8交通分配方法分配报告
- 格式:pptx
- 大小:3.31 MB
- 文档页数:46
第1篇一、实验背景与目的随着城市化进程的加快,交通拥堵问题日益严重,如何优化交通流分配成为提高城市交通效率的关键。
本实验旨在通过构建交通流分配模型,对某一区域的道路网络进行模拟分析,探究不同交通流分配方法对交通拥堵的影响,为城市交通规划和管理提供理论依据。
二、实验数据与工具1. 实验数据:本次实验选取某城市中心区域的道路网络数据,包括道路信息、交通需求、道路容量等。
2. 实验工具:采用Python编程语言,利用网络分析库(如NetLogo、NetworkX等)进行实验模拟。
三、实验方法与步骤1. 数据预处理:对原始数据进行清洗、整理,确保数据的准确性和完整性。
2. 构建交通网络模型:根据道路信息,构建道路网络图,包括节点、边、权重等。
3. 选择交通流分配方法:本次实验主要采用以下三种方法:(1)最短路径法:基于最短路径原则,将交通需求分配到路网中。
(2)用户平衡法:假设所有用户都清楚网络状态,最终没有用户能够单方面改变策略使自身成本更低。
(3)系统最优法:在理想条件下,按照平均或总出行成本最小为依据进行交通分配。
4. 模拟分析:利用NetLogo或NetworkX等工具,对三种方法进行模拟分析,对比不同方法下的交通拥堵情况。
5. 结果分析:对模拟结果进行统计分析,比较不同方法对交通拥堵的影响,总结实验结论。
四、实验结果与分析1. 最短路径法:在模拟过程中,最短路径法容易导致部分路段交通流量过大,导致拥堵现象。
2. 用户平衡法:用户平衡法在模拟过程中,能够较好地平衡各路段交通流量,降低拥堵程度。
3. 系统最优法:在理想条件下,系统最优法能够实现交通流量最优分配,降低整体出行成本。
五、结论与建议1. 用户平衡法在本次实验中表现出较好的效果,能够有效降低交通拥堵程度。
2. 建议在实际交通规划和管理中,充分考虑用户出行需求,采用用户平衡法进行交通流分配。
3. 针对拥堵路段,可采取以下措施:(1)优化道路网络,提高道路通行能力。
V 为网络节点集,即:道路交叉点;A 为路段集,即:道路交通量—人的个数—OD 矩阵,a C a A ∈:路段a 的通行能力()a a t x :路段a 的阻抗,a x 为流量,通常以时间记,假设仅与路段a 有关系统最优是系统规划者所期望得到的一种平衡状态,其前提是所有网络用户必须互相协作,遵从网络管理者的统一调度,所以是计划指向型分配准则。
出行者的出行决策过程是相互独立的,路网上的交通流的状态是出行者独立选择的结果。
出行者必然转向费用较小的路径.其结果,路网上的交通量分布最终必然趋于用户平衡状态。
所以,用户平衡状态最接近实际的交通状态。
Wardrop 准则的提出标志着网络流平衡分配概念从描述转为严格刻画,不但假设司机都力图选择阻抗最小的路径,而且还假设司机随时掌握整个网络的状态,精确计算每条路径的阻抗,还假设了司机的计算能力与水平是相同的。
在这些假设条件下进行的配流被称为确定性配流,得到的用户平衡条件被称为确定性平衡条件,简称UE 条件。
User Equilibrium System Optimal rs k rs a f q ∑=且0rsk f ≥(rs k f —O-D 对r-s 之间路径k 上的流量)rs q 等于连接rs 之间各路径上的路段的交通量的总和。
,rs rs a k a k r s k x f σ=∑∑∑(,rs a k σ—如果弧a 在连接O-D 对r-s 的路径k 上,其值为1,否则为0)路段a 上的流量等于通过a 的路径上分配到a 上的交通量的总和。
1.目标函数本身并没有什么直观的经济含义或行为含义。
2. 没必要直接求解用户平衡条件方程组,平衡状态可以由求解等价都极小值问题得到。
3.模型的解关于路段流量唯一,关于路径流不唯一 4. 等价性与唯一性证明略Frank-Wolfe 算法对f(X)在X 0处的一阶泰勒展开得(0)(0)(0)()()()()T f X f X f X X X =+∇-将f(X)近似表达成线性函数,则规划模型可近似化为下列线性规划模型: (0)(0)(0)min ()min ()()()()T Z X f X f X f X X X AX B ==+∇-=等价于线性规划 (0)m i n ()()T Z X f X XA X B=∇= 由上式可求得一组最优解X -,该方法认为(0)X 与X -的连线为最速下降方向,然后根据下列一维极值间题(0)(0)min [()]f X X X λ-+- 求得的0λ为最优步长。