二年级奥数之植树问题
- 格式:pdf
- 大小:190.09 KB
- 文档页数:2
二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
如右图所示。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树方式,在题目标记,题目很少直接给出种树方式。
往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?分析:两端种树:盏数(点数)=“段数”(间隔数)+12、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?分析:两端种树:全长=间距×(棵数-1)3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子"练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为: 全长=间距×棵数; 棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
如右图所示。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树方式,在题目标记,题目很少直接给出种树方式。
往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?分析:两端种树:盏数(点数)=“段数”(间隔数)+12、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?分析:两端种树:全长=间距×(棵数-1)3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
(完整版)⼆年级奥数间隔问题练习⼆年级奥数间隔问题⼀、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题⽬中要求在植树的线路两端都植树,则棵数⽐段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题⽬中要求在路线的⼀端植树,则棵数就⽐在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就⽐②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正⽅形、长⽅形、闭合曲线等上⾯植树,因为头尾两端重合在⼀起,所以种树的棵数等于分成的段数。
如右图所⽰。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)为了更直观,我们⽤图⽰法来说明。
树⽤点来表⽰,植树的沿线⽤线来表⽰,这样就把植树问题转化为⼀条⾮封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树⽅式,在题⽬标记,题⽬很少直接给出种树⽅式。
往往有陷阱⽐如说:门前、门⼝、电线杆......都是不能种树类型⼀: ⾮封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、⼀座桥长30⽶,在它的两边每隔5⽶有⼀盏灯,第⼀盏灯在桥的起点,最后⼀盏灯在桥的终点,桥上⼀共有⼏盏灯?2、⼩明在马路的⼀边种树,每隔3⽶种⼀棵树,共种了11棵,问这段马路有多长?3、晾晒1块⼿帕需要2个夹⼦,2块⼿帕要3个夹⼦,3块⼿帕要4个夹⼦,照这样的规律,晾晒8块⼿帕需要⼏个夹⼦?练习1、学校门前的⼀条路长42⽶,从头到尾栽树,每7⽶栽⼀棵,⼀共能栽⼏棵树?2、在⼀条长15⽶的⽔泥路上,从头开始每隔3⽶摆⼀盆花,⼀共摆了多少盆花?3、少先队员在路的两旁每隔5⽶栽⼀棵树,起点和终点都栽了,⼀共栽了72棵树,这条路长多少⽶?4、在⼀段路边每隔50⽶埋设⼀根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
种树奥数题二年级一、两端都种树问题。
1. 在一条长20米的小路一边种树,每隔5米种一棵,两端都种,一共种了多少棵树?- 解析:首先计算间隔数,间隔数 = 总长度÷间隔长度,即20÷5 = 4个间隔。
因为两端都种树,所以树的棵数比间隔数多1,即4 + 1 = 5棵树。
2. 学校门前的路长30米,每隔3米种一棵树(两端都种),一共种多少棵树?- 解析:间隔数为30÷3 = 10个。
两端都种时,树的棵数 = 间隔数+1,也就是10 + 1 = 11棵。
3. 有一条18米长的绳子,每隔2米打一个结(两端都打结,相当于种树),一共打多少个结?- 解析:先求间隔数,18÷2 = 9个间隔。
两端都打结,结的个数 = 间隔数 + 1,即9+1 = 10个。
二、一端种树(或封闭线路种树)问题。
4. 在一个圆形花坛周围种树,花坛周长是24米,每隔4米种一棵,一共种多少棵树?- 解析:因为是圆形,属于封闭线路种树,树的棵数等于间隔数。
间隔数 = 周长÷间隔长度,即24÷4 = 6棵树。
5. 学校操场的跑道长40米,在跑道的一侧每隔8米插一面彩旗(一端插彩旗,类似一端种树),一共插多少面彩旗?- 解析:一端插彩旗时,彩旗面数等于间隔数。
间隔数 = 40÷8 = 5面彩旗。
三、两端都不种树问题。
6. 在一条长25米的走廊一边摆花,每隔5米摆一盆,两端都不摆,一共摆多少盆花?- 解析:先算间隔数,25÷5 = 5个间隔。
两端都不摆时,花的盆数比间隔数少1,即5 - 1 = 4盆花。
7. 有一条36米长的小路,每隔6米种一棵树,两端都不种,一共种多少棵树?- 解析:间隔数为36÷6 = 6个。
两端都不种时,树的棵数 = 间隔数 - 1,即6 - 1 = 5棵树。
四、综合应用问题。
8. 在一条长45米的大路两旁种树,每隔9米种一棵,起点和终点都种,一共种多少棵树?- 解析:先算大路一旁的情况,间隔数 = 45÷9 = 5个。
二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
如右图所示。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)株距=周长÷棵数(段数)为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树方式,在题目标记,题目很少直接给出种树方式。
往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?分析:两端种树:盏数(点数)=“段数”(间隔数)+12、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?分析:两端种树:全长=间距×(棵数-1)3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
二年级奥数之植树问题含答案
思路导航:根据圆的周长公式C=2πr,可以求出水池的半
径r=27÷(2π),然后再根据每隔3米放一盏灯,计算出圆周上
有多少个3米的间隔,最后再加上起点和终点的2个灯,即可求出总共有多少盏灯。
解:r=27÷(2π)≈4.29(米),圆周长C=2πr≈27(米),圆
周上有9个3米的间隔,加上起点和终点的2个灯,共有11
盏灯。
答:一共有11盏灯。
练4
1.一个直径为12米的圆形花坛周围每隔1.5米栽一棵花,一共栽了多少棵花?
2.一个长方形篮球场的周长为84米,每隔6米放一盏灯,一共有多少盏灯?
3.一个直径为16米的圆形广场上每隔4米放一盏路灯,
一共有多少盏路灯?
练4:
1.一个周长为32米的圆形花坛,每隔4米放一盆菊花,
一共要放多少盆菊花?
解:每个间隔放一盆菊花,所以一圈需要32÷4=8个间隔,因此需要放8×6=48盆菊花。
答:一共要放48盆菊花。
2.有一个周长为45米的圆形水池,在水池周围每隔5米
栽1棵柳树,一共要栽多少棵?
解:每个间隔栽1棵柳树,所以一圈需要45÷5=9个间隔,因此需要栽9×1=9棵柳树。
答:一共要栽9棵柳树。
3.XXX有一个周长为48米的圆形花坛,沿着一圈每隔6
米栽一株丁香花,一共要栽几株?
解:每个间隔栽一株丁香花,所以一圈需要48÷6=8个间隔,因此需要栽8×1=8株丁香花。
答:一共要栽8株丁香花。
【摘要】二年级数学公式对小朋友们的数学学习非常重要,大家一定要认真掌握,奥数网为大家整理了二年级数学公式:植树问题,让我们一起学习,一起进步吧!
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
⑶如果在非封闭线路的两端都不要植树,那么:
株数=段数-1=全长÷株距-1
全长=株距×(株数+1)
株距=全长÷(株数+1)
2 封闭线路上的植树问题的数量关系如下
株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
总结:二年级数学公式就为大家整理到这了,小朋友们记住了吗?希望为小朋友的学习带来帮助。
【导语】在解奥数题时,经常要提醒⾃⼰,遇到的新问题能否转化成旧问题解决,化新为旧,透过表⾯,抓住问题的实质,将问题转化成⾃⼰熟悉的问题去解答。
转化的类型有条件转化、问题转化、关系转化、图形转化等。
以下是整理的《⼩学⼆年级奥数植树问题及参考答案》相关资料,希望帮助到您。
⼩学⼆年级奥数植树问题及参考答案篇⼀ 1、红领⼱公园⼀条长200⽶的甬道两端各有⼀株桃树,现在两棵桃树之间等距离栽种了39株⽉季花,每两株⽉季花相隔多少⽶? 2、学校召开运动会前,在100⽶直跑道外侧每隔10⽶插⼀⾯彩旗,在跑道的⼀端原有⼀⾯彩旗还需备⾯彩旗? 3、在⼀条长50⽶的跑道两旁,从头到尾每隔5⽶插⼀⾯彩旗,⼀共插⾯彩旗? 参考答案: 1、此题与题4类型相同,所求不同、已知全长200⽶,棵数39株,求间隔长、列式是:200÷(39+1)=200÷40=5(⽶) 答:每两棵⽉季花相隔5⽶。
2、此题是植树问题中植树线路不封闭的⼀种,并要求植树线路的⼀端要植树、那么全长、棵数、间隔长三量之间的关系是: 棵数=全长÷间隔长 全长=间隔长×棵数 间隔长=全长÷棵数 只要知道其中两个,就可以求出第三个量、100⽶是全长,10⽶是间隔长,求棵树、列式是:100÷10=10(⾯) 答:还需准备10⾯彩旗。
3、此题也属于植树问题中植树线路不封闭的,并要求植树线路的两端都要植树、与题1类似,但⼜要求在线路的两旁,⽽不再是⼀侧。
解法⼀:50÷5+1=10+1=11(⾯)…先求出⼀侧的,再求两旁、11×2=22(⾯) 答:⼀共要插22⾯彩旗。
解法⼆:把线路两旁转化成⼀侧、50×2=100(⽶),100÷5+1=20+1=21(⾯)、在转化成⼀侧时,有两棵重叠了,所以还需加1、21+1=22(⾯) 答:⼀共要插22⾯彩旗。
⼩学⼆年级奥数植树问题及参考答案篇⼆ 1、有⼀条2000⽶的公路,在路⼀边每相隔50⽶埋设⼀根路灯杆,从头到尾需要埋设路灯杆多少根? 2、某⼤学从校门⼝的门柱到教学楼墙根,有⼀条1000⽶的甬路,每边相隔8⽶栽⼀棵⽩杨,可以栽⽩杨多少棵? 3、最新的⼩学三年级奥数植树问题练习题:⼀列⽕车共20节,每节长5⽶,每两节之间相距1⽶,这列⽕车以每分钟20⽶的速度通过81⽶长的隧道,需要⼏分钟? 参考答案: 1、答:41根。
二年级奥数间隔问题一、植树问题:植树问题是最典型的间隔问题。
植树问题,要牢记四要素:①路线长②间距(棵距)长③棵数④间隔数关于植树的路线,有封闭与不封闭两种路线。
1.不封闭路线①若题目中要求在植树的线路两端都植树,则棵数比段数多1。
如图把总长平均分成5段,但植树棵数是6棵。
全长、棵数、间距三者之间的关系是:棵数=间隔数+1 / 间隔数=棵数-1全长=间距×(棵数-1)间距=全长÷(棵数-1)②如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等。
全长、棵数、株距之间的关系就为:全长=间距×棵数;棵数=间隔数=全长÷间距;间距=全长÷棵数。
③如果植树路线的两端都不植树,则棵数就比②中还少1棵。
棵数=间隔数-1=全长÷间距-1间距=全长÷(棵数+1)2.封闭的植树路线例如:在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数。
如右图所示。
棵数=间隔数=周长÷间距周长=株距×棵数(段数)为了更直观,我们用图示法来说明。
树用点来表示,植树的沿线用线来表示,这样就把植树问题转化为一条非封闭或封闭的线上的“点数”与相邻两点间的线的段数之间的关系问题。
明确植树方式,在题目标记,题目很少直接给出种树方式。
往往有陷阱比如说:门前、门口、电线杆......都是不能种树类型一: 非封闭线的两端都有“点”时,“点数”(棵数)=“段数”(间隔数)+1例:1、一座桥长30米,在它的两边每隔5米有一盏灯,第一盏灯在桥的起点,最后一盏灯在桥的终点,桥上一共有几盏灯?2、小明在马路的一边种树,每隔3米种一棵树,共种了11棵,问这段马路有多长?3、晾晒1块手帕需要2个夹子,2块手帕要3个夹子,3块手帕要4个夹子,照这样的规律,晾晒8块手帕需要几个夹子?练习1、学校门前的一条路长42米,从头到尾栽树,每7米栽一棵,一共能栽几棵树?2、在一条长15米的水泥路上,从头开始每隔3米摆一盆花,一共摆了多少盆花?3、少先队员在路的两旁每隔5米栽一棵树,起点和终点都栽了,一共栽了72棵树,这条路长多少米?4、在一段路边每隔50米埋设一根路灯杆,包括这段路两端埋设的路灯杆,共埋设了10根。
二年级植树问题:知识点+练习题+答案一、知识点讲解。
1、“植树问题”又称为“锯木头”问题。
2、植树问题的基本数量关系:每段距离x段数=总距离。
总距离÷每段距离=段数总距离÷段数=每段距离3、分情况解决问题。
①在一段距离中,两端都植树,棵数=段数+1; 段数=棵树-1适用于弯曲路段练习题:(1)公园门前的一条路长42米,在路的一边从头到尾栽树,每6米栽一棵,一共能栽多少棵?(2)同学们植树,8棵树之间的距离是14米,照这样计算,16棵树间的距离是多少米?(3)两根同样长的彩带上,每隔2米挂一个灯笼,起点和终点都挂,一共挂了12个,每根绳子长多少米?答案:(1)42÷6+1=8(棵)答:一共能栽8棵。
(2)8-1=7(段) 14÷7=2(米)16-1=15(段) 2×15=30(米)答:16棵树间的距离是30米。
(3)12÷2=6(个) 6-1=5(段) 2×5=10(米)答:每根绳子长10米。
②在一段距离中,两端都不植树,棵数=段数-1; 段数=棵树+1适用于弯曲路段练习题:(1)在一条长200米的公路一侧植树,每隔5米植一棵,若两端都不植树,共需多少棵树?(2)两座楼房之间相距56米,每隔 4 米栽一棵雪松,一行能栽多少棵?答案:(1)200÷5=40(段) 40-1=39(棵)答:共需39棵树。
(2)56÷4=14(段) 14-1=13(棵)答:一行能栽13棵。
③在一段距离中,一端不植树,棵数=段数;分右端不植树和左端不植树两种情况。
练习题(1)志愿者在路的一旁每隔5米栽一棵树,从起点开始栽,终点不栽,一共栽了 8棵树,这条路长多少米?(2)在一段长18米的道路上摆放花盆,每隔2米摆一盆花,头摆尾不摆,一共摆了多少盆花?答案:(1)5×8=40(米)答:这条路长40米。
(2)18÷2=9(盆)答:一共摆了9盆花。
1.封闭与非封闭植树路线的讲解及生活运用。
2.掌握空心方阵和实心方阵的变化规律. 3.几何图形的设计与构造一、植树问题分两种情况: (一)不封闭的植树路线.① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-) 株距=全长÷(棵数1-)② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距; 株距=全长÷棵数.③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+). 全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数. 全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别. (2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
知识点拨教学目标5-1-3.植树问题(二)模块一、封闭图形的植树问题【例1】小强家附近的公园里有一个圆形池塘,它的周长1500是米,每隔3米栽种一棵树.问:共需树苗多少株?【巩固】周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?【例2】在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗棵。
1.封闭与非封闭植树路线的讲解及生活运用。
2.掌握空心方阵和实心方阵的变化规律.3.几何图形的设计与构造一、植树问题分两种情况:(一)不封闭的植树路线. ① 若题目中要求在植树的线路两端都植树,则棵数比段数多1.全长、棵数、株距之间的关系就为:棵数=段数1+=全长÷株距1+全长=株距⨯(棵数1-)株距=全长÷(棵数1-)② 如果题目中要求在路线的一端植树,则棵数就比在两端植树时的棵数少1,即棵数与段数相等.全长、棵数、株距之间的关系就为:全长=株距⨯棵数;棵数=段数=全长÷株距;株距=全长÷棵数.③ 如果植树路线的两端都不植树,则棵数就比②中还少1棵.全长、棵数、株距之间的关系就为:棵数=段数1-=全长÷株距1-.株距=全长÷(棵数1+).全长=株距⨯(棵数+1)(二)封闭的植树路线.在圆、正方形、长方形、闭合曲线等上面植树,因为头尾两端重合在一起,所以种树的棵数等于分成的段数.全长、棵数、株距之间的关系就为:棵数=段数=周长÷株距.二、解植树问题的三要素(1)总路线长(2)间距(棵距)长(3)棵数,只要知道这三个要素中任意两个要素,就可以求出第三个.三、方阵问题(1)明确空心方阵和实心方阵的概念及区别.(2)每边的个数=总数÷41+”;(3)每向里一层每边棋子数减少2;(4)掌握计算层数、每层个数、总个数的方法,及每层个数的变化规律。
知识点拨教学目标5-1-3.植树问题(二)例题精讲模块一、封闭图形的植树问题【例1】小强家附近的公园里有一个圆形池塘,它的周长1500是米,每隔3米栽种一棵树.问:共需树苗多少株?【考点】封闭图形的植树问题【难度】1星【题型】解答【解析】因为圆形池塘是一个封闭的模型,所以我们直接运用公式棵数=段数=周长÷株距,从而有树苗:1500÷3=500(株).【答案】500株【巩固】周叔叔家有一个长40米,宽30米的长方形鱼塘,他想沿塘每隔5米栽一棵柳树,需要栽多少棵柳树?【考点】封闭图形的植树问题【难度】1星【题型】解答【解析】40302140()÷=(棵).+⨯=(米),140528【答案】28棵【例2】在一个长345米、宽240米的长方形草坪四周等距离地栽一些松树,要求四个顶点和每边中点都正好栽一棵松树,则最少要买松树苗棵。