第三节 细胞电活动 (2)
- 格式:pptx
- 大小:10.87 MB
- 文档页数:64
第三节细胞的电活动恩格斯在100•多年前就指出:“地球上几乎没有一种变化发生而不同时显示出电的变化”。
人体及生物体活细胞在安静和活动时都存在电活动,这种电活动称为生物电现象(bioelectricity)。
细胞生物电现象是普遍存在的,临床上广泛应用的心电图、脑电图、肌电图及视网膜电图等就是这些不同器官和组织活动时生物电变化的表现。
一、细胞膜的被动电学特性(一)膜电容和膜电阻细胞膜的电缆学说细胞外液和细胞内液均为含电解质的液体,可以看作为两个导体,有一定的电阻;膜电容:细胞膜脂质双层类似于一个平板电容器,相对地视作绝缘体,因此细胞膜具有显著的电容特性。
⏹跨膜电位:当膜上的离子通道开放而引起带电离子的跨膜流动时,就相当于在电容器上充电或放电而产生的电位差,称为跨膜电位或简称为膜电位。
⏹膜电阻:对带电离子而言,膜电导就是膜对离子的通透性。
二、静息电位(resting potential,RP)1. 概念:指细胞未受刺激时细胞膜两侧存在的外正内负的电位差。
2. 测量方法:细胞内电位记录方法。
记录装置:一对测量电极一个放在细胞的外表面,另一个连接玻璃微电极。
当微电极刺入膜内时,记录仪器上显示一个突然的电位跃变,表明细胞膜内外两侧存在着电位差。
存在于安静细胞的表面膜两侧的,简称静息电位。
数值:骨骼肌约-90;神经约-70;平滑肌约-55;红细胞约为-10mV .静息电位特征:①通常是平稳的直流电位(但在某些神经细胞和平滑肌细胞也可出现自发性的静息电位波动);②不同细胞静息电位的数值可以不同,并且只要细胞未受刺激、生理条件不变,这种电位将持续存在。
与静息电位有关的概念◆极化:静息时膜两侧所保持的外正内负的状态;◆超极化:膜内外电位差的数值向膜内负值加大的方向变化时,称为膜的超极化;◆去极化:膜内电位向负值减小的方向变化,称为去极化;◆反极化:去极化至零电位后膜电位进一步变为正值称为反极化。
膜电位高于零电位的部位称为超射。
第二章第三节细胞的电活动电信号的产生和传播都是在质膜两侧进行的。
细胞的跨膜电位有两种表现形式:即安静状态下相对平稳的静息电位和受刺激时发生的可传播、迅速波动的动作电位。
一、膜的被动电学特性和电紧张电位膜的被动电学特性:是指细胞膜作为一个静态的电学元件时所表现的电学特性,它包括静息状态下的膜电容、膜电阻和轴向电阻等。
(一)、膜电容和膜电阻跨膜电位-transmembrane potential,简称膜电位,是指当膜上的离子通道开放而引起带电离子跨膜流动时,就相当在电容器上充电或放电,从而在膜两侧产生的电位差。
(二)、电紧张电位二、静息电位及其产生机制(一)、静息电位的记录和数值静息电位-resting potential RP :指静息时(安静状态下),质膜两侧存在的外正内负(与钾离子有关)的电位差。
细胞内电位记录:将无关电极(参考电极)置于细胞外,记录电极插入细胞内的记录方式,即细胞内电位记录。
绝大多数的静息电位是负电位膜内电位负值的减小称为静息电位减小,反之,称为静息电位增大。
极化-polarization:人们通常把平稳的静息电位存在时细胞膜外正里负的状态称为极化。
超极化-hyperpolarization:静息电位增大的过程或状态称为超极化。
去极化-depolarization:静息电位减小的过程或状态称为去极化。
反极化:去极化到达零电位后膜电位如进一步变成正值称为反极化。
超射-overshoot:膜电位高于零电位的部分称为超射。
复极化-repolarization:质膜去极化后向静息电位方向回复的过程称为复极化。
静息电位:骨骼肌细胞约-90mV 神经细胞约-70mV 平滑肌细胞约-55mV 红细胞约-10mV (二)、静息电位产生的机制静息电位仅存在膜的内外表面之间,两层间可形成很大的电位梯度,形成这种状态的基本原因是离子的跨膜扩散。
产生离子跨膜扩散的条件有两个:①、钠泵的活动,可形成膜内外离子的浓度差;②、静息时膜对某些离子,主要是对K+具有一定的通透性。
第三节:细胞的电活动概述:生物电是由一些带电离子跨膜流动而产生的,表现为一定的跨膜电位,简称膜电位。
静静息电位(RP):机体所有细胞都有动动作电位(AP)(受刺激时迅速发生,并向远方传播)仅见于神经细胞, 肌细胞,和 部分腺细胞电紧张电位和局部电位局部电位概念:由膜主动特性参与,部分离子通道开放,不能像远距离传播膜电位改变特征和意义1.等级性电位2.衰减性传导3.没有不应期 (可叠加!至阈电位…)电紧张电位静息电位静息电位的测定和概念概念:静息状态下存在于细胞膜两侧的内负外正的电位差描述:细胞内负值越大,电位差越大,即静息电位越大。
状态描述:极化,去极化,反极化,超射,复极化,超极化静息电位的产生机制基本原因:带电离子的跨膜转运细胞膜两侧离子的浓度差与平衡电位原理浓度差+单离子通透性→电偶层→跨膜电场→电位差驱动力与浓度差驱动力相等→电化学驱动力为零→平衡电位现象[X]out>[X]in 平衡电位为正值 如Na ⁺[X]out<[X]in 为负值 如K ⁺静息时细胞膜对离子的相对通透性静息电位≈Ek ⁺钾漏通道:持续开放的非门控钾通道钠泵的生电作用主要因素动作电位概念是指细胞在静息电位基础上接受有效刺激后产生的一个迅速的可远处传播的膜电位波动。
特点①“全或无”②不衰减传播 ③脉冲式发放产生机制静息电位机制的变化电-化学驱动力=膜电位-离子平衡电位(Em-Ex)通透性变化:Gx(膜电导)=Ix/(Em-Ex)钠电导与钾电导的变化GNa,Gk具有电压依赖性和时间依赖性GNa—快速一过性激活GK在GNa失活时逐渐激活特点膜电导改变的实质即膜中离子通道的开放和关闭离子通道的功能状态推测钠通道有串联并排的两个闸门:激活门和失活门钾通道只有激活门示意触发阈刺激相当于阈强度的刺激阈上刺激阈下刺激阈电位影响因素钠离子的分布密度和状态胞外钙离子浓度:Ga²⁺被称为稳定剂传播动作电位在同一细胞上的传播局部电流学说髓鞘,郎飞节,跳跃式传导,快动作电位在细胞之间的传播细胞间隙(六个连接蛋白单体形成的同六聚体,称连接子)连接兴奋性及其变化兴奋性可兴奋细胞:神经细胞,肌细胞,腺细胞细胞兴奋后细胞兴奋性的变化1.绝对不应期2.相对不应期3.超常期4.低常期概要根据推测。
人们对于生物具有电活动现象的注意,可以追溯到很久以前,在古埃及的象形文字中即有鱼电击人的记载,但对于生物电现象的研究,则是在人们对电现象的物理知识了解以后,并伴随着电测量仪器的不断发展而逐渐深入的。
细胞在进行活动时都伴有电现象,这称为生物电(bioelectricity)。
这是细胞、组织乃至整体具有生命活动的象征,是最可测的重要生命指征。
机体的生物电活动主要是各器官以可兴奋细胞为单位产生的,临床上常用的心电图、脑电图、肌电图、胃肠电图等所记录到的电变化就是构成器官的许许多多可兴奋细胞电活动的综合表现,在实际工作中对疾病的诊断具有重要的价值。
一、生物电现象——静息电位和动作电位不同的细胞产生的生物电具有不同的特点,神经细胞和肌肉细胞的活动是高度精确和快速的,细胞某一部分兴奋时,其电信号发生变化并立即传导到其他部分。
电信号的产生与传播都是由于细胞膜内、外两侧的电位差变化实现的。
细胞水平的生物电现象主要有两种表现形式,即安静时的静息电位和受到刺激时产生的电位变化,包括局部电位和可以扩布的动作电位。
(一)静息电位1.静息电位的发现与定义静息电位(resting potential, RP)指细胞在未受刺激、处于安静状态时,存在于细胞膜内、外两侧的电位差。
直到20世纪初,还没有掌握测量单细胞电活动的技术,随着电子学仪器的发展,特别是高输入阻抗放大器在生物电记录中的使用,在20世纪30年代末生物物理学家又发现了一种很粗的细胞轴突,即枪乌贼巨轴突(squid giant axon,直径为500~1000 μm),允许将微电极插入轴突内,才第一次真正准确地测量了膜内为负、膜外为正的跨膜电位差,跨膜静息电位(transmembrane resting potential),简称静息电位。
绝大多数细胞的静息位都是稳定的,表现为膜内较膜外为负,如规定膜外电位为0,则膜内电位大都为-10~-l00 mV,如骨骼肌细胞约为-90 mV,神经细胞约为-70 mV,平滑肌细胞约为-55 mV,红细胞约为-l0 mV。
生理考研之第二章——“细胞的电活动”之静息电位一、静息电位:1、跨膜电位:又叫“膜电位”;带电离子跨膜转运引起的;2、膜电位的两种表现形式:①安静状态下相对平稳的静息电位(RP);②受刺激时迅速发生、并向远处传播的动作电位(AP);机体所有的细胞都具有RP;而AP则仅见于神经细胞、肌细胞、部分腺细胞。
3、RP:静息状态下存在于细胞膜两侧的内负外正的电位差;4、极化:安静时细胞膜两侧处于外正内负的稳定状态叫极化;极化是RP的另一种表现形式;超极化:RP增大的过程;去极化:又叫“除极化”,RP减小的过程;反极化:膜内电位变为正值,膜两侧极性倒转的状态称为反极化;复极化:由去极化再向RP恢复的过程;二、静息电位产生机制:1、产生机制:带电离子的跨膜转运;2、跨膜转运需要两个条件:驱动力、通透性;(1)钠泵活动造成了膜两侧的离子浓度差(驱动力)(2)膜对离子有一定的通透性;3、钠泵活动维持→细胞膜两侧离子的浓度差→离子跨膜扩散的直接动力;4、静息电位是同时考虑到钾、钠两种离子的流动均达到平衡时的电位;5、钾离子外流:浓度差为动力(向外)外流的同时,膜内带负电荷的有机离子因为细胞膜的几乎对他们不通透而聚积在膜的内表面,从而使外流的钾离子限制在膜的外表面,形成一个厚度不足1nm的极薄的电偶层,进而产生了膜内负外正的电位差:此时电场力由外向内(阻力:因为电场力是由正电荷指向负电荷);钠离子内流:浓度差向内;(但实际上钠离子内流很少,细胞安静状态下,膜主要对K+具有通透性,因为此时细胞膜对钾漏通道(经通道蛋白易化扩散)是持续开放的,对钠离子通道是关闭的,几乎不通透,仅或多或少有一定的通透性→进而导致实际测得值↓↓电流向内;(电生理学规定:以正电荷移动的方向作为电流方向)总结就是向外的力:主要是钾离子浓度差;向内的力:主要是内向电流、电场力(驱动力);当两者相等时,该离子的净扩散量为零。
即:电位差驱动力≈浓度差驱动力→电—化学驱动力即为零→该离子的净扩散量为零→平衡电位。