第二讲 细胞的电活动
- 格式:ppt
- 大小:11.50 MB
- 文档页数:31
生理考研之第二章——“细胞的电活动”之动作电位(一)细胞的动作电位1、在静息电位的基础上,给细胞一个适当的刺激,可触发其产生可传播的膜电位波动,称为动作电位(AP);2、锋电位:动作电位的标志;3、AP特点:1、“全或无”现象;2、不衰减传播;因为其产生的主要是“局部电流”(其幅度和波形在传播过程中始终保持不变);3、脉冲式发放。
(细胞在静息状态下→静息电位。
离子跨膜流动→膜内、外表层电荷的改变→发生膜电位波动物理学上:是以正离子的移动方向来表示电流的方向。
细胞受刺激时引起离子流动→正电荷流入膜内→内向电流→使膜内电位的负值减小→膜去极化。
反之,如果离子流动造成正电荷由胞内流出胞外,则称为外向电流。
外向电流使膜→复极化或超极化。
通常K+由胞内流出,或C1-由胞外流入胞内,都属于外向电流。
综上→动作电位的去极相是内向电流形成的,而复极相则是外向电流形成的。
离子跨膜流动的产生需要两个必不可少的因素:一是膜两侧对离子的电化学驱动力;二是膜对离子的通透性。
)4、离子的电化学驱动力=膜电位(Em)与该离子的平衡电位(Ex) 之差,即(Em-Ex);电化学驱动力是推动离子跨膜流动的力。
5、在动作电位期间,Na+平衡电位及K+平衡电位基本不变,因为每次动作电位进入胞内的Na+和流出的K+均只占胞质内离子总量的几万分之一,因此,不会显著影响膜两侧的离子浓度差。
电化学驱动力是由该离子在膜两侧溶液中的浓度和膜电位共同决定;膜两侧溶液中的浓度决定该离子的平衡电位。
驱动力的改变主要由膜电位变化而引起。
整个动作电位期间,膜电位将发生大幅度的改变,因此,膜对离子的每个瞬间的电化学驱动力也将随着膜电位的变化而发生相应变化。
6、能引发动作电位的最小刺激强度,称为阈强度(又叫阈值)。
>或=阈强度,即可触发动作电位,叫阈刺激或阈上刺激,为有效刺激;7、阈电位:能触发动作电位的膜电位临界值称为:阈电位;8、阈刺激就是:其强度刚好能使细胞的静息电位发生去极化达到阈电位水平的刺激。
第二章第三节细胞的电活动电信号的产生和传播都是在质膜两侧进行的。
细胞的跨膜电位有两种表现形式:即安静状态下相对平稳的静息电位和受刺激时发生的可传播、迅速波动的动作电位。
一、膜的被动电学特性和电紧张电位膜的被动电学特性:是指细胞膜作为一个静态的电学元件时所表现的电学特性,它包括静息状态下的膜电容、膜电阻和轴向电阻等。
(一)、膜电容和膜电阻跨膜电位-transmembrane potential,简称膜电位,是指当膜上的离子通道开放而引起带电离子跨膜流动时,就相当在电容器上充电或放电,从而在膜两侧产生的电位差。
(二)、电紧张电位二、静息电位及其产生机制(一)、静息电位的记录和数值静息电位-resting potential RP :指静息时(安静状态下),质膜两侧存在的外正内负(与钾离子有关)的电位差。
细胞内电位记录:将无关电极(参考电极)置于细胞外,记录电极插入细胞内的记录方式,即细胞内电位记录。
绝大多数的静息电位是负电位膜内电位负值的减小称为静息电位减小,反之,称为静息电位增大。
极化-polarization:人们通常把平稳的静息电位存在时细胞膜外正里负的状态称为极化。
超极化-hyperpolarization:静息电位增大的过程或状态称为超极化。
去极化-depolarization:静息电位减小的过程或状态称为去极化。
反极化:去极化到达零电位后膜电位如进一步变成正值称为反极化。
超射-overshoot:膜电位高于零电位的部分称为超射。
复极化-repolarization:质膜去极化后向静息电位方向回复的过程称为复极化。
静息电位:骨骼肌细胞约-90mV 神经细胞约-70mV 平滑肌细胞约-55mV 红细胞约-10mV (二)、静息电位产生的机制静息电位仅存在膜的内外表面之间,两层间可形成很大的电位梯度,形成这种状态的基本原因是离子的跨膜扩散。
产生离子跨膜扩散的条件有两个:①、钠泵的活动,可形成膜内外离子的浓度差;②、静息时膜对某些离子,主要是对K+具有一定的通透性。
人们对于生物具有电活动现象的注意,可以追溯到很久以前,在古埃及的象形文字中即有鱼电击人的记载,但对于生物电现象的研究,则是在人们对电现象的物理知识了解以后,并伴随着电测量仪器的不断发展而逐渐深入的。
细胞在进行活动时都伴有电现象,这称为生物电(bioelectricity)。
这是细胞、组织乃至整体具有生命活动的象征,是最可测的重要生命指征。
机体的生物电活动主要是各器官以可兴奋细胞为单位产生的,临床上常用的心电图、脑电图、肌电图、胃肠电图等所记录到的电变化就是构成器官的许许多多可兴奋细胞电活动的综合表现,在实际工作中对疾病的诊断具有重要的价值。
一、生物电现象——静息电位和动作电位不同的细胞产生的生物电具有不同的特点,神经细胞和肌肉细胞的活动是高度精确和快速的,细胞某一部分兴奋时,其电信号发生变化并立即传导到其他部分。
电信号的产生与传播都是由于细胞膜内、外两侧的电位差变化实现的。
细胞水平的生物电现象主要有两种表现形式,即安静时的静息电位和受到刺激时产生的电位变化,包括局部电位和可以扩布的动作电位。
(一)静息电位1.静息电位的发现与定义静息电位(resting potential, RP)指细胞在未受刺激、处于安静状态时,存在于细胞膜内、外两侧的电位差。
直到20世纪初,还没有掌握测量单细胞电活动的技术,随着电子学仪器的发展,特别是高输入阻抗放大器在生物电记录中的使用,在20世纪30年代末生物物理学家又发现了一种很粗的细胞轴突,即枪乌贼巨轴突(squid giant axon,直径为500~1000 μm),允许将微电极插入轴突内,才第一次真正准确地测量了膜内为负、膜外为正的跨膜电位差,跨膜静息电位(transmembrane resting potential),简称静息电位。
绝大多数细胞的静息位都是稳定的,表现为膜内较膜外为负,如规定膜外电位为0,则膜内电位大都为-10~-l00 mV,如骨骼肌细胞约为-90 mV,神经细胞约为-70 mV,平滑肌细胞约为-55 mV,红细胞约为-l0 mV。