=90°∵sinA=513ac,∴可设a =5k ,c =13k ,由勾股定理可求得b =12k ,∴cosA =12121313b kc k ==, 故选:C .【点睛】本题主要考查了三角函数的定义,掌握正弦、余弦函数的定义是解题的关键. 5、C 【分析】利用成轴对称的两个点的坐标的特征,即可解题. 【详解】根据A 点和B 点的纵坐标相等,即可知它们的对称轴为20122A B x x x ++===. 故选:C .【点睛】 本题考查坐标与图形变化—轴对称,掌握成轴对称的两个点的坐标的特点是解答本题的关键. 6、B 【分析】 关于x 轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此先求出m ,n 的值,然后代入代数式求解即可得. 【详解】解:∵(),2A m 与点()1,B n 关于y 轴对称, ∴1m =-,2n =, ∴121m n +=-+=,·线○封○密○外故选:B . 【点睛】题目主要考查点关于坐标轴对称的特点,求代数式的值,理解题意,熟练掌握点关于坐标轴对称的特点是解题关键. 7、A 【分析】 根据题意可得12CE AE =,12ED BE =,再由111222CD CE DE AE BE AB =+=+=即可得到答案. 【详解】解:CE =AC ,DF =BD ,点E 与点F 恰好重合, ∴CE =AC ,DE =BD , ∴12CE AE =,12ED BE =, ∴1111842222CD CE DE AE BE AB =+=+==⨯=, 故选A . 【点睛】本题主要考查了与线段中点有关的计算,解题的关键在于能够根据题意得到12CE AE =,12ED BE =. 8、A 【分析】①正确,如图1中,连接AM ,延长DE 交BF 于J ,想办法证明BF ⊥DJ ,AM ⊥DJ 即可;②正确,如图2中,当F 、E 、M 共线时,易证∠DEA =∠DEM =67.5°,在MD 上取一点J ,使得ME =MJ ,连接EJ ,设AE =EM =MJ =x ,则EJ =JD ,构建方程即可解决问题;③正确,如图3中,连接EC ,CF ,当EF =CE 时,设AE =AF =m ,利用勾股定理构建方程即可解决问题.【详解】解:①如下图,连接AM ,延长DE 交BF 于J , ∵四边形ABCD 是正方形, ∴AB =AD ,∠DAE =∠BAF =90°, 由题意可得AE =AF , ∴△BAF ≌△DAE (SAS ),∴∠ABF =∠ADE ,∵∠ADE +∠AED =90°,∠AED =∠BEJ ,∴∠BEJ +∠EBJ =90°,∴∠BJE =90°,∴DJ ⊥BF ,由翻折可知:EA =EM ,DM =DA ,∴DE 垂直平分线段AM ,∴BF ∥AM ,故①正确;②如下图,当F 、E 、M 共线时,易证∠DEA =∠DEM =67.5°,在MD 上取一点J ,使得ME =MJ ,连接EJ , ·线○封○密·○外则由题意可得∠M=90°,∴∠MEJ=∠MJE=45°,∴∠JED=∠JDE=22.5°,∴EJ=JD,设AE=EM=MJ=x,则EJ=JD x,则有x =4,∴x4,∴AE﹣4,故②正确;③如下图,连接CF,当EF=CE时,设AE=AF=m,则在△BCE中,有2m²=4²+(4-m)2,∴m4或 4 (舍弃),∴AE4,故③正确;故选A .【点睛】本题考查旋转变换,翻折变换,正方形的性质,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用参数构建方程解决问题,属于中考选择题中的压轴题. 9、D 【分析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.无理数包括无线不循环小数和开方不能开尽的数,由此即可判定选择项. 【详解】 解:A3=-,是整数,属于有理数,故本选项不合题意;B .0.131313…是无限循环小数,属于有理数,故本选项不合题意;C .227是分数,属于有理数,故本选项不合题意; D故选:D . 【点睛】 题目主要考查立方根,无理数,有理数,理解无理数的定义是解题关键. 10、D 【分析】 将x =1代入原方程即可求出答案. 【详解】 ·线○封○密·○外解:将x=1代入原方程可得:1+a-2b=0,∴a-2b=-1,∴原式=-2(a-2b)=2,故选:D.【点睛】本题考查一元二次方程,解题的关键是正确理解一元二次方程的解的概念,本题属于基础题型.二、填空题1、-3【分析】两个方程相加得出3x+3y=3a+9,根据已知条件x,y互为相反数知x+y=0,得出关于a的方程,解方程即可.【详解】解:两个方程相加得:3x+3y=3a+9,∵x、y互为相反数,∴x+y=0,∴3x+3y=0,∴3a+9=0,解得:a=-3,故答案为:-3.【点睛】本题考查了二元一次方程组的解、互为相反数的性质;根据题意得出关于a的方程是解决问题的关键.2、3【分析】先求出得到吉祥物的频率,再设纸箱中红球的数量为x 个,根据题意列出方程,解之即可.【详解】解:由题意可得: 参与该游戏可免费得到吉祥物的频率为15005000=310, 设纸箱中红球的数量为x 个, 则31010x =, 解得:x =3, 所以估计纸箱中红球的数量约为3个, 故答案为:3.【点睛】本题主要考查利用频率估计概率,大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率. 3、23<y <2 【分析】 把一个交点的纵坐标是2代入y =-x +1求出横坐标为-1,把(-1,2)代入y =k x 求出k ,令-3<x <-1,求出y =2x -的取值范围,即可求出y 的取值范围. 【详解】 解:令y =2,则2=-x +1, ·线○封○密○外∴x=-1,把(-1,2)代入y=kx,解得:k=-2,∴反比例函数为y=2x -,当x=-3时,代入y=2x-得y=23,∴x=-3时反比例函数的值为:23,当x=-1时,代入y=2x-得y=2,又知反比例函数y=2x-在-3<x<-1时,y随x的增大而增大,即当-3<x<-1时反比例函数y的取值范围为:23<y<2.【点睛】本题考查了反比例函数与一次函数的交点及正比例函数与反比例函数的性质,难度不大,关键是掌握用待定系数法求解函数的解析式.4、203##【分析】 把21x y =-⎧⎨=⎩代入233x ay +=,即可求出a 的值. 【详解】 解:由题意可得:()2323a ⨯-+=, 263a -+=, 解得:203a =, 故答案为:203. 【点睛】 本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 5、29 【分析】 设每分钟来一食堂就餐的人数为x 人,食堂每个窗口阿姨配餐的速度为每分钟y 人,则每分钟来二食堂就餐的人数为2x 人,根据“一食堂若开放12个配餐窗口,则需10分钟才可为排队就餐的同学配餐完毕;二食堂若开放20个配餐窗口,则14分钟才可为排队就餐的同学配餐完毕”,即可得出关于x ,y ,a 的三元一次方程组,解之即可用含y 的代数式表示出a ,x ,设设两个食堂同时一共开放m 个配餐窗口,根据需要在15分钟内配餐完毕,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:设每分钟来一食堂就餐的人数为x 人,食堂每个窗口阿姨配餐的速度为每分钟y 人,则每分钟来二食堂就餐的人数为2x 人,依题意得:10101221421420a x y a x y +=⨯⎧⎨+⨯=⨯⎩, ·线○封○密·○外∴570x y a y=⎧⎨=⎩, 设两个食堂同时一共开放m 个配餐窗口,依题意得:15my ≥a +2a +15×(x +2x ),解得:m ≥29.故答案为:29.【点睛】本题考查了三元一次方程组的应用以及一元一次不等式的应用,找准等量关系,正确列出三元一次方程组是解题的关键.三、解答题1、(1)(1,1)-(2)32π【分析】(1)根据对应点连线段的垂直平分线的交点即为旋转中心,可得结论.(2)根据A 经过的路径长为以M 为圆心,3为半径的圆周长的14即可求解. (1)解:连接,AD BE ,分别作,AD BE 的垂直平分线交点M 即为所求,如下图:(1,1)M ∴-,故答案是:(1,1)-;(2) 解:由题意及下图, 知点A 经过的路径长为以M 为圆心,3为半径的圆周长的14, ∴点A 经过的路径长为:13242r ππ⨯=, 故答案是:32π. 【点睛】 本题考查坐标与图形变化-旋转,解题的关键是理解旋转中心是对应点连线段的垂直平分线的交点. 2、(1)见解析;(2)AB AF AE =+,证明见解析;(3)当AD ED >时,AB AF AE =+,当AD ED <时,AB AE AF =- ·线○封○密○外【分析】(1)根据等腰三角形三线合一的性质得60BAD CAD ∠=∠=︒,90ADC ∠=︒,从而可得在Rt ADB 中,30B ∠=︒,进而即可求解;(2)画出图形,在线段AB 上取点G ,使EG EA =,再证明()BGE FAE ASA ≅,进而即可得到结论;(3)分两种情况:当AD ED >时,当AD ED <时,分别画出图形,证明()BHE FAE ASA ≅或()NEF AEC ASA ≅,进而即可得到结论.【详解】(1)∵AB AC =,∴ABC 是等腰三角形,∵120BAC ∠=︒,∴30B C ∠=∠=︒,18012060FAC ∠=︒-︒=︒,∵AD 为ABC 的中线,∴60BAD CAD ∠=∠=︒,90ADC ∠=︒,∴6060120DAF CAD FAC ∠=∠+∠=︒+︒=︒,∵60CEM ∠=︒,∴906030ADF ∠=︒-︒=︒,∴180(12030)30AFD ∠=︒-︒+︒=︒,∴AD AF =,在Rt ADB 中,30B ∠=︒,∴22AB AD AF ==;(2)AB AF AE =+,证明如下:如图2,在线段AB 上取点G ,使EG EA =,∵60BAC ∠=︒,∴AEG △是等边三角形, ∴60AEG ∠=︒,120BGE FAE ∠=∠=︒, ∵ABC 是等腰三角形,AD 为ABC 的中线, ∴EB EC =,BED CED ∠=∠, ∴AEB AEC ∠=∠,即AEG GEB CEF AEF ∠+∠=∠+∠, ∵60CEF AEG ∠=∠=︒, ∴GEB AEF ∠=∠, 在BGE △与FAE 中, GEB AEF EG EA BGE FAE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()BGE FAE ASA ≅, ∴GB AF =,∴AB GB AG AF AE =+=+;(3)当AD ED >时,如图3所示:·线○封○密○外与(2)同理:在线段AB 上取点H ,使EH EA =,∵60BAD ∠=︒,∴AEH △是等边三角形,∴120BHE FAE ∠=∠=︒,60AEH ∠=︒,∵ABC 是等腰三角形,AD 为ABC 的中线,∴BED CED ∠=∠,∵60CEF AEH ∠=∠=︒,∴HEB AEF ∠=∠,∴()BHE FAE ASA ≅,∴HB AF =,∴AB HB AH AF AE =+=+,当AD ED <时,如图4所示:在线段AB 的延长线上取点N ,使EN EA =,∵60BAD ∠=︒,∴AEN △是等边三角形,∴60AEN FNE ∠=∠=︒,∵60CEF AEN ∠=∠=︒ ∴NEF AEC ∠=∠, 在NEF 与AEC △中,60FNE CAE EN EA NEF AEC∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴()NEF AEC ASA ≅,∴NF AC AB ==,∴BN AF =,∴AB AN BN AE AF =-=-,∴AB AE AF =-.【点睛】·线○封○密○外本题考查全等三角形的判定与性质、等腰三角形的性质以及等边三角形的判定与性质,根据题意做出辅助线找全等三角形是解题的关键.3、(1)AB的长为4;(2)n的值为5.【分析】(1)利用二次函数表达式,求出其与x轴的交点A、B的坐标,其横坐标之差的绝对值即为AB的长.(2)利用二次函数的对称性,求出F点的横坐标,代入二次函数表达式,求出纵坐标,最后求得n 的值.【详解】(1)解:把(0,-3)代入y=x2-2x-c得c=-3,令y=x2-2x-3=0,解得x1=3,x2=-1,∴A(-1,0),B(3,0),∴AB=3-(-1)=4.(2)解:作对称轴x=1交DF于点G,G点横坐标为1,如图所示:由题意可设:点F 坐标为(m ,n ),D 、F 关于二次函数的对称轴.∴DG =GF =12DF =3, 1134m GF ∴=+=+= ∴242435=-⨯-=n , ∴n =5. 【点睛】 本题主要是考查了二次函数与x 轴交点坐标以及二次函数的对称性,熟练应用二次函数的对称性进行解题,是求解这类二次函数题目的关键. 4、(1)一次函数表达式为2y x =+,反比例函数表达式为3y x =;(2)(3,1)B --,4AOB S =△;(3)3)或 【分析】 (1)把(1,3)A 分别代入一次函数y x b =+与反比例函数k y x =,解出b ,k 即可得出答案; (2)把一次函数和反比例函数联立求解即可求出点B 坐标,令0y =代入一次函数解出点C 坐标,由AOB AOC BOC S S S =+△△△即可; (3)根据相似三角形的判定:两边成比例且夹角相等的两个三角形相似,找出对应边成比例求解即可. 【详解】(1)把(1,3)A 代入一次函数y x b =+得:31b =+,解得:2b =,∴一次函数表达式为2y x =+,把(1,3)A 代入反比例函数k y x =得:31k =,即3k =, ·线○封○密·○外∴反比例函数表达式为3y x=;(2)23y x y x =+⎧⎪⎨=⎪⎩, 解得:31x y =-⎧⎨=-⎩或13x y =⎧⎨=⎩, ∴(3,1)B --,令0y =代入2y x =+得:2x =-,∴(2,0)C -, ∴112321422AOB AOC BOCS S S =+=⨯⨯+⨯⨯=; (3)①当MN CN OD AD =时,Rt ADO Rt CNM ,3MN x=,3OD =,1AD =,2CN x =+,∴3231x x +=,即2210x x +-=,解得:11x=,21x=,∵M在第一象限,∴1 x=,3 y==,∴3) M,②当MN CNAD OD=时,Rt ADO Rt CNM,∴3213xx+=,即2290x x+-=,解得:11x,21x=,∵M在第一象限,∴1 x=,y,∴M,·线○封○密○外综上,当Rt ADO与Rt CNM相似时,M点的坐标为3)或.【点睛】本题考查反比例函数综合以及相似三角形的判定与性质,掌握相关知识点的应用是解题的关键.5、(1)4a2-6ab(2)12 aa+ -【分析】(1)先利用完全平方公式和单项式乘多项式的运算法则计算乘方和乘法,然后再算加减;(2)先将小括号内的式子进行通分计算,然后再算括号外面的.【小题1】解:原式=4a2-4ab+b2-2ab-b2=4a2-6ab;【小题2】原式=()()()() 21111112a a a a aa a a+-+-⎡⎤-⋅⎢⎥--⎣⎦=()() 2211112a aa aa a-+--+⋅-=12 aa+ -【点睛】本题考查整式的混合运算,分式的混合运算,掌握完全平方公式的结构及通分和约分的技巧是解题关键.。
2023北京房山初三二模数 学本试卷共8页,共100分,考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将答题卡交回,试卷自行保存。
一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个。
1.下列几何体的主视图和俯视图完全相同的是A .B .C .D .2.2022年我国的进出口总额超过了6万亿美元,实际使用外资1891.3亿美元,规模再创历史新高。
将189 130 000 000用科学记数法表示应为A .1.8913×107 B .18913×107 C .0.18913×1012D .1.8913×10113.如图,用量角器测量∠A O B ,可读出∠A O B 的度数为A .65°B .110°C .115°D .120°4.实数a ,b 在数轴上的对应点的位置如图所示,表示实数c 的点在原点右侧,且| c | < | a |,下列结论中正确的是A .0a b +<B .0a c +<C .0a c ->D .0ab>5.下列图形中,点O是该图形的对称中心的是A .B .C .D .6.不透明的盒子中有三张卡片,上面分别写有数字“1,2,3”,除数字外三张卡片无其他差别。
从中随机取出一张卡片,记录其数字,放回并摇匀,再从中随机取出一张卡片,记录其数字,两次取出卡片上的数字的乘积是偶数的概率是A .12B .23C .49D .597.已知262 = 676,272 = 729,282 = 784,292 = 841. 若n为整数,且1n n -<<,则n 的值是A .26B .27C .28D .298.如图8-1,在△ABC 中,AB = BC ,∠ABC = 120°,D ,E 分别是边AB ,BC 的中点,点F 为线段AC 上的一个动点,连接F D ,F B ,F E 。
初三数学模拟检测题一、选择题(本题共16分,每小题2分)1. 如图是某个几何体的平面展开图,该几何体是( )A. B. C. D.【答案】D【解析】【分析】由平面图形的折叠及三棱柱的展开图的特征作答.【详解】由侧面是3个矩形,上下为2个三角形,可得该几何体为三棱柱故选:D.【点睛】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.2. 在疫情防控的特殊时期,为了满足初三高三学生的复习备考需求,北京市教委联合北京卫视共同推出电视课堂节目《老师请回答特别节目“空中课堂”》,在节目播出期间.全市约有200000名师生收看了节目.将200000用科学记数法表示应为()A. 5´ D. 6´2102100.210´ C. 5´ B. 60.210【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】将200000用科学记数法表示应为2×105,故选:C.【点睛】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.3. 2022年北京和张家口成功举办了第24届冬奥会和冬残奥会.下面关于奥运会的剪纸图片中是轴对称图形的是()A. B.C. D.【答案】D【解析】【分析】根据轴对称图形的概念依次判断即可.【详解】解:A、不是轴对称图形,故不符合题意;B、不是轴对称图形,故不符合题意;C、不是轴对称图形,故不符合题意;D、是轴对称图形,故符合题意;故选:D.【点睛】本题考查了轴对称图形的概念,熟练掌握轴对称图形的概念并找到对称轴是解答本题的关键.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4. 如图,直线AB CDAB CD交于点E,F,点G在直线CD上,∥,直线EF分别与直线,Ð=°,则2GE EF^.若150Ð的大小为()A. 140°B. 120°C. 125°D. 135°【答案】A【解析】【分析】根据平行线的性质可得1EFG =∠∠,根据三角形的外角性质可得2EFG FEG Ð=Ð+Ð,即可求解.【详解】Q AB CD ∥,GE EF ^,150Ð=°,\150EFG Ð=Ð=°,90FEG Ð=°\2EFG FEG Ð=Ð+Ð5090140=°+°=°故选A【点睛】本题考查了平行线的性质,三角形外角的性质,垂线的定义,掌握以上知识是解题的关键.5. 如图,实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. 3a >B. 10b -<-<C. a b <-D.0a b +>【答案】C【解析】【分析】观察数轴得到实数a ,b ,c 的取值范围,根据实数的运算法则进行判断即可.【详解】∵−3<a <−2,∴2<|a|<,故A 选项错误;∵1<b <2,∴﹣2<﹣b <﹣1,故B 选项正确;∵a <0,b >0,|a|>|b|,∴a <﹣b ,故C选项正确;a +b <0,故D 选项错误.故选C.【点睛】本题主要考查数轴、绝对值以及实数及其运算,学会观察数轴是解题的关键.6. 《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是( )A. 8374x y x y +=ìí-=îB. 8374x y x y -=ìí+=îC. 8374x y x y +=ìí+=îD.8374x y x y-=ìí-=î【答案】B【解析】【分析】设人数为x 人,物价为y 钱,根据每人出8钱,会多出3钱可得方程83x y -=,根据每人出7钱,又差4钱可得方程74x y +=,据此列出方程组即可.【详解】解:设人数为x 人,物价y 钱,由题意得,8374x y x y-=ìí+=î,故选B .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,正确理解题意找到等量关系是解题的关键.7. 甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( )A. 16 B. 13 C. 12 D. 23【答案】B【解析】【详解】试题分析:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率=26=13.故选B .考点:列表法与树状图法.8. 图,在平面直角坐标系xOy 中,点A 的坐标是(5,0),点B 是函数6(0)y x x=>图象上的一个动点,过点B 作BC y ^轴交函数2(0)y x x=-<的图象于点C ,点D 在x 轴上(D在A 的左侧,且AD BC =,连接,AB CD .有如下四个结论:①四边形ABCD 可能是菱形;②四边形ABCD 可能是正方形;③四边形ABCD 的周长是定值;④四边形ABCD 的面积是定值.所有正确结论的序号是( )A. ①②B. ②③C. ③④D. ①④【答案】D【解析】【分析】根据题意可知AD BC ∥,结合=AD BC ,可知四边形ABCD 是平行四边形,设B 点坐标为6(,a a ,则C 点坐标为(63a a -,,即可求出BC =43a ,利用勾股定理可得AB =,①利用菱形的性质即可判断;②根据正方形的性质,可知AB ⊥AD ,即有a =5,求出B 点坐标,即可判断;③随便取两个点举反例即可判断;④过点C 作CE ⊥x 轴于E 点,过B 点作BF ⊥x 轴于F 点,将四边形ABCD 的面积转化为四边形BCEF 的面积,即可判断.【详解】:∵BC ⊥y 轴,∴AD BC ∥,∵=AD BC ,∴四边形ABCD 是平行四边形,设点B 点坐标为6(,)a a ,则C 点坐标为(6)3a a-,,结合A 点坐标为(5,0),∴BC =433a a a +=,AB =,①当a =5时,BC =203,AB =65,此时AB <BC ,当a =1时,BC =43,AB =,此时AB >BC ,随着a 值的变化,显然存在AB =BC 的情况,则平行四边形ABCD 可能是菱形,故①正确;②若平行四边形ABCD 是正方形,则AB ⊥AD ,此时A 、B 的横坐标相等,∴a =5,此时BC =203,AB =65,AB ≠BC ,故平行四边形ABCD 不可能是正方形,故②错误;③∵四边形ABCD 是平行四边形,∴四边形ABCD 的周长为:2(AB +BC ),当a =5时,BC =203,AB =65,周长为:2(AB +BC )=23615,当a =1时,BC =43,AB =,周长为2(AB +BC )=83+,显然此时上述二者的周长不相等,故③错误;④过点C 作CE ⊥x 轴于E 点,过B 点作BF ⊥x 轴于F 点,如图,则有四边形ABCD 的面积转化为四边形BCEF 的面积,∴ABCD BCEF S S BC BF ==´四边形四边形,∵43BC a =,6B a BF y ==,∴4683ABCD BCEF a S S BC BF a==´=´=四边形四边形,故面积为定值,故④正确;故选:D .【点睛】本题考查了反比例函数图象上的坐标特征、平行四边形的判定与性质、菱形的判定与性质、正方形的性质,解题的关键是掌握反比例函数图象上的坐标特征.二、填空题(本题共16分,每小题2分)9. 若代有意义,则实数x 的取值范围是______.【答案】2x ³-【解析】【分析】根据二次根式有意义的条件可得:240x +³,即可求得.【详解】∵代有意义∴240x +³2x \³-.故答案为:2x ³-.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.10. 分解因式:2288x x -+=_____.【答案】()222x -【解析】【分析】先提取公因式2,再利用完全平方公式分解因式即可.【详解】解:原式()2244x x -=+()222x =-.故答案为:()222x -.【点睛】本题考查了综合提公因式法和公式法分解因式,熟练掌握因式分解的方法是解题的关键.11. 方程25122x x x-=--的解为____.【答案】7x =-【解析】【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.按照解分式方程的步骤进行计算即可.【详解】解:25122x x x-=--,225x x -+=-,7x =-,检验:当7x =-时,20x -¹,7x \=-是原方程的解.【点睛】本题考查了解分式方程,熟练掌握解分式方程的步骤是解题的关键.12. 关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______.【答案】k <1.【解析】【分析】由方程有两个不等实数根可得出关于k 的一元一次不等式,解不等式即可得出结论.【详解】∵关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根,∴△=2241k 0-´´>,解得:k 1<,故答案为k 1<.【点睛】本题考查了根的判别式以及解一元一次不等式,解题的关键是得出关于k 的一元一次不等式.熟知“在一元二次方程()2ax bx c 0a 0++=¹中,若方程有两个不相等的实数根,则△=2b 4ac 0->”是解答本题的关键.13. 如图,双曲线k y x=与直线y mx =交于A ,B 两点,若点A 的坐标为()3,4,则点B 的坐标为__________.【答案】(-3,-4)【解析】【分析】利用A 点坐标求出双曲线和直线的解析式,再联立这两个解析式即可求解.【详解】∵A 点在双曲线和直线上,∴将A 点(3,4)代入到双曲线和直线的解析式中有:4343k mì=ïíï=î,∴1243k m =ìïí=ïî,即双曲线的解析式为12y x =,直线的解析式为43y x =,联立1243y x y x ì=ïïíï=ïî,解得1134x y =ìí=î,2234x y =-ìí=-î,则可知另一个交点B 的坐标为(-3,-4),故答案为:(-3,-4).【点睛】本题考查了双曲线和一次函数图象相交求交点的知识,掌握双曲线和一次函数性质是解答本题的关键.14. 下列说法正确的是__________.(1)一组数据:1,2,2,3,若再添加一个数据2,则平均数和方差均不发生变化;(2)已知2222431849,441936,452025,462116====.若n 为整数,且1n n <<+,则n 的值为44;(3)如图是小明某一天测得的7次体温情况的折线统计图,这组数据的中位数是36.6.【答案】(2)【解析】【分析】根据平均数与方差进行计算即可判断(1);根据无理数的大小估算即可判断(2);根据折线统计图,求得中位数即可判断(3).【详解】解:(1)∵1,2,2,3的平均数为122324+++=,若再添加一个数据2,则平均数为1223225++++=,平均数不变化;原来的方差为()()222112320.54S éù=-+-=ëû,若再添加一个数据2,则方程为()()222112320.45S éù=-+-=ëû,方差变化,故(1)不正确(2)Q 2222431849,441936,452025,462116====,193620212025<<,\44441<<+,又1n n <<+,则n 的值为44;故(2)正确;(3)根据统计图将这组数据从小到大重新排列为35.6,36.6,36.7,36.8,36.8,37.0,37.1,中位数为36.8,故(3)不正确.故答案为:(2)【点睛】本题考查了平均数与方差,中位数,折线统计图,无理数的大小估算,掌握以上知识是解题的关键.15. 如图,点P 在直线AB 外,点A 、B 、C 、D 均在直线AB 上,如果AC BD =,只需添加一个条件即可证明APC BPD D D ≌,这个条件可以是________(写出一个即可).【答案】∠A =∠ B ##∠B =∠A【解析】【分析】根据证明APC BPD D D ≌的全等的方法,添加适当的条件即可.【详解】解:条件是∠A =∠ B理由是:∵∠A =∠ B∴P A =PB在APC D 和BPD D 中,PA PB A B AC BD =ìïÐ=Ðíï=î∴APC BPD D D ≌(SAS )故答案为:∠A =∠ B【点睛】本题考查了全等方法,熟练掌握三角形全等的判定方法是解题的关键.16. 为确定传染病的感染者,医学上可采用“二分检测方案”.假设待检测的总人数是2m (m 为正整数).将这2m 个人的样本混合在一起做第1轮检测(检测1次),如果检测结果是阴性,可确定这些人都未感染;如果检测结果是阳性,可确实其中感染者,则将这些人平均分成两组,每组12m -个人的样本混合在一起做第2轮检测,每组检测1次.依此类推:每轮检测后,排除结果为阴性的组,而将每个结果为阳性的组再平均分成两组,做下轮检测,直至确定所有的感染者.例如,当待检测的总人数为8,且标记为“x ”的人是唯一感染者时,“二分检测方案”可用如图所示.从图中可以看出,需要经过4轮共n 次检测后,才能确定标记为“x ”的人是唯一感染者.(1)n的值为___________;(2)若待检测的总人数为8,采用“二分检测方案”,经过4轮共9次检测后确定了所有的感染者,写出感染者人数的所有可能值___________;【答案】(1)7 (2)2、3、4【解析】【分析】(1)由图可计算得到n的取值.(2)当经过4轮共9次检测后确定所有感染者,只需第3轮对两组都进行检查,由此得到所有可能的结果.【小问1详解】由题意可知,第1轮需检测1次,第2轮需检测2次,第3轮需检测2次,第4轮需检测2次,∴12227n=+++=故答案为7.【小问2详解】由(1)可知,若只有1个感染者只需7次检测即可,经过4轮9次检测查出所有感染者,比只有1个感染者多2次检测,则只需第3轮时,对两组都进行检查,即对最后四个人进行检查,可能的结果如下图所示:故答案为:2、3、4【点睛】本题考查了数学建模能力,正确理解题意并合理建模是解答本题的关键.三、解答题(本题共68分,第17~21题每小题5分,第22~24题每小题6分,第25题5分,第26题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤.17. 计算:111|2sin 602-æö--ç÷èø°.【答案】1+【解析】【分析】根据负指数幂运算,二次根式化简,绝对值计算以及特殊角的三角函数值即可求得.【详解】解:原式=2122--´1=+ .【点睛】本题考查了负指数幂的运算,最简二次根式的化简,绝对值的代数意义以及特殊角的三角函数值,熟练掌握运算法则是解题的关键.18. 解不等式组:()3121122x x x x ì-<+ïí-£+ïî.【答案】54x -£<【解析】【分析】分别求出两不等式的解集“大小小大中间找”确定不等式组解集.【详解】解:3(1)21122x x x x -<+ìïí-£+ïî①②由①得3321x x -<+,即4x <由②得124x x -£+,即5x ³-\不等式组的解集为:54x -£<【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.19. 已知220x x +-=,求代数式(1)(1)(2)x x x x +-++的值.【答案】3【解析】【分析】先化简代数式,然后将220+-=,代入求解即可求解.x x【详解】解:∵220+-=,x x∴(1)(1)(2)+-++x x x x22=-++x x x122=+-221x x()221=+-x x=´-221=.3【点睛】本题考查了整式的化简求值,掌握整式的乘法是解题的关键.20. 下面是小文设计的“过圆外一点作圆的切线”的作图过程.已知:Oe和圆外一点P.求作:过点P的Oe的切线.作法:①连接OP;作OP的垂直平分线与OP交于点M;②以OM半径作Mee,交O 于点A,B;③作直线,PA PB;所以直线,PA PB为Oe的切线.请利用尺规作图补全小文的作图过程,并完成下面的证明.证明:连接,OA OB.∵OP为Me的直径,∴OAPÐ=Ð__________=__________°(__________)(填推理的依据).∴,^^OA AP OB BP∵,OA OB为Oe半径,∴直线,PA PB为Oe的切线.(__________)(填推理的依据).【答案】OBP,90,直径所对圆周角为直角,过半径的外端且垂直于半径的直线是圆的切线【解析】【分析】根据题目要求作图即可,根据作图方法可知OP为⊙M的直径,即可得OA⊥AP,OB⊥BP,根据OA、OB为⊙O半径即可求证结论.【详解】尺规作图如下:连接OA,OB.∵OP为⊙M的直径,∴根据直径所对圆周角为直角有∠OAP=∠OBP=90°.∴OA⊥AP,OB⊥BP∵OA、OB为⊙O半径,又∵过半径的外端且垂直于半径的直线是圆的切线,∴直线P A、PB为⊙O的切线.故答案为:OBP,90,直径所对圆周角为直角,过半径的外端且垂直于半径的直线是圆的切线.【点睛】本题考查了作图—基本作图:熟练掌握5种基本作图是解答本题的关键,本题还考查了圆周角定理和切线的判定与性质.21. 如图,在▱ABCD中,AC,BD交于点O,且AO=BO.(1)求证:四边形ABCD 是矩形;(2)∠ADB 的角平分线DE 交AB 于点E ,当AD =3,tan ∠CAB =34时,求AE 的长.【答案】(1)见解析;(2)32.【解析】【分析】(1)由平行四边形性质和已知条件得出AC =BD ,即可得出结论;(2)过点E 作EG ⊥BD 于点G ,由角平分线的性质得出EG =EA .由三角函数定义得出AB =4,sin ∠CAB =sin ∠ABD =35ADBD =,设AE =EG =x ,则BE =4﹣x ,在Rt △BEG 中,由三角函数定义得出345x x =-,即可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AC =2AO ,BD =2BO .∵AO =BO ,∴AC =BD .∴平行四边形ABCD 为矩形.(2)过点E 作EG ⊥BD 于点G ,如图所示:∵四边形ABCD 是矩形,∴∠DAB =90°,∴EA ⊥AD ,∵DE 为∠ADB 的角平分线,∴EG =EA .∵AO =BO ,∴∠CAB =∠ABD .∵AD =3,tan ∠CAB =34,∴tan ∠CAB =tan ∠ABD =34=AD AB .∴AB =4.∴BD 5=,sin ∠CAB =sin ∠ABD =35AD BD =.设AE =EG =x ,则BE =4﹣x ,在△BEG 中,∠BGE =90°,∴sin ∠ABD =345x x =-.解得:x =32,∴AE =32.故答案为:32.【点睛】本题考查了矩形的判定与性质、角平分线的性质、勾股定理、三角函数定义等知识;熟练掌握矩形的判定与性质和三角函数定义是解题的关键.22. 在平面直角坐标系xOy 中,函数2(0)y x x =>与直线11:(0)3l y x k k =+>交于点A ,与直线2:l x k =交于点B ,直线1l 与直线2l 交于点C ,(1)当点A 的横坐标为1时,求此时k 的值;(2)横、纵坐标都是整数的点叫做整点.记函数2(0)y x x=>的图像在点,A B 之间的部分与线段,AC BC 围成的区域(不含边界)为W ,①当3k =时,结合函数图像,求区域W 内整点的个数;②若区域W 内恰有1个整点,直接写出k 的取值范围.【答案】(1)53k =;(2)①3;②203k <<或723k <…【解析】【分析】(1)由反比例函数解析式求出A 点的坐标,再把A 点坐标代入一次函数13y x k =+中求得k ;(2)①根据题意作出函数图象便可直接观察得答案;②找出临界点作两直线,进行比较便可得k 的取值范围.【详解】解:(1)当1x =时,22y x==,(1,2)A \,把(1,2)A 代入13y x k =+中,得123k =+,\53k =;(2)①当3k =时,则直线11:33l y x =+,与直线2:3l x =,当3x =时,1343y x =+=,(3,4)C \,作出图象如图1:\区域W 内的整点个数为3;②如图2,当直线11:3l y x k =+过(2,3)点,区域W 内只有1个整点,此时,1323k =´+,则73k =,当直线11:3l y x k =+过(0,2)点,区域W 内没有整点,此时,20k =+,则2k =,\当723k <…时,区域W 内只有1个整点,当整点为(1,1)时,1k <且1x =时,113x k +<,即113k +<,解得23k <,0k >Q ,203k \<<,故答案为:203k <<或723k <….【点睛】本题考查反比例函数与一次函数的交点问题,待定系数法,正确画出函数图象,数形结合,是解答本题的关键.23. 如图,在ABC V 中,90,C ABC Ð=°Ð的平分线BE 交AC 于点E ,过点E 作直线BE 的垂线于交AB 于点F ,O e 是BEF △的外接圆.(1)求证:AC 是O e 的切线;(2)过点E 作EH AB ^于点H,若2CD =,求HF 的长度.【答案】(1)见详解 (2)2【解析】【分析】(1)连接OE ,先证明BF 是圆的直径,OE 是圆的半径,再证明OE BC ∥在,则有∠OEA =∠C =90°,结论得证;(2)连接ED ,根据角平分线的性质证明EH =EC ,再证△EHF ≌△ECD ,则HF 可求.【小问1详解】连接OE,如图,∵EF⊥BE,∴∠BEF=90°,∵⊙O是△BEF的外接圆,∴BF是⊙O的直径,OE是⊙O的半径,∴∠OEB=∠OBE,∵BE是∠ABC的角平分线,∴∠OBE=∠CBE,∴∠OEB=∠CBE,∴OE BC∥,∴∠OEA=∠C=90°,即OE⊥AC,∵OE是半径,∴AC是⊙O的切线;【小问2详解】连接ED,如图,∵BE平分∠ABC,且EH⊥BA,EC⊥BC,∴EH=EC,∵四边形BDEF是⊙O的内接四边形,∴∠EFH=∠EDC,∵∠EHF=∠C=90°,∴△EHF≌△ECD,∴HF=CD=2,即HF的值为2.【点睛】此题考查了圆的切线的判定、圆周角定理、平行线的判定与性质、全等三角形的判定与性质等知识,解题的关键是正确的作出所需辅助线.24. 某学校初二和初三两个年级各有600名同学,为了科普卫生防疫知识,学校组织了一次在线知识竞赛,小宇分别从初二、初三两个年级随机抽取了40名同学的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.a.初二、初三年级学生知识竞赛成绩不完整的频数分布直方图如下(数据分成5组:):,,,x x x x x<£<£<£<£<606070,7080809090100b.初二年级学生知识竞赛成绩在8090£<这一组的数据如下:x80 80 81 83 83 84 84 85 86 87 88 89 89c.初二、初三学生知识竞赛成绩的平均数、中位数、方差如下:根据以上信息,回答下列问题:(1)补全上面的知识竞赛成绩频数分布直方图;(2)写出表中m 的值;(3)A 同学看到上述的信息后,说自己的成绩能在本年级排在前40%,B 同学看到A 同学的成绩后说:“很遗憾,你的成绩在我们年级进不了前50%”,请判断A 同学是__________(填“初二”或“初三”)年级的学生,你判断的理由是__________.【答案】(1)见详解 (2)80.5(3)初二,理由见详解【解析】【分析】(1)根据直方图的数据,用二年级参赛总人数减去已知各成绩段人数得到70≤x<80这个成绩段的人数,据此完成直方图即可;(2)先确定二年级比赛成绩的中位数所落在的成绩段为80≤x <90这个区域,再结合中位数的定义即可求解;(3)确定A 的成绩高于本年级的中位数成绩,低于B 所在年级的中位数成绩,即可判断.【小问1详解】70≤x <80这个成绩段的人数:40-1-7-13-9=10(人),作图如下:【小问2详解】二年级比赛成绩的中位数为:808180.52+=,即m 的值为80.5;【小问3详解】初二,理由:初二年级的中位数成绩为80.5,初三的中位数成绩86.A 的成绩在本年级达到前40%,说明其成绩高于本年级的中位数成绩,A 的成绩进不了B 所在年级的前50%,说明A 的成绩低于B 所在年级的中位数成绩,结合初二、初三年级的中位数成绩,可知A 在初二年级.【点睛】本题考查了根据数据作直方图、求解中位数以及通过中位数做判断的相关知识,理解中位数的含义是解答本题的关键.25. 如图,点C是以点O为圆心,AB为直径的半圆上的动点(不与点A,B重合),AB=6cm,过点C作CD⊥AB于点D,E是CD的中点,连接AE并延长交»F,连接AB于点FD.小腾根据学习函数的经验,对线段AC,CD,FD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在»AB上的不同位置,画图、测量,得到了线段AC,CD,FD的长度的几组值,如表:在AC,CD,FD的长度这三个量中,确定 的长度是自变量, 的长度和 的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解答问题:当CD>DF时,AC的长度的取值范围是 .【答案】(1)AC,CD,FD;(2)详见解析;(3)3.5cm<x<5cm【分析】(1)根据函数的定义可得结论.(2)利用描点法画出函数图象即可.(3)利用图象法,观察图象写出函数CD 的图象在函数DF 的图象上方时,自变量的取值范围即可.【详解】解:(1)由题意可知:AC 是自变量,CD ,DF 是自变量AC 的函数.故答案为:AC ,CD ,FD .(2)函数图象如图所示:(3)观察图象可知CD >DF 时,3.5cm <x <5cm .故答案为:3.5cm <x <5cm .【点睛】本题属于圆综合题,考查了函数的有关性质,描点法画函数图象等知识,解题的关键是理解题意,学会利用图象法解决问题,属于中考常考题型.26. 已知二次函数24y ax ax =-.(1)二次函数图象的对称轴是直线x =__________;(2)当05x ££时,y 的最大值与最小值的差为9,求该二次函数的表达式;(3)若a<0,对于二次函数图象上的两点()()1122,,,P x y Q x y ,当1211,5t x t x -££+³时,均满足12y y ³,请结合函数图象,直接写出t 的取值范围.【答案】(1)2; (2)24y x x =-或24y x x =-+; (3)0≤t ≤4.【分析】(1)由对称轴是直线x =-2b a,可求解;;(2)分a >0和a <0两种情况讨论,分别用含a 的式子表示出最大值和最小值,列出关于a 的方程,求出a 即可;(3)求出x =5时对应的y 的值,找到满足条件的t 的范围.【小问1详解】解:(1)由题意可得:对称轴是直线x =−42a a-=2,故答案为:2;【小问2详解】∵224(2)4y ax ax a x a =-=--,∴二次函数24y ax ax =-的顶点坐标为(2,-4a ),①当a >0时,在0≤x ≤5中,最大值是当x =5时y 的值,即25205y a a a =-=,最小值是当x =2时y 的值,即-4a ,∴5a -(-4a )=9,∴a =1,∴该二次函数的解析式为24y x x =-,②当a <0时,在0≤x ≤5中,最大值是当x =2时y 的值,即-4a ,最小值是当x =5时y 的值,即25205y a a a =-=,∴-4a -5a =9,∴a =-1,∴该二次函数的表达式为24y x x =-+,综上所述,该二次函数的表达式为24y x x =-或24y x x =-+;【小问3详解】由(2)知抛物线的对称轴为x =2,当x =5时,25205y a a a =-=,由抛物线的对称性知x=-1时,y=5a,又∵a<0,∴-1≤t-1,t+1≤5,∴0≤t≤4.【点睛】本题主要考查二次函数的图象与性质,关键是要会求抛物线与x轴的交点坐标,熟记抛物线的对称轴的公式,增减性等基本性质.27. 如图,点P是正方形ABCD内一动点,满足90Ð=°且45APBBAPÐ<°,过点D作^交BP的延长线于点E.DE BP(1)依题意补全图形;(2)用等式表示线段,,EP DE BP之间的数量关系,并证明;(3)连接CP,若4AB=,请直出线段CP长度的最小值.【答案】(1)图形见详解(2)EP=BP+DE,理由见详解(3)252-【解析】【分析】(1)依题意补全图形即可;(2)过A点作AM⊥ED交ED的延长线于M点,先证明四边形APEM是矩形,在证明△APB≌△AMD,得到AP=AM,BP=MD,可得矩形APEM是正方形,有ME=PE,即有MD+DE=ME=PE,则结论得证;(3)取AB中点O,连接OC,利用勾股定理可求得OC,根据∠APB=90°,可知点P在以O为圆心、OB为半径的圆上,则有当P点落在线段OC上时,CP最短,即CP可求.【小问1详解】解:补全图形如下:【小问2详解】线段PE=DE+BP,理由如下:过A点作AM⊥ED交ED的延长线于M点,如图,∵∠M=∠E=∠APE=90°=∠APB,∴四边形APEM是矩形,∴∠DAP+∠DAM=90°,∵∠BAP+∠P AD=90°,∴∠DAM=∠BAP,∵在正方形ABCD中有AD=AB,∴△APB≌△AMD,∴AP=AM,BP=MD,∴矩形APEM是正方形,∴ME=PE,∴MD+DE=ME=PE,∴PE=DE+BP,结论得证;【小问3详解】取AB中点O,连接OC,如图,∵AB =4,∴OB =2,BC =4,∴在Rt △OBC 中,有22OC OB BC =+,∵∠APB =90°,∴点P 在以O 为圆心、OB 为半径的圆上,∴显然当P 点落在线段OC 上时,CP 最短,∴此时在Rt △ABP 中,OP 是斜边的中线,∴OP =12AB =2,∴CP =OC -OP =.【点睛】本题是四边形的综合题,考查了正方形的性质、矩形的判定和性质、全等三角形的判定与性质、勾股定理、圆周角等知识,确定点P 的运动运动轨迹是解答本题的关键.28. 对于平面直角坐标系xOy 1W 和图形2W .给出如下定义:在图形1W 上存在两点A ,B (点A ,B 可以重合),在图形2W 上存在两点M ,N ,(点M 、N 可以重合)使得2AM BN =,则称图形1W 和图形2W 满足限距关系(1)如图1,点(3,0),(0,1),(0,1)C D E -,点P 在线段CE 上运动(点P 可以与点C ,E 重合),连接,OP DP .①线段OP 的最小值为__________,最大值为__________;线段DP 的取值范围是__________;②在点O ,点D 中,点__________与线段EC 满足限距关系;(2)在(1)的条件下,如图2,O e 的半径为1,线段FG 与x 轴、y 轴正半轴分别交于点F ,G ,且FG EC ∥,若线段FG 与O e 满足限距关系,求点F 横坐标的取值范围;(3)O e 的半径为()0r r >,点H ,K 是O e 上的两个点,分别以H ,K 为圆心,2为半径作圆得到H e 和K e ,若对于任意点H ,K ,H e 和K e 都满足限距关系,直接写出r 的取值范围.【答案】(1)①22DP ££;②O(2)263F x ££ (3)6r £0<【解析】【分析】(1)先根据C 、(0,1)D -、(0,1)E ,得到OC ,OD =1,OE =1,DE =2,再在Rt △COE 中,利用勾股定理求出EC ,解该直角三角形即可求出∠OCE =30°,∠OEC =60°,利用垂线段最短和已经求出的角度即可求出OP 、DP 的最大值和最小值;根据上述的值结合限距关系的定义即可判断;(2)根据FG EC ∥,再结合(1)中的结果有可求得∠GFO =∠ECO =30°,∠OGF =∠OEC =60°,设F 点坐标为(a ,0),分线段FG 在⊙O 内部、线段FG 与⊙O 有交点和线段FG 在⊙O 外部三种情况讨论,利用线段到圆上的最长距离不小于线段到圆上的最短距离的2倍来分别构建不等式即可求解;(3)如图,在不影响结论的情况下,设⊙K 、⊙H 的圆心在x 轴上,且关于y 轴对称,根据⊙K 、⊙H 满足限距关系,构建不等式即可求解.【小问1详解】如图,连接OP 、DP ,∵(3,0)C 、(0,1)D -、(0,1)E ,∴OC,OD =1,OE =1,∴DE =OE +OD =2,∴在Rt △COE 中,2EC ===,∴1sin 2OE OCE EC Ð==,sin 2OC ECÐ==,∴∠OCE =30°,∠OEC =60°,①当OP ⊥EC 时,OP 最小,在Rt △OPE 中,sin 2OP OEC OE Ð==,即OP =2,当P 点与C 点重合时,OP 最大,且OP =OC同理可求出的DP 的最,最大值为2,即DP 2DP ££,②∵OP 的最小值刚好等于最大值的一半,而DP 的最小值大于其最大值的一半,∴根据限距关系的定义可知,线段EC 上存在两点M 、N ,满足OM =2ON ,故点O 与线段EC 满足限距关系,。
北京市房山区2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与○O相交于点D,连接BD,则∠DBC的大小为( )A.15°B.35°C.25°D.45°2.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果5400cm,设金色纸边的宽为xcm,那么x满足的方程是()要使整幅挂图的面积是2A.213014000+-=x x+-=B.2653500x xC.213014000x xx x--=--=D.26535003.已知a35a等于()A.1 B.2 C.3 D.44.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为()A.1 B.2 C.3 D.45.下列计算正确的是()A.a2+a2=2a4B.(﹣a2b)3=﹣a6b3C.a2•a3=a6D.a8÷a2=a46.人的头发直径约为0.00007m,这个数据用科学记数法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×1057.下列命题正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.对角线互相垂直且相等的四边形是正方形8.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.129.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2019个图形共有()个〇.A.6055 B.6056 C.6057 D.605810.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨11.下表是某校合唱团成员的年龄分布.年龄/岁13 14 15 16频数 5 15 x 10x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.平均数、中位数C.平均数、方差D.中位数、方差12.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级3班学生肺活量情况的调查二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,DE∥BC,1=2ADDB,则ADEBCEDV的面积四边形的面积=_____.14.如图,点D 在ABC ∆的边BC 上,已知点E 、点F 分别为ABD ∆和ADC ∆的重心,如果12BC =,那么两个三角形重心之间的距离EF 的长等于________.15.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.16.如图,点O 是矩形纸片ABCD 的对称中心,E 是BC 上一点,将纸片沿AE 折叠后,点B 恰好与点O 重合.若BE=3,则折痕AE 的长为____.17.一元二次方程x 2=3x 的解是:________. 18.已知式子1x-有意义,则x 的取值范围是_____ 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)图1所示的遮阳伞,伞柄垂直于水平地面,其示意图如图2、当伞收紧时,点P 与点A 重合;当伞慢慢撑开时,动点P 由A 向B 移动;当点P 到达点B 时,伞张得最开、已知伞在撑开的过程中,总有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、设AP=x 分米. (1)求x 的取值范围;(2)若∠CPN=60°,求x 的值;(3)设阳光直射下,伞下的阴影(假定为圆面)面积为y ,求y 关于x 的关系式(结果保留π).20.(6分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =+.21.(6分)实践体验:(1)如图1:四边形ABCD 是矩形,试在AD 边上找一点P ,使△BCP 为等腰三角形;(2)如图2:矩形ABCD 中,AB=13,AD=12,点E 在AB 边上,BE=3,点P 是矩形ABCD 内或边上一点,且PE=5,点Q 是CD 边上一点,求PQ 得最值; 问题解决:(3)如图3,四边形ABCD 中,AD ∥BC ,∠C=90°,AD=3,BC=6,DC=4,点E 在AB 边上,BE=2,点P 是四边形ABCD 内或边上一点,且PE=2,求四边形PADC 面积的最值.22.(8分)在大课间活动中,体育老师随机抽取了七年级甲、乙两班部分女学生进行仰卧起坐的测试,并对成绩进行统计分析,绘制了频数分布表和统计图,请你根据图表中的信息完成下列问题:频数分布表中a = ,b= ,并将统计图补充完整;如果该校七年级共有女生180人,估计仰卧起坐能够一分钟完成30或30次以上的女学生有多少人?已知第一组中只有一个甲班学生,第四组中只有一个乙班学生,老师随机从这两个组中各选一名学生谈心得体会,则所选两人正好都是甲班学生的概率是多少?23.(8分)如图所示,△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,EC 的延长线交BD 于点P .(1)把△ABC 绕点A 旋转到图1,BD ,CE 的关系是 (选填“相等”或“不相等”);简要说明理由; (2)若AB=3,AD=5,把△ABC 绕点A 旋转,当∠EAC=90°时,在图2中作出旋转后的图形,PD= ,简要说明计算过程;(3)在(2)的条件下写出旋转过程中线段PD 的最小值为 ,最大值为 .24.(10分)如图,AC 是⊙O 的直径,点P 在线段AC 的延长线上,且PC=CO ,点B 在⊙O 上,且∠CAB=30°. (1)求证:PB 是⊙O 的切线;(2)若D 为圆O 上任一动点,⊙O 的半径为5cm 时,当弧CD 长为 时,四边形ADPB 为菱形,当弧CD 长为 时,四边形ADCB 为矩形.25.(10分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒. (1)求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.26.(12分)某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少? 27.(12分)如图,海中有一个小岛 A ,该岛四周 11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B 处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C 处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:2≈1.41,3≈1.73)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.A 【解析】 【分析】根据等腰三角形的性质以及三角形内角和定理可得∠A =50°,再根据平行线的性质可得∠ACD=∠A=50°,由圆周角定理可行∠D=∠A=50°,再根据三角形内角和定理即可求得∠DBC 的度数. 【详解】 ∵AB=AC ,∴∠ABC=∠ACB=65°,∴∠A=180°-∠ABC-∠ACB=50°, ∵DC//AB ,∴∠ACD=∠A=50°, 又∵∠D=∠A=50°,∴∠DBC=180°-∠D -∠BCD=180°-50°-(65°+50°)=15°, 故选A. 【点睛】本题考查了等腰三角形的性质,圆周角定理,三角形内角和定理等,熟练掌握相关内容是解题的关键. 2.B 【解析】 【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程. 【详解】由题意,设金色纸边的宽为xcm , 得出方程:(80+2x )(50+2x )=5400, 整理后得:2653500x x +-= 故选:B. 【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键. 3.B1,进而得出答案.【详解】∵a∴a=1.故选:B.【点睛】考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.4.B【解析】【分析】先由平均数是3可得x的值,再结合方差公式计算.【详解】∵数据1、2、3、x、5的平均数是3,∴12355x++++=3,解得:x=4,则数据为1、2、3、4、5,∴方差为15×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,故选B.【点睛】本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.5.B【解析】【分析】【详解】解:A.a2+a2=2a2,故A错误;C、a2a3=a5,故C错误;D、a8÷a2=a6,故D错误;本题选B.考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方6.B绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.C【解析】分析:根据平行四边形、矩形、菱形、正方形的判定定理判断即可.详解:对角线互相平分的四边形是平行四边形,A错误;对角线相等的平行四边形是矩形,B错误;对角线互相垂直的平行四边形是菱形,C正确;对角线互相垂直且相等的平行四边形是正方形;故选:C.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.9.D【解析】【分析】设第n个图形有a n个O(n为正整数),观察图形,根据各图形中O的个数的变化可找出"a n=1+3n(n为正整数)",再代入a=2019即可得出结论 【详解】设第n 个图形有a n 个〇(n 为正整数),观察图形,可知:a 1=1+3×1,a 2=1+3×2,a 3=1+3×3,a 4=1+3×4,…, ∴a n =1+3n(n 为正整数), ∴a 2019=1+3×2019=1. 故选:D . 【点睛】此题考查规律型:图形的变化,解题关键在于找到规律 10.C 【解析】 【分析】根据中位数、众数、极差和平均数的概念,对选项一一分析,即可选择正确答案. 【详解】解:A 、中位数=(5+5)÷2=5(吨),正确,故选项错误;B 、数据5吨出现4次,次数最多,所以5吨是众数,正确,故选项错误;C 、极差为9﹣4=5(吨),错误,故选项正确;D 、平均数=(4×3+5×4+6×2+9×1)÷10=5.3,正确,故选项错误. 故选:C . 【点睛】此题主要考查了平均数、中位数、众数和极差的概念.要掌握这些基本概念才能熟练解题. 11.A 【解析】 【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案. 【详解】由题中表格可知,年龄为15岁与年龄为16岁的频数和为1010x x +-=,则总人数为3151030++=,故该组数据的众数为14岁,中位数为1414142+=(岁),所以对于不同的x ,关于年龄的统计量不会发生改变的是众数和中位数,故选A. 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.12.D 【解析】 【分析】 【详解】A 、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A 错误;B 、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B 错误;C 、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C 错误;D 、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D 正确; 故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.18【解析】 【分析】先利用平行条件证明三角形的相似,再利用相似三角形面积比等于相似比的平方,即可解题. 【详解】 解:∵DE ∥BC ,AD 1=DB 2, ∴AD 1=AB 3, 由平行条件易证△ADE ~△ABC, ∴S △ADE :S △ABC =1:9, ∴ADE S ADE BCED S ABC S ADE V V V V 的面积四边形的面积=-=18.【点睛】本题考查了相似三角形的判定和性质,中等难度,熟记相似三角形的面积比等于相似比的平方是解题关键. 14.4 【解析】 【分析】连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H ,根据三角形的重心的概念可得12DG BD =,12DH CD =,2AE GE =,2AF HF =,即可求出GH 的长,根据对应边成比例,夹角相等可得EAF GAH ∆∆∽,根据相似三角形的性质即可得答案.【详解】如图,连接AE 并延长交BD 于G ,连接AF 并延长交CD 于H , ∵点E 、F 分别是ABD ∆和ACD ∆的重心,∴12DG BD =,12DH CD =,2AE GE =,2AF HF =, ∵12BC =, ∴111()126222GH DG DH BD CD BC =+=+==⨯=, ∵2AE GE =,2AF HF =,∴23AE AF AG AH ==, ∵EAF GAH ∠=∠,∴EAF GAH ∆∆∽,∴23EF AE GH AG ==, ∴4EF =,故答案为:4【点睛】本题考查了三角形重心的概念和性质及相似三角形的判定与性质,三角形的重心是三角形中线的交点,三角形的重心到顶点的距离等于到对边中点的距离的2倍.15.2【解析】【分析】根据旋转的性质知AB=AE ,在直角三角形ADE 中根据勾股定理求得AE 长即可得.【详解】∵四边形ABCD 是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD 绕点A 逆时针旋转得到矩形AEFG ,∴EF=BC=3,AE=AB ,∵DE=EF ,∴AD=DE=3,∴22AD DE +2,∴2,故答案为2.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.16.6【解析】试题分析:由题意得:AB=AO=CO,即AC=2AB,且OE垂直平分AC,∴AE=CE,设AB=AO=OC=x,则有AC=2x,∠ACB=30°,在Rt△ABC中,根据勾股定理得:,在Rt△OEC中,∠OCE=30°,∴OE=12EC,即BE=12EC,∵BE=3,∴OE=3,EC=6,则AE=6故答案为6.17.x1=0,x2=1【解析】【分析】先移项,然后利用因式分解法求解.【详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1【点睛】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解18.x≤1且x≠﹣1.【解析】根据二次根式有意义,分式有意义得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)0≤x≤10;(1)x=6;(3)y=﹣94πx1+54πx.【解析】【分析】(1)根据题意,得AC=CN+PN,进一步求得AB的长,即可求得x的取值范围;(1)根据等边三角形的判定和性质即可求解;(3)连接MN、EF,分别交AC于B、H.此题根据菱形CMPN的性质求得MB的长,再根据相似三角形的对应边的比相等,求得圆的半径即可.【详解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范围是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等边三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即当∠CPN=60°时,x=6;(3)连接MN、EF,分别交AC于B、H,∵PM=PN=CM=CN,∴四边形PNCM是菱形,∴MN与PC互相垂直平分,AC是∠ECF的平分线,PB=PC12x22-==6-1x2,在Rt△MBP中,PM=6分米,∴MB1=PM1﹣PB1=61﹣(6﹣12x)1=6x﹣14x1.∵CE=CF,AC是∠ECF的平分线,∴EH=HF,EF⊥AC,∵∠ECH=∠MCB,∠EHC=∠MBC=90°,∴△CMB∽△CEH,∴MBEH=CMCE,∴2226()18 MBEH=,∴EH1=9•MB1=9•(6x﹣14x1),∴y=π•EH 1=9π(6x ﹣14x 1), 即y=﹣94πx 1+54πx . 【点睛】此题主要考查了相似三角形的应用以及菱形的性质和二次函数的应用,难点是第(3)问,熟练运用菱形的性质、相似三角形的性质和二次函数的实际应用.20.1a-1,2【解析】【分析】先根据完全平方公式进行约分化简,再代入求值即可.【详解】 原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a+1,故答案为2. 【点睛】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.21.(1)见解析;(2)PQ min =7,PQ max =13;(3) S min =35425,S max =18. 【解析】【分析】(1)根据全等三角形判定定理求解即可.(2)以E 为圆心,以5为半径画圆,①当E 、P 、Q 三点共线时最PQ 最小,②当P 点在2P 位置时PQ 最大,分类讨论即可求解.(3)以E 为圆心,以2为半径画圆,分类讨论出P 点在12P P ,位置时,四边形PADC 面积的最值即可.【详解】(1)当P 为AD 中点时, APDP AB CD A DQ ==∠=∠⎧⎪⎨⎪⎩,)ABP DCP SAS ∴∆≅∆(BE CE ∴=∴△BCP 为等腰三角形.(2)以E为圆心,以5为半径画圆①当E、P、Q三点共线时最PQ最小,PQ的最小值是12-5=7.②当P点在2P位置时PQ最大,PQ的最大值是225+12=13(3)以E为圆心,以2为半径画圆.当点p为1P位置时,四边形PADC面积最大()3+64==182⨯.当点p为1P位置时,四边形PADC最小=四边形2P ADF+三角形2P CF=24144354 52525+=.【点睛】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.22.(1)a=0.3,b=4;(2)99人;(3)1 4【解析】分析:(1)由统计图易得a与b的值,继而将统计图补充完整;(2)利用用样本估计总体的知识求解即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两人正好都是甲班学生的情况,再利用概率公式即可求得答案.详解:(1)a=1-0.15-0.35-0.20=0.3;∵总人数为:3÷0.15=20(人),∴b=20×0.20=4(人);故答案为:0.3,4;补全统计图得:(2)估计仰卧起坐能够一分钟完成30或30次以上的女学生有:180×(0.35+0.20)=99(人); (3)画树状图得:∵共有12种等可能的结果,所选两人正好都是甲班学生的有3种情况, ∴所选两人正好都是甲班学生的概率是:31=124. 点睛:此题考查了列表法或树状图法求概率以及条形统计图的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)BD ,CE 的关系是相等;(253417203417(3)1,1 【解析】分析:(1)依据△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,即可BA=CA ,∠BAD=∠CAE ,DA=EA ,进而得到△ABD ≌△ACE ,可得出BD=CE ;(2)分两种情况:依据∠PDA=∠AEC ,∠PCD=∠ACE ,可得△PCD ∽△ACE ,即可得到PD AE =CD CE ,进而得到53417ABD=∠PBE ,∠BAD=∠BPE=90°,可得△BAD ∽△BPE ,即可得到PB BE AB BD ,进而得出63434,203417(3)以A 为圆心,AC 长为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PD 的值最小;当CE 在在⊙A 右上方与⊙A 相切时,PD 的值最大.在Rt △PED 中,PD=DE•sin ∠PED ,因此锐角∠PED 的大小直接决定了PD 的大小.分两种情况进行讨论,即可得到旋转过程中线段PD 的最小值以及最大值.详解:(1)BD ,CE 的关系是相等.理由:∵△ABC 和△ADE 是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴BA=CA,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE,∴BD=CE;故答案为相等.(2)作出旋转后的图形,若点C在AD上,如图2所示:∵∠EAC=90°,∴CE=2234AC AE+=,∵∠PDA=∠AEC,∠PCD=∠ACE,∴△PCD∽△ACE,∴PD CD AE CE=,∴PD=534 17;若点B在AE上,如图2所示:∵∠BAD=90°,∴Rt△ABD中,2234AD AB+=BE=AE﹣AB=2,∵∠ABD=∠PBE,∠BAD=∠BPE=90°,∴△BAD∽△BPE,∴PB BEAB BD=,即334PB=,解得634 34,∴3463434203417故答案为53417或203417;(3)如图3所示,以A为圆心,AC长为半径画圆,当CE在⊙A下方与⊙A相切时,PD的值最小;当CE在在⊙A右上方与⊙A相切时,PD的值最大.如图3所示,分两种情况讨论:在Rt△PED中,PD=DE•sin∠PED,因此锐角∠PED的大小直接决定了PD的大小.①当小三角形旋转到图中△ACB的位置时,在Rt△ACE中,2253-,在Rt△DAE中,225552+=∵四边形ACPB是正方形,∴PC=AB=3,∴PE=3+4=1,在Rt△PDE中,2250491DE PE--=,即旋转过程中线段PD的最小值为1;②当小三角形旋转到图中△AB'C'时,可得DP'为最大值,此时,DP'=4+3=1,即旋转过程中线段PD的最大值为1.故答案为1,1.点睛:本题属于几何变换综合题,主要考查了等腰直角三角形的性质、旋转变换、全等三角形的判定和性质、相似三角形的判定和性质、圆的有关知识,解题的关键是灵活运用这些知识解决问题,学会分类讨论的思想思考问题,学会利用图形的特殊位置解决最值问题.24.(1)证明见解析(2)53πcm,103πcm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OB⊥PB即可;(2)利用菱形、矩形的性质,求出圆心角∠COD即可解决问题. 【详解】(1)如图连接OB、BC,∵OA=OB,∴∠OAB=∠OBA=30°,∴∠COB=∠OAB=∠OBA=60°,∵OB=OC,∴△OBC是等边三角形,∴BC=OC,∵PC=OA=OC,∴BC=CO=CP,∴∠PBO=90°,∴OB⊥PB,∴PB是⊙O的切线;(2)①»CD的长为53πcm时,四边形ADPB是菱形,∵四边形ADPB是菱形,∠ADB=△ACB=60°,∴∠COD=2∠CAD=60°,∴»CD的长=60?·551803ππ=cm;②当四边形ADCB是矩形时,易知∠COD=120°,∴»CD的长=120?·5101803ππ=cm,故答案为:53πcm,103πcm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题是关键.25.(1)24.2米(2) 超速,理由见解析【解析】【分析】(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,从而求得AB的长.(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【详解】解:(1)由題意得,在Rt△ADC中,CDADtan30︒==,在Rt△BDC中,CDBDtan60===︒,∴AB=AD-BD=14 1.73=24.2224.2-≈⨯≈(米).(2)∵汽车从A到B用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB路段超速.26.自行车速度为16千米/小时,汽车速度为40千米/小时.【解析】【分析】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,根据甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果同时到达,即可列方程求解.【详解】设自行车速度为x千米/小时,则汽车速度为2.5x千米/小时,由题意得20452060 2.5x x-=,解得x=16,经检验x=16适合题意,2.5x=40,答:自行车速度为16千米/小时,汽车速度为40千米/小时.27.不会有触礁的危险,理由见解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据BHtan BAHAH∠=可得关于x的方程,解之可得.详解:过点A作AH⊥BC,垂足为点H.由题意,得∠BAH=60°,∠CAH=45°,BC=1.设AH=x,则CH=x.在Rt△ABH中,∵1060310BH xtan BAH tan x xAH x∠+=∴︒==+,,,解得:53513.65x=≈.∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.。
2024届北京市房山区燕山地区中考二模数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 出发,以2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是 ( )A .B .C .D .2.下列计算正确的有( )个①(﹣2a 2)3=﹣6a 6 ②(x ﹣2)(x+3)=x 2﹣6 ③(x ﹣2)2=x 2﹣4 ④﹣2m 3+m 3=﹣m 3 ⑤﹣16=﹣1. A .0 B .1 C .2 D .33.若()292m m --=1,则符合条件的m 有( )A .1个B .2个C .3个D .4个4.化简16 ) A .±4B .4C .2D .±25.某小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如图的折线图,则符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.掷一枚质地均匀的正六面体骰子,向上一面的点数是4C.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃D.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上6.如图,在平面直角坐标系中,已知点B、C的坐标分别为点B(﹣3,1)、C(0,﹣1),若将△ABC绕点C沿顺时针方向旋转90°后得到△A1B1C,则点B对应点B1的坐标是()A.(3,1)B.(2,2)C.(1,3)D.(3,0)7.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)8.a≠0,函数y=ax与y=﹣ax2+a在同一直角坐标系中的大致图象可能是()A.B.C.D.9.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .10.下列几何体中,其三视图都是全等图形的是( ) A .圆柱B .圆锥C .三棱锥D .球11.拒绝“餐桌浪费”,刻不容缓.节约一粒米的帐:一个人一日三餐少浪费一粒米,全国一年就可以节省32400000斤,这些粮食可供9万人吃一年.“32400000”这个数据用科学记数法表示为( ) A .532410⨯B .632.410⨯C .73.2410⨯D .80.3210⨯.12.如图,AB CD ⊥,且AB CD =.E 、F 是AD 上两点,CE AD ⊥,BF AD ⊥.若CE a =,BF b =,EF c =,则AD 的长为( )A .a c +B .b c +C .a b c -+D .a b c +-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知点E 是菱形ABCD 的AD 边上的一点,连接BE 、CE ,M 、N 分别是BE 、CE 的中点,连接MN ,若∠A=60°,AB=4,则四边形BCNM 的面积为_____.14.已知A (0,3),B (2,3)是抛物线上两点,该抛物线的顶点坐标是_________.15.在矩形ABCD 中,AB=4, BC=3, 点P 在AB 上.若将△DAP 沿DP 折叠,使点A 落在矩形对角线上的处,则AP 的长为__________. 16.若反比例函数ky x=的图象与一次函数y=ax+b 的图象交于点A (﹣2,m )、B (5,n ),则3a+b 的值等于_____.17.瑞士的一位中学教师巴尔末从光谱数据9162536,,,5122132,…中,成功地发现了其规律,从而得到了巴尔末公式,继而打开了光谱奥妙的大门.请你根据这个规律写出第9个数_____.18.如图,在四边形ABCD中,AB//CD,AC、BD相交于点E,若AB1CD4=,则AEAC=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,直线y=x与双曲线y=(k>0,x>0)交于点A,将直线y=x向上平移4个单位长度后,与y轴交于点C,与双曲线y=(k>0,x>0)交于点B.(1)设点B的横坐标分别为b,试用只含有字母b的代数式表示k;(2)若OA=3BC,求k的值.20.(6分)如图,△ABC中,AB=8厘米,AC=16厘米,点P从A出发,以每秒2厘米的速度向B运动,点Q从C 同时出发,以每秒3厘米的速度向A运动,其中一个动点到端点时,另一个动点也相应停止运动,设运动的时间为t.⑴用含t的代数式表示:AP=,AQ=.⑵当以A,P,Q为顶点的三角形与△ABC相似时,求运动时间是多少?21.(6分)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?23.(8分)计算:-2-2 - 12+2 1sin60π3⎛⎫-︒+-⎪⎝⎭24.(10分)已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2︰1,并直接写出C2点的坐标及△A2BC2的面积.25.(10分)随着交通道路的不断完善,带动了旅游业的发展,某市旅游景区有A、B、C、D、E等著名景点,该市旅游部门统计绘制出2017年“五•一”长假期间旅游情况统计图,根据以下信息解答下列问题:(1)2017年“五•一”期间,该市周边景点共接待游客万人,扇形统计图中A景点所对应的圆心角的度数是,并补全条形统计图.(2)根据近几年到该市旅游人数增长趋势,预计2018年“五•一”节将有80万游客选择该市旅游,请估计有多少万人会选择去E景点旅游?(3)甲、乙两个旅行团在A、B、D三个景点中,同时选择去同一景点的概率是多少?请用画树状图或列表法加以说明,并列举所用等可能的结果.26.(12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD 于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE= ;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.27.(12分)先化简,再求值:(x﹣2﹣52x+)÷2(3)2xx++,其中3参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【题目详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=32,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1),由题意可得AP=2x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=22x,所以y=12AP QN⋅=21212=222x x x⨯⨯(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=32,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=22(6-x),所以y=12AP QN⋅=12332(6)=9222x x⨯⨯--+(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【题目点拨】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.2、C【解题分析】根据积的乘方法则,多项式乘多项式的计算法则,完全平方公式,合并同类项的计算法则,乘方的定义计算即可求解.【题目详解】①(﹣2a2)3=﹣8a6,错误;②(x﹣2)(x+3)=x2+x﹣6,错误;③(x﹣2)2=x2﹣4x+4,错误④﹣2m3+m3=﹣m3,正确;⑤﹣16=﹣1,正确.计算正确的有2个.故选C.【题目点拨】考查了积的乘方,多项式乘多项式,完全平方公式,合并同类项,乘方,关键是熟练掌握计算法则正确进行计算.3、C【解题分析】根据有理数的乘方及解一元二次方程-直接开平方法得出两个有关m的等式,即可得出.【题目详解】()292mm--=1∴m2-9=0或m-2= ±1即m= ±3或m=3,m=1∴m有3个值故答案选C.【题目点拨】本题考查的知识点是有理数的乘方及解一元二次方程-直接开平方法,解题的关键是熟练的掌握有理数的乘方及解一元二次方程-直接开平方法.4、B【解题分析】根据算术平方根的意义求解即可.【题目详解】=4,故选:B.【题目点拨】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.5、B【解题分析】根据统计图可知,试验结果在0.17附近波动,即其概率P≈0.17,计算四个选项的概率,约为0.17者即为正确答案.【题目详解】解:在“石头、剪刀、布”的游戏中,小明随机出剪刀的概率是13,故A选项错误,掷一枚质地均匀的正六面体骰子,向上一面的点数是4的概率是16≈0.17,故B选项正确,一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌,抽中红桃得概率是14,故C选项错误,抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面仍朝上的概率是18,故D选项错误,故选B.【题目点拨】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.6、B【解题分析】作出点A、B绕点C按顺时针方向旋转90°后得到的对应点,再顺次连接可得△A1B1C,即可得到点B对应点B1的坐标.【题目详解】解:如图所示,△A1B1C即为旋转后的三角形,点B对应点B1的坐标为(2,2).故选:B.【题目点拨】此题主要考查了平移变换和旋转变换,正确根据题意得出对应点位置是解题关键.图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.7、C【解题分析】关于y轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P(1,﹣2)关于y轴对称的点的坐标是(﹣1,﹣2),故选C.【题目点拨】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键.关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.8、D【解题分析】分a>0和a<0两种情况分类讨论即可确定正确的选项【题目详解】当a>0时,函数y=ax的图象位于一、三象限,y=﹣ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a<0时,函数y=ax的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D选项符合;故选D.【题目点拨】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.9、D【解题分析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.10、D【解题分析】分析: 任意方向上的视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,其他的几何体的视图都有不同的.详解:圆柱,圆锥,三棱锥,球中,三视图都是全等图形的几何体只有球,在任意方向上的视图都是圆,故选D.点睛: 本题考查简单几何体的三视图,本题解题的关键是看出各个图形的在任意方向上的视图.11、C【解题分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【题目详解】32400000=3.24×107元.故选C.【题目点拨】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n ,其中1≤|a|<10,确定a 与n 的值是解题的关键. 12、D【解题分析】分析:详解:如图,∵AB ⊥CD,CE ⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF ⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF ≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF ≌△CDE 是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、3【解题分析】如图,连接BD .首先证明△BCD 是等边三角形,推出S △EBC =S △DBC =34×423,再证明△EMN ∽△EBC ,可得EMN EBC S S ∆∆=(MN BC )2=14,推出S △EMN 3,由此即可解决问题.【题目详解】解:如图,连接BD .∵四边形ABCD 是菱形,∴AB=BC=CD=AD=4,∠A=∠BCD=60°,AD ∥BC ,∴△BCD 是等边三角形,∴S △EBC =S △DBC =34×42=43, ∵EM=MB ,EN=NC ,∴MN ∥BC ,MN=12BC , ∴△EMN ∽△EBC ,∴EMN EBC S S ∆∆=(MN BC )2=14, ∴S △EMN =3,∴S 阴=43-3=33,故答案为33.【题目点拨】本题考查相似三角形的判定和性质、三角形的中位线定理、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.14、(1,4).【解题分析】试题分析:把A (0,3),B (2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.15、32或94【解题分析】①点A 落在矩形对角线BD 上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P ,∠A=∠PA′D=90°,∴BA′=2,设AP=x ,则BP=4﹣x ,∵BP 2=BA′2+PA′2,∴(4﹣x )2=x 2+22,解得:x=32,∴AP=32; ②点A 落在矩形对角线AC 上,如图2,根据折叠的性质可知DP ⊥AC ,∴△DAP ∽△ABC ,∴AD AB AP BC=, ∴AP=AD BC AB =334⨯=94. 故答案为32或94.16、0【解题分析】分析:本题直接把点的坐标代入解析式求得m n a b ,,,之间的关系式,通过等量代换可得到3a b +的值. 详解:分别把A (−2,m )、B (5,n ),代入反比例函数k y x=的图象与一次函数y =ax +b 得 −2m =5n ,−2a +b =m ,5a +b =n ,综合可知5(5a +b )=−2(−2a +b ),25a +5b =4a −2b ,21a +7b =0,即3a +b =0.故答案为:0.点睛:属于一次函数和反比例函数的综合题,考查反比例函数与一次函数的交点问题,比较基础.17、121 117.【解题分析】分子的规律依次是:32,42,52,62,72,82,92…,分母的规律是:规律是:5+7=12 12+9=21 21+11=32 32+13=45…,即分子为(n+2)2,分母为n(n+4).【题目详解】解:由题可知规律,第9个数的分子是(9+2)2=121;第五个的分母是:32+13=45;第六个的分母是:45+15=60;第七个的分母是:60+17=77;第八个的分母是:77+19=96;则第九个的分母是:96+21=1.因而第九个数是:121 117.故答案为:121 117.【题目点拨】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.18、1 5【解题分析】利用相似三角形的性质即可求解;【题目详解】解:∵ AB∥CD,∴△AEB∽△CED,∴AE AB1==EC CD4,∴AE1=AC5,故答案为15.【题目点拨】本题考查相似三角形的性质和判定,解题的关键是熟练掌握相似三角形的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)k=b2+4b;(2).【解题分析】试题分析:(1)分别求出点B的坐标,即可解答.(2)先根据一次函数平移的性质求出平移后函数的解析式,再分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,再设A(3x,x),由于OA=3BC,故可得出B(x,x+4),再根据反比例函数中k=xy为定值求出x试题解析:(1)∵将直线y=向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=+4,∵点B在直线y=+4上,∴B(b,b+4),∵点B在双曲线y=上,∴B(b,),令b+4=得(2)分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,x),∵OA=3BC,BC∥OA,CF∥x轴,∴CF=OD,∵点A、B在双曲线y=上,∴3b•b=,解得b=1,∴k=3×1××1=.考点:反比例函数综合题.20、(1)AP=2t,AQ=16﹣3t;(2)运动时间为167秒或1秒.【解题分析】(1)根据路程=速度 时间,即可表示出AP,AQ的长度.(2)此题应分两种情况讨论.(1)当△APQ∽△ABC时;(2)当△APQ∽△ACB时.利用相似三角形的性质求解即可.【题目详解】(1)AP=2t,AQ=16﹣3t.(2)∵∠PAQ=∠BAC,∴当AP AQAB AC=时,△APQ∽△ABC,即2163816t t-=,解得167t=;当AP AQAC AB=时,△APQ∽△ACB,即2163168t t-=,解得t=1.∴运动时间为167秒或1秒.【题目点拨】考查相似三角形的判定与性质,掌握相似三角形的判定定理与性质定理是解题的关键.注意不要漏解.21、等腰直角三角形【解题分析】首先把等式的左右两边分解因式,再考虑等式成立的条件,从而判断△ABC的形状.【题目详解】解:∵a2c2-b2c2=a4-b4,∴a4-b4-a2c2+b2c2=0,∴(a4-b4)-(a2c2-b2c2)=0,∴(a2+b2)(a2-b2)-c2(a2-b2)=0,∴(a2+b2-c2)(a2-b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.考点:勾股定理的逆定理.22、(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解题分析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【题目详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【题目点拨】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.23、73 42 -【解题分析】直接利用负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值分别化简,再根据实数的运算法则即可求出答案.【题目详解】解:原式=137523113 442--+=【题目点拨】本题考查了负指数幂的性质以及零指数幂的性质和特殊角的锐角三角函数值,熟记这些运算法则是解题的关键.24、解:(1)如图,△A1B1C1即为所求,C1(2,-2).(2)如图,△A2BC2即为所求,C2(1,0),△A2BC2的面积:10【解题分析】分析:(1)根据网格结构,找出点A、B、C向下平移4个单位的对应点1A、1B、1C的位置,然后顺次连接即可,再根据平面直角坐标系写出点1C 的坐标;(2)延长BA 到2A 使A 2A =AB ,延长BC 到2C ,使C 2C =BC ,然后连接A 2C 2即可,再根据平面直角坐标系写出2C 点的坐标,利用△2A B 2C 所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.本题解析:(1)如图,△A 1B 1C 1即为所求,C 1(2,-2)(2)如图,△2A B 2C 为所求,2C (1,0),△2A B 2C 的面积: 6×4−12×2×6−12×2×4−12×2×4=24−6−4−4=24−14=10, 25、(1)50,108°,补图见解析;(2)9.6;(3)13. 【解题分析】(1)根据A 景点的人数以及百分表进行计算即可得到该市周边景点共接待游客数;先求得A 景点所对应的圆心角的度数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;根据B 景点接待游客数补全条形统计图;(2)根据E 景点接待游客数所占的百分比,即可估计2018年“五•一”节选择去E 景点旅游的人数;(3)根据甲、乙两个旅行团在A 、B 、D 三个景点中各选择一个景点,画出树状图,根据概率公式进行计算,即可得到同时选择去同一景点的概率.【题目详解】解:(1)该市周边景点共接待游客数为:15÷30%=50(万人),A 景点所对应的圆心角的度数是:30%×360°=108°,B 景点接待游客数为:50×24%=12(万人),补全条形统计图如下:(2)∵E景点接待游客数所占的百分比为:650×100%=12%,∴2018年“五•一”节选择去E景点旅游的人数约为:80×12%=9.6(万人);(3)画树状图可得:∵共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,∴同时选择去同一个景点的概率=31 93 .【题目点拨】本题考查列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.26、(1);(2)①证明见解析;②;(3).【解题分析】试题分析:(1)由正方形的性质得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余关系证出∠AEP=∠PBC,得出△APE∽△BCP,得出对应边成比例即可求出AE的长;(2)①A、P、O、E四点共圆,即可得出结论;②连接OA、AC,由勾股定理求出AC=,由圆周角定理得出∠OAP=∠OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4﹣x,由相似三角形的对应边成比例求出AE的表达式,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可.试题解析:(1)∵四边形ABCD、四边形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴,即,解得:AE=,故答案为:;(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四点共圆,∴点O一定在△APE的外接圆上;②连接OA、AC,如图1所示:∵四边形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC==,∵A、P、O、E四点共圆,∴∠OAP=∠OEP=45°,∴点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=,即点O经过的路径长为;(3)设△APE的外接圆的圆心为M,作MN⊥AB于N,如图2所示:则MN∥AE,∵ME=MP,∴AN=PN,∴MN=AE,设AP=x,则BP=4﹣x,由(1)得:△APE∽△BCP,∴,即,解得:AE==,∴x=2时,AE的最大值为1,此时MN的值最大=×1=,即△APE的圆心到AB边的距离的最大值为.【题目点拨】本题考查圆、二次函数的最值等,正确地添加辅助线,根据已知证明△APE∽△BCP是解题的关键. 2732【解题分析】根据分式的运算法则即可求出答案.【题目详解】 原式()2245223x x x x --+=⨯++, ()()()2+33223x x x x x -+=⨯++,33x x -=+.当x=2= 【题目点拨】 本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.。
考生须知 1.本试卷共6页,共五道大题,25个小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考试编号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.考试结束,请将本试卷和答题卡一并交回。
一、选择题(共8道小题,每小题4分,共32分) 下列各题均有四个选项,其中只有一个..是符合题意的. 1.21-的倒数是( ). A .2 B .2- C .21 D . 21-2.根据中国汽车工业协会的统计,2011年上半年的中国汽车销量约为932.5万辆,同比增速3.35%.将932.5万辆用科学记数法表示为( )辆A .93.25×105B .0.9325×107C .9.325×106D .9.325×1023.若一个正多边形的每个内角都为135°,则这个正多边形的边数是( ). A .9 B .8 C .7 D .6 4.下列运算正确的是( ).A .22a a a =⋅B .22=÷a aC . 22423a a a +=D . ()33a a -=-5.如图所示,直线a ∥b ,直线c 与直线a ,b 分别相交于点A 、点B ,AM ⊥b ,垂足为点M ,若∠1=58°,则∠2的度数是( ).A .22B .30C .32D .426.某校抽取九年级的8名男生进行了1次体能测试,其成绩分别为90,75,90,85, 75,85,95,75,(单位:分)这次测试成绩的众数和中位数分别是 ( ).A .85,75B .75,85C .75,80D .75,757.已知圆锥的底面半径为3,母线长为4,则圆锥的侧面积等于( ).A .15πB .14πC .13πD .12π8.过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为( ) .A B C D 二、填空题(共4道小题,每小题4分,共16分)第5题图2a bcMB A 19.在函数3+=x y 中,自变量x 的取值范围是 .10.若()022=++-a b a ,则=+b a .11.把代数式142-+m m 化为()b a m ++2的形式,其中a 、b 为常数,则a +b = .12.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探索可得,第20个点的坐标是__________;第90个点的坐标为____________.三、解答题(共6道小题,每小题5分,共30分) 13.()33602120---+︒-πcos解:14.解方程:2132+=+-a a a解:15. 已知4+=y x ,求代数式2524222-+-y xy x 的值.解:16.如图,在△ABC 中,AD 是中线,分别过点B 、C 作AD 及其延长线的垂线BE 、CF ,垂足分别为点E 、F .求证:BE =CF . 证明:17.如图,某场馆门前台阶的总高度CB 为0.9m ,为了方便残疾人行走,该场馆决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角A ∠为8°,请计算从斜坡起点A 到台阶最高点D 的距离(即斜坡AD 的长).(结果精确到0.1m ,参考数据:sin 8°≈0.14,cos 8°≈0.99,tan 8°≈0.14)C ABD解:18.如图,平面直角坐标系中,直线AB 与x 轴交于点A (2,0),与y 轴交于点B ,点D 在直线AB 上.⑴求直线AB 的解析式;⑵将直线AB 绕点A 逆时针旋转30°,求旋转后的直线解析式. 解:⑴⑵四、解答题(共4道小题,每小题均5分,共20分)19.如图1,已知平行四边形ABCD 中,对角线AC BD ,交于点O ,E 是BD 延长线上的点,且ACE △是等边三角形. ⑴求证:四边形ABCD 是菱形;⑵如图2,若2AED EAD ∠=∠,AC =6.求DE 的长.OBACD OB EACD图1 图2 证明:⑴ ⑵20. 如图,⊙O 中有直径AB 、EF 和弦BC ,且BC 和EF 交于点D ,y x31DB O AE DC点D是弦BC的中点,CD=4,DF=8.⑴求⊙O的半径及线段AD的长;⑵求sin∠DAO的值.解:⑴⑵21.图①、图②反映是某综合商场今年1-4月份的商品销售额统计情况.观察图①和图②,解答下面问题:⑴来自商场财务部的报告表明,商场1-4月份的销售总额一共是280万元,请你根据这一信息补全图①;⑵商场服装部4月份的销售额是多少万元;⑶小华观察图②后认为,4月份服装部的销售额比3月份减少了.你同意他的看法吗?为什么?解:⑴⑵⑶22.⑴阅读下面材料并完成问题:已知:直线AD 与△ABC 的边BC 交于点D ,①如图1,当BD =DC 时,则S △ABD ________S △ADC .(填“=”或“<”或“>”)DBCADBCABCAD图1 图2 图3②如图2,当BD =21DC 时,则=∆ABD S ADC S ∆ . ③如图3,若AD ∥BC ,则有ABC S ∆ DBC S ∆ .(填“=”或“<”或“>”)⑵请你根据上述材料提供的信息,解决下列问题:过四边形ABCD 的一个顶点画一条直线,把四边形ABCD 的面积分成1︰2的两部分.(保留画图痕迹)BCAD五、解答题(共3道小题,23题7分,24题8分,25题7分,共22分)23.已知:关于x 的方程mx 2-3(m -1)x +2m -3=0.⑴当m 取何整数值时,关于x 的方程mx 2-3(m -1)x +2m -3=0的根都是整数; ⑵若抛物线32)1(32-+--=m x m mx y 向左平移一个单位后,过反比例函数)0(≠=k xk y 上的一点(-1,3),①求抛物线32)1(32-+--=m x m mx y 的解析式; ②利用函数图象求不等式0>-kx x k 的解集.解:⑴⑵① ②24.探究问题:已知AD、BE分别为△ABC的边BC、AC上的中线,且AD、BE交于点O.⑴△ABC为等边三角形,如图1,则AO︰OD= ;⑵当小明做完⑴问后继续探究发现,若△ABC为一般三角形(如图2),⑴中的结论仍成立,请你给予证明.⑶运用上述探究的结果,解决下列问题:如图3,在△ABC中,点E是边AC的中点,AD平分∠BAC, AD⊥BE于点F,若AD=BE=4. 求:△ABC的周长.O D EAB COEDB CACF EA图1 图2 图3解:⑴⑵⑶25.如图,在平面直角坐标系中,点P从原点O出发,沿x轴向右以每秒1个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c经过点O和点P.已知矩形ABCD的三个顶点为A(1,0)、B(1,-5)、D(4,0).⑴求c、b(可用含t的代数式表示);⑵当t>1时,抛物线与线段AB交于点M.在点P的运动过程中,你认为∠AMP的大小是否会变化?若变化,说明理由;若不变,求出∠AMP的值;⑶在矩形ABCD的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接..写出t的取值范围.解:⑴⑵⑶房山区2012年九年级数学统一练习㈡参考答案一、选择题1 2 3 4 5 6 7 8 B C B D C B DB二、填空题9、x ≥-3 10、-4 11、-3 12、(6,4);(13,1) 三、解答题(共6道小题,每小题5分,共30分) 13.解:原式=3121232-+⨯----------------------------------------4分 =3---------------------------------------5分14.解:()()()()32322-=+-++a a a a a ---------------------------------------1分a a a a a 364222-=--++ ---------------------------------------2分24=a ---------------------------------------3分21=a ---------------------------------------4分是原方程的根经检验:21=a ∴是原方程的根21=a ---------------------------5分15.44=-∴+=y x y x 解:---------------------------------------1分 原式=2524222-+-y xy x ---------------------------------------2分()2522--=y x ---------------------------------------4分7254242=-⨯==-时,原式当y x ---------------------------------------5分16.证明: AD 是中线∴BD=CD ---------------------------------------1分分别过点B 、C 作AD 及其延长线的垂线BE 、CFCFD E ∠=∠∴---------------------------------------2分中和在CFD BED ∆∆ ⎪⎩⎪⎨⎧∠=∠=∠=∠CDF BDE CDBD CFD E ()AAS CFD BED ∆≅∆∴-------------------------------4分CF BE =∴---------------------------------------5分17.解:E AB DE D 于点作过⊥---------------------------------------1分,于B AB CB ⊥ DC ∥AB ∴.90==CB DE ---------------------------------------2分A DEAD AED Rt sin =∆ 中,在---------------------------------------4分∴m AD 4.614.09.0≈= ∴从斜坡起点A 到台阶最高点D 的距离约为6.4m 。
--------------5分 18.解: ⑴依题意可知,⎩⎨⎧=+=+302b k b k ⎪⎩⎪⎨⎧=-=323b k 解得 所以,直线AB 的解析式为323+-=x y -------------------------2分 ⑵ A (2,0)B ()32,032,2==∴OB OA 可求得︒=∠60BAO 当直线AB 绕点A 逆时针旋转30°交y 轴于点C ,可得︒=∠30CAO 在Rt ∆AOC 中OC =o30tan OA =332)332,0(C ∴ ---------------------------------------3分设所得直线为1y =mx+332, A (2,0)33220+=∴m 解得33-=m,---------------------------------------4分 所以y 1=-33x + 332 ---------------------------------------5分 四、解答题(共4道小题,每小题均5分,共20分) 19.证明:⑴ 平行四边形ABCD∴OA =OC ---------------------------------------1分ACE △是等边三角形 ∴OE ⊥ACC AD BOAD∴BD ⊥AC平行四边形ABCD∴四边形ABCD 是菱形---------------------------------------2分 ⑵ ACE △是等边三角形,OE ⊥AC∴∠AEO =AEC ∠21=30° 2AED EAD ∠=∠∴∠EAD =15°∴∠ADB =45°---------------------------------------3分四边形ABCD 是菱形 ∴AD =DC , BD ⊥AC ∴∠CDB =∠ADB =45°∠ADC =90°,∴ADC ∆是等腰直角三角形∴OA =OC =OD =AC 21=3,----------------------------------4分ACE △是等边三角形, ∠EAO =60°在Rt ∆AOE 中,OE =OAtan 60°=33∴DE =OE -OD =333----------------------------------------5分 20. 解:⑴∵D 是BC 的中点,EF 是直径∴CB ⊥EF 且BD =CD =4 --------------------------------------- 1分 ∵DF =8∴OD =R 8-∵222DB OD OB =-∴2224)R 8(R =--∴R =5 ---------------------------------------2分连结AC ,过D 作DH ⊥AB 交AB 于H . ∵AB 是直径 ∴∠ACB =90°∵CB =2CD =8,AB =10 ∴AC =6∴∠ACD =90°,AC =6,CD =4∴132AD =---------------------------------------3分 ⑵∵Rt △DHB 中,DH =DB·sin ∠DBH =512534=⨯---------------------------------------4分65136ADDH DAO sin ==∠∴---------------------------------------5分21.图2BAA B⑴如图1--------------------------------------1分⑵70×15%=10.5万元--------------------------------------2分 ⑶不同意--------------------------------------3分 3月服装部销售额为65×16%=10.4万元<10.5万元--------------------------------------4分∴4月份服装部的销售额比3月份增加了。