聚乙烯醇的性质上课讲义
- 格式:doc
- 大小:23.00 KB
- 文档页数:4
聚乙烯醇的性质及应用
李正西
【期刊名称】《《建筑技术》》
【年(卷),期】1990(000)001
【摘要】《防水剂的种类及其防水机理》一文在1988年第1期《建筑技术》上
发表后,我收到了一些读者来信。
在诸多的防水剂中,读者最感兴趣的是有机物系的
聚乙烯醇,现将其性质和应用情况介绍如下: 一、聚乙烯醇的性质聚乙烯醇(PVA)是
一种无色塑胶,由聚乙烯酯(通常为聚乙酸乙烯酯)受酸或碱水解作用而得。
完全水解的聚乙烯醇,仍含约5%剩余乙酸基在内。
聚乙烯醇的物理性质、抗水性及与韧化剂的混合性等与其水解程度有关,即与其在最终制品中的乙酸基与氢氧基之比例有关。
【总页数】1页(P42)
【作者】李正西
【作者单位】
【正文语种】中文
【中图分类】TQ325.9
【相关文献】
1.填充沸石的聚乙烯醇膜的性质及其在催化酯化反应中的应用 [J], 高滋
2.海藻酸钠与聚乙烯醇复合纺丝原液性质的研究 [J], 陈前赫;胡成女;郭静
3.聚乙烯醇光谱性质及其在丝绸丝线整理上的应用 [J], 李邦玉;舒娟;王国丽;周欢;
黄阳阳
4.纳米材料掺杂型聚乙烯醇双交联复合水凝胶的力-化学性质 [J], 薛雅楠;李晓娜;
陈维毅;韩政学;李爽然;张佳宇;张雪慧;王兆伟;贾瑞洁;王艳芹;武晓刚
5.壳聚糖/香兰素/聚乙烯醇共纺纳米纤维膜的性质及其在大菱鲆保鲜中的应用 [J], 梅佳林;刘权伟;李婷婷;励建荣;牟伟丽;郭晓华
因版权原因,仅展示原文概要,查看原文内容请购买。
聚乙烯醇聚乙烯醇,有机化合物,白色片状、絮状或粉末状固体,无味。
溶于水,不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。
微溶于二甲基亚砜。
聚乙烯醇是重要的化工原料,用于制造聚乙烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂等。
基本信息:中文名称:聚乙烯醇英文名称2: polyvinyl alcohol,vinylalcohol polymer,poval,简称PVACAS No.: 9002-89-5分子式: [C2H4O]n结构式:成分/组成信息:有害物成分含量 CAS No. 聚乙烯醇 9002-89-5理化特性:白色片状、絮状或粉末状固体,无味。
聚乙烯醇的物理性质受化学结构、醇解度、聚合度的影响。
在聚乙烯醇分子中存在着两种化学结构,即1,3和1,2乙二醇结构,但主要的结构是1,3乙二醇结构,即“头·尾”结构。
聚乙烯的聚合度分为超高聚合度(分子量25~30万)、高聚合度(分子量17-22万)、中聚合度(分子量12~15万)和低聚合度〔2.5~3.5万〕。
醇解度一般有78%、88%、98%三种。
部分醇解的醇解度通常为87%~89%,完全醇解的醇解度为98%~100%。
常取平均聚合度的千、百位数放在前面,将醇解度的百分数放在后面,如17-88即表聚合度为l 700,溶解度为88%。
一般来说,聚合度增大,水溶液粘度增大,成膜后的强度和耐溶剂性提高,但水中溶解性、成膜后伸长率下降。
聚乙烯醇的相对密度(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液),熔点230 ℃,玻璃化温度75~85℃,在空气中加热至100℃以上慢慢变色、脆化。
加热至160~170℃脱水醚化,失去溶解性,加热到200 ℃开始分解。
超过250℃变成含有共轭双键的聚合物。
折射率1. 49~1. 52,热导率0.2w/(m·K),比热容1~5J/(kg·K),电阻率(3.1~3. 8)×10Ω·cm。
聚⼄烯醇的认识了解及特性聚⼄烯醇(简称PVA)是⽬前已发现的唯⼀具有⽔溶性且⽆毒的⾼聚物,别名为PVA,Poval。
它是近三⼗年来发展起来的⾼分⼦化合物,由于合成技术的不断提⾼和价格的不断下降,其⽤途⽇益⼴泛,发展速度很快。
其性能介于橡胶和塑料之间,按⽤途可分为纤维和⾮纤维两⼤⽤途。
聚⼄烯醇是⼀种⽆⾊塑胶,由聚⼄烯酯(通常为聚⼄酸⼄烯酯)受酸或碱⽔解作⽤⽽得。
完全⽔解的聚⼄烯醇,仍含约5%剩余⼄酸基在内。
聚⼄烯醇的物理性质、抗⽔性及与韧化剂的混合性等与其⽔解程度有关,即与其在最终制品中的⼄酸基与氢氧基之⽐例有关。
聚⼄烯醇对于有机溶剂及⽓体皆为不透性,亦不能与之混和。
除多元醇类、氨醇类以外,对能与⽔混合的多数溶剂皆能抗耐。
完全⽔解的聚⼄烯醇能溶于热⽔。
⽔解程度愈低,对⽔的抗⼒愈⼤,⼊各种添加物亦能增加其抗⽔性。
聚合物粘度可通过调节其最初所⽤聚⼄烯⼄酸酯的粘度进⾏控制。
⼲燥⽆塑性的聚⼄烯醇为有机化合物,⽩⾊⽚状、絮状或粉末状固体,⽆味,⽆污染。
可在80--90℃⽔中溶解,不溶于汽油、煤油、植物油、苯、甲苯、⼆氯⼄烷、四氯化碳、丙酮、醋酸⼄酯、甲醇、⼄⼆醇等,微溶于⼆甲基亚砜。
聚⼄烯醇是重要的化⼯原料,有良好的耐磨性,粘结⼒极强,耐油及化学药品,具有长链多元醇酯化、醚化、缩醛化等化学性质,⽤于制造聚⼄烯醇缩醛、耐汽油管道和维尼纶合成纤维、织物处理剂、乳化剂、纸张涂层、粘合剂等。
聚⼄烯醇⽔玻璃内墙涂料⽆臭、⽆毒;聚⼄烯醇外墙绦料⽆毒、⽆味;聚⼄烯醇缩甲醛脏为⽆毒、⽆味、⽔溶性胶体,掺⼊⽔泥可增强粘结⼒永溶性聚⼄烯醇缩甲醛涂料⽆毒、耐⽔。
近⼗⼏年来,国际市场上PVA作为粘结剂⽤品种发展很快,⽽国内这⽅⾯的发展较慢,仍以纤维使⽤为主。
在这⽅⾯存在如下问题:国内⽣产的纤维级PVA聚合度很⾼(1700),醇解度⼤于99%,由于其侧基—H和—OH的体积⼩,可进⼊结晶点中⽽不造成应⼒,故PVA⼤分⼦中的羟基之间会以氢键形式相互缔合在⼀起,⼤分⼦之间排列整齐(定向度⾼),⽔分⼦难以进⼊PVA的⼤分⼦之间,⽽使溶剂化作⽤困难,⽔溶性变差。
聚乙烯醇的性质与制备一、聚乙烯醇的性质1.物理性质聚乙烯醇(PVA)其充填密度约0.20~0.48g/cm3,折射率为1.51~1.53。
聚乙烯醇的熔点难于直接测定,因为它在空气中的分解温度低于熔融温度。
用间接法测得其熔点在230℃左右。
不同立规程度的聚乙烯醇具有不同的熔点,其中S—PVA(间规)熔点最高,A—PVA(无规)次之,I—PVA(等规)最低。
聚乙烯醇的玻璃化温度约80℃。
玻璃化温度除与测定条件有关外,也与其结构有关。
例如,随聚乙烯醇间规度的提高,玻璃化温度略有提高。
聚乙烯醇中残存醋酸根量和含水量增加时,玻璃化温度都将随之降低。
2.化学性质聚乙烯醇主链大分子上有大量仲羟基,在化学性质方面有许多与纤维素相似之处。
聚乙烯醇可与多种酸、酸酐、酰氯等作用,生成相应的聚乙烯醇的酯。
但其反应能力低于一般低分子醇类。
聚乙烯醇的醚化反应较酯化反应容易进行。
醚化反应后,聚乙烯醇分子间作用力有所减弱,制品的强度、软化点和亲水性等都有所降低。
在聚乙烯醇水溶液中加入少量硼酸,其粘度将明显增大,这种变化与介质的pH值关系密切。
当介质的pH值偏于碱性时,硼酸与聚乙烯醇发生分子间反应,使溶液粘度剧增,以致形成凝胶。
聚乙烯醇水溶液与氢氧化钠反应,其粘度增加的速度较之添加硼酸更快。
因此,可以利用氢氧化钠水溶液作为聚乙烯醇纺丝的凝固剂。
在酸性催化剂作用下,聚乙烯醇可与醛发生缩醛化反应。
缩醛化反应既可在均相中进行,也可在非均相中进行。
不过均相反应所得产物的缩醛化基团分布均匀,其缩醛化物的强度、弹性模量以及耐热性等都有所降低。
当进行非均相反应时,在控制适当的条件下,由于缩醛化基团分布不均匀,并主要发生在非晶区,故对生成物的力学性能影响不大,而耐热性还有所提高。
3.热性能聚乙烯醇受热后发生软化(210~215℃),但在一般情况下,它在熔融前便分解。
聚乙烯醇在加热到140℃以下时不发生明显的变化,加热至180C以上时,由碱法醇解得到的聚乙烯醇开始发生变化,大分子发生脱水,在长链上形成共轭双键,并使其色泽逐渐变深。
聚乙烯醇(PVA)第二章聚乙烯醇(PV A)2.1概述聚乙烯醇是人们最熟悉的水溶性高分子,它是白色、粉末状树脂,由聚醋酸乙烯水解而得。
其结构式为:由于分子链上含有大量侧基———羟基,聚乙烯醇具有良好的水溶性。
它还具有良好的成膜性、粘接力和乳化性,有卓越的耐油脂和耐溶剂性能。
因此,聚乙烯醇广泛地用作粘合剂(铸造型芯粘合剂,无纺布粘合剂,颜料粘合剂)、造纸用涂饰剂和施胶剂、纺织浆料、陶瓷工业中的暂时性粘合剂、乳液聚合的乳化剂和保护胶体、制备钢的淬火液、化妆晶、油田化学品及汽车安全玻璃。
当然,聚乙烯醇之所以早已为人们熟悉,并不是由于它的上述性能和用途,而是因为它是维尼纶的主要原料。
本章现在要讨论的并不是以维尼纶的原料出发来讨论聚乙烯醇,而是从非纤维应用的角度来描述其性能和用途。
聚乙烯醇最早是由德国化学家W.O.Herrmann和W.Haehnel博士于1924年首先发现的。
第一篇有关聚乙烯醇的论文发表于1927年。
直到1938年,日本仓敷公司、钟纺公司以电石为原料研制成合成纤维。
东京大学的樱田一郎教授发表了聚乙烯醇纤维的第一份研究报告。
美国的第一家聚乙烯醇生产厂家是杜邦公司,它于1939年开始生产。
而第一家初具工业规模并用以生产维尼纶的聚乙烯醇工厂是日本仓敷公司在富山建立的日产五吨的工厂,它于1950年投产。
此后相继有不少聚乙烯醇工厂投入生产,其生产能力和产量逐年都有所提高,产品的价格则逐年下降。
表2—2、表2-3是日本和美国的生产能力。
由表可见,日本的聚乙烯醇生产能力约为全世界生产能力总和的一半。
同时,日本的生产技术水平也居领先地位。
我国聚乙烯醇生产起始于60年代初,最早在天津有机化工实验厂试产,1965年在吉林四平联合化工厂建成千吨级生产装置。
此后又在北京有机化工厂引进日本的技术和装置,建成万吨级生产装置。
70年代,又相继在各地建成九套万吨级生产装置,这些装置都为电石法的生产路线,1976年在上海金山石油化工总厂、1980年在四川维尼纶厂又分别建成乙烯和天然气路线的聚乙烯醇装置。
年产 30000 吨聚乙烯醇聚合精馏一塔系统工艺设计第一章 聚乙烯醇综述1.1 聚乙烯醇性质和用途1.1.1 聚乙烯醇性质简介 聚乙烯醇树脂是以乙烯法生产的醋酸乙烯为原料,经溶液聚合、无水低碱醇解得。
工艺具有物耗低、能耗低、污染小的特点,是一种环保型产品,聚乙烯醇主要有完主 醇解型和部分醇解型两大类。
1.1.1.1 聚乙烯醇的化学结构聚乙烯醇的端基较复杂,除了羟基外,还有羧基、羰基和二甲基乙氰基等。
这些 基团表现了复杂的行为。
它们除了影响到维尼维纤维的着色、染色性能、吸湿性能, 并促使聚乙烯醇溶解部分的增加。
根据羟基空间分布的位置,可分为全同结构聚乙烯醇(I-PVA)、间位结构聚乙 烯醇(S-PVA)和无规结构聚乙烯醇(A-PVA)。
以下就是这三种结构的构象:I-PVA结构最规整,S-PVA结构规整性差些,A-PVA结构最不规整。
聚乙烯醇的优优 QQ510852074第1页共 62 页2010-9-25安徽建筑工业学院本科生毕业设计结构愈规整,大分子之间结合就越紧密,分子间的羟基和氢愈容易形成氢键,它们的 结晶度就愈高,制成纤维耐热水性就高。
低温聚合生产的聚乙烯醇全同结构占的比例 大,规整性高,用它制成的纤维,不经过缩醛化处理耐热水性也很高。
1.1.1.2 聚乙烯醇的化学性质 聚乙烯醇的化学性质在于它的仲醇基的存在,它在一定程度上类似纤维素,例如它的羟基含量与纤维素中羟基的含量相差不大。
它能进行多元醇典形的化学反应,能 够酯化和醚化,能与碱金属、醛反应。
也能与二硫化碳和氢氧化钠反应生成黄原酸盐。
其水溶液有很好的粘接性和成膜性;能耐油类、润滑剂和烃类等大多数有机溶剂;具 有长链多元醇酯化、醚化、缩醛化等化学性质。
溶于水,为了完全溶解一般需加热到 65~75℃。
不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋 酸乙酯、甲醇、乙二醇等。
微溶于二甲基亚砜。
120~l50℃可溶于甘油.但冷至室温时 成为胶冻。
聚乙烯醇的性质聚乙烯醇一般为白色或微黄色,为絮片状、颗粒状、粉末状固体。
无毒无味,性能介于塑料和橡胶之间。
PV A溶液遇碘液变深蓝色,这种变色受热后消失而冷却又重现。
由于分子链上含有大量的侧基一羟基,具有良好的水溶性,同时还具有良好的成膜性、粘接力和乳化性,有卓越的耐油脂和耐溶剂性能。
聚乙烯醇的相对密度为(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液),熔点230℃,玻璃化温度75-85℃,在空气中加热至100℃以上慢慢变色、脆化。
加热至160一170℃脱水醚化,失去溶解性,加热到200℃开始分解。
超过250℃变成含有共轭双键的聚合物。
折射率1.49"-'1.52,热导率0.2w/(m·K),比热容l~5J/(kg·K),电阻率(3.1~3.8)×107 Ώ·c m。
1.1PV A在水中的溶解性聚乙烯醇溶于水,几乎都是溶解在水中使用,其溶解性很大程度上受聚合度、特别是醇解度的影响。
PV A是一种含有大量羟基的高聚物,而羟基是强亲水性基团,所以它是一种水溶性的高分子化合物。
然而,由于大分子内和分子间存在者较强的氢键,所以阻碍了其水溶性。
PV A中残余的醋酸根(表现在醇解度的高低)是疏水性基团。
它的存在,一方面阻碍了聚乙烯醇在水中的溶解;另一方面,它的空间位阻很大,妨碍了大分子之间或大分子本身氢键的形成,促进了水溶性。
例如:1799-PV A残余醋酸根<0.2%,其结晶度高,所以只能溶解在95℃的热水中。
1788—PV A残余醋酸根为12%,故在20℃时几乎完全溶于水。
PV A不溶于汽油、煤油、植物油、苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。
微溶于二甲基亚砜乙二醇,溶于丙三醇、乙醇胺、甲酰胺等。
120--150℃可溶于甘油。
但冷至室温时成为胶冻。
一般说来,聚合度增大,聚乙烯醇水溶液的粘度增大,成膜后的强度和耐溶剂性增大,但在水中的溶解度下降,成膜后的伸长率下降。
预混液的量和你要做的固含量有关,一般只用调节预混液的水含量来控制固含量,其他单体、交联剂、分散剂、粉体质量什么的量都不用动。
AM一般按预混液质量分数算,分散剂按粉体质量分数算,固含量就是粉体占粉体+预混液体积的分数。
一般10wt或15wt%AM,0.几wt%分散剂,记得调节PH,固含量50vol%以上。
引发剂和催化剂应该是根据AM和MBAM的量算,这几个都是固定值,一般只调节水就可以了先由单体、交联剂以及分散剂与去离子水(或其他)配制成预混液,预混液配置好后通常会调节PH 值,之后再加入粉料进行球磨,若干小时候取出,抽真空,加入引发剂和催化剂,最后注模,希望有所帮助。
一、聚乙烯醇的性质1、基本物理及化学性质聚乙烯醇(Polyvinyl Alcohol ,缩写PVA),分子式为[C2H4O]n ,结构式为,是水溶性高分子树脂。
白色片状、絮状或粉末状固体,无味,无毒,但其粉末吸入会对人体产生刺激。
相对密度(25 C/4 C)1 . 27〜1 . 31(固体)、1 . 02(10 %溶液玻璃化温度:75〜85 C,引燃温度「C ): 410(粉末)聚乙烯醇分子中存在两种化学结构:(2)1,2——乙二醇结构图1为聚乙烯醇薄膜的红外光谱,为聚乙烯醇薄膜的红外光谱,图中标明了几个主要键和基团特征频率变化情况。
图中3587 cm -1处的强吸收峰对应于二级羟基c键的振动,2950 cm -1处的吸收对应于C-H2 c键的振动,1652cm -1处的强吸收属于残留的聚醋酸乙烯酯结构中 C = O键的伸缩振动, 1320 cm -1附近的强吸收对应于C -H键和O -H键共同作用的c键的变形振动。
2•聚乙烯醇的醇解及溶解性能聚乙烯醇的醇解度(摩尔分数)通常有三种,即78%、88%和98%。
完全醇解的聚乙烯醇的醇解度为98%〜100% ;而部分醇解的聚乙烯的醇解度通常为87%〜89% ; 78%的则为低醇解度聚乙烯醇。
预混液的量和你要做的固含量有关,一般只用调节预混液的水含量来控制固含量,其他单体、交联剂、分散剂、粉体质量什么的量都不用动。
AM一般按预混液质量分数算,分散剂按粉体质量分数算,固含量就是粉体占粉体+预混液体积的分数。
一般10wt或15wt%AM,0.几wt%分散剂,记得调节PH,固含量50vol%以上。
引发剂和催化剂应该是根据AM和MBAM的量算,这几个都是固定值,一般只调节水就可以了先由单体、交联剂以及分散剂与去离子水(或其他)配制成预混液,预混液配置好后通常会调节PH值,之后再加入粉料进行球磨,若干小时候取出,抽真空,加入引发剂和催化剂,最后注模,希望有所帮助。
一、聚乙烯醇的性质1、基本物理及化学性质聚乙烯醇(Polyvinyl Alcohol,缩写PVA),分子式为[C2H4O]n,结构式为,是水溶性高分子树脂。
白色片状、絮状或粉末状固体,无味,无毒,但其粉末吸入会对人体产生刺激。
相对密度(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液。
玻璃化温度:75~85℃,引燃温度(℃):410(粉末)。
聚乙烯醇分子中存在两种化学结构:(2)1,2——乙二醇结构图1为聚乙烯醇薄膜的红外光谱,为聚乙烯醇薄膜的红外光谱,图中标明了几个主要键和基团特征频率变化情况。
图中3587 cm–1处的强吸收峰对应于二级羟基σ键的振动,2950 cm–1处的吸收对应于C–H2σ键的振动,1652cm–1处的强吸收属于残留的聚醋酸乙烯酯结构中C=O键的伸缩振动,1320 cm–1附近的强吸收对应于C–H键和O–H键共同作用的σ键的变形振动。
2.聚乙烯醇的醇解及溶解性能聚乙烯醇的醇解度(摩尔分数)通常有三种,即78%、88%和98%。
完全醇解的聚乙烯醇的醇解度为98%~100%;而部分醇解的聚乙烯的醇解度通常为87%~89%;78%的则为低醇解度聚乙烯醇。
我国聚乙烯醇牌号命名是取聚合度的千、百位数放在牌号的前两位,把醇解度的百分数放在牌号的后两位,如1799,即聚合度为1700,醇解度为99%,完全醇解的聚乙烯醇。
乙烯醇和聚乙烯醇摘要:一、乙烯醇简介1.乙烯醇的定义2.乙烯醇的性质3.乙烯醇的应用二、聚乙烯醇简介1.聚乙烯醇的定义2.聚乙烯醇的性质3.聚乙烯醇的应用三、乙烯醇与聚乙烯醇的关系1.制备方法2.结构差异3.性能比较四、总结1.乙烯醇与聚乙烯醇的特点2.我国在这方面的研究进展3.对未来发展的展望正文:一、乙烯醇简介乙烯醇,化学式为C2H4O2,是一种有机化合物。
它是一种无色、易燃的气体,在常温下具有刺激性气味。
乙烯醇可以通过乙烯和水在催化剂的作用下进行加成反应制得。
乙烯醇在工业上主要应用于生产聚乙烯醇、合成树脂、染料、涂料等。
二、聚乙烯醇简介聚乙烯醇,化学式为[-OCOCOCH2CH2O-]n,是一种聚合物。
它是一种白色或微黄色的粉末,具有良好的溶解性、粘度调节性和成膜性。
聚乙烯醇可以通过聚醋酸乙烯酯加成聚合或醇解反应制得。
聚乙烯醇在工业上广泛应用于生产涂料、胶粘剂、纤维等。
三、乙烯醇与聚乙烯醇的关系乙烯醇和聚乙烯醇之间的关系主要体现在它们的制备方法上。
聚乙烯醇可以通过乙烯醇加成聚合得到,而乙烯醇则是聚乙烯醇的单体。
此外,两者在结构上也有一定的差异,乙烯醇是一种单一的化合物,而聚乙烯醇是由许多乙烯醇单体通过化学键连接而成的聚合物。
在性能方面,聚乙烯醇具有更优良的溶解性、粘度调节性和成膜性,因此在实际应用中具有更广泛的应用。
四、总结乙烯醇和聚乙烯醇在化学结构和性能上有一定的差异,但它们在制备方法和应用领域上存在密切的联系。
随着科学技术的不断发展,我国在乙烯醇和聚乙烯醇方面的研究取得了一定的进展,为我国化工产业的发展提供了有力的支持。
聚乙烯醇的性质预混液的量和你要做的固含量有关,一般只用调节预混液的水含量来控制固含量,其他单体、交联剂、分散剂、粉体质量什么的量都不用动。
AM一般按预混液质量分数算,分散剂按粉体质量分数算,固含量就是粉体占粉体+预混液体积的分数。
一般10wt或15wt%AM,0.几wt%分散剂,记得调节PH,固含量50vol%以上。
引发剂和催化剂应该是根据AM和MBAM的量算,这几个都是固定值,一般只调节水就可以了先由单体、交联剂以及分散剂与去离子水(或其他)配制成预混液,预混液配置好后通常会调节PH值,之后再加入粉料进行球磨,若干小时候取出,抽真空,加入引发剂和催化剂,最后注模,希望有所帮助。
一、聚乙烯醇的性质1、基本物理及化学性质聚乙烯醇(Polyvinyl Alcohol,缩写PVA),分子式为[C2H4O]n,结构式为,是水溶性高分子树脂。
白色片状、絮状或粉末状固体,无味,无毒,但其粉末吸入会对人体产生刺激。
相对密度(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液。
玻璃化温度:75~85℃,引燃温度(℃):410(粉末)。
聚乙烯醇分子中存在两种化学结构:(2)1,2——乙二醇结构图1为聚乙烯醇薄膜的红外光谱,为聚乙烯醇薄膜的红外光谱,图中标明了几个主要键和基团特征频率变化情况。
图中3587 cm–1处的强吸收峰对应于二级羟基σ键的振动,2950 cm–1处的吸收对应于C–H2σ键的振动,1652cm–1处的强吸收属于残留的聚醋酸乙烯酯结构中C=O键的伸缩振动,1320 cm–1附近的强吸收对应于C–H键和O–H键共同作用的σ键的变形振动。
2.聚乙烯醇的醇解及溶解性能聚乙烯醇的醇解度(摩尔分数)通常有三种,即78%、88%和98%。
完全醇解的聚乙烯醇的醇解度为98%~100%;而部分醇解的聚乙烯的醇解度通常为87%~89%;78%的则为低醇解度聚乙烯醇。
我国聚乙烯醇牌号命名是取聚合度的千、百位数放在牌号的前两位,把醇解度的百分数放在牌号的后两位,如1799,即聚合度为1700,醇解度为99%,完全醇解的聚乙烯醇。
预混液的量和你要做的固含量有关,一般只用调节预混液的水含量来控制固含量,其他单体、交联剂、分散剂、粉体质量什么的量都不用动。
AM一般按预混液质量分数算,分散剂按粉体质量分数算,固含量就是粉体占粉体+预混液体积的分数。
一般10wt或
15wt%AM,0.几wt%分散剂,记得调节PH,固含量50vol%以上。
引发剂和催化剂应该是根据AM和MBAM的量算,这几个都是固定值,一般只调节水就可以了
先由单体、交联剂以及分散剂与去离子水(或其他)配制成预混液,预混液配置好后通常会调节PH值,之后再加入粉料进行球磨,若干小时候取出,抽真空,加入引发剂和催化剂,最后注模,希望有所帮助。
一、聚乙烯醇的性质
1、基本物理及化学性质聚乙烯醇(Polyvinyl Alcohol,缩写PVA),分子式为[C2H4O]n,结构式为,是水溶性高分子树脂。
白色片状、絮状或粉末状固体,无味,无毒,但其粉末吸入会对人体产生刺激。
相对密度(25℃/4℃)1.27~1.31(固体)、1.02(10%溶液。
玻璃化温度:75~85℃,引燃温度(℃):410(粉末)。
聚乙烯醇分子中存在两种化学结构:
(2)1,2——乙二醇结构
图1为聚乙烯醇薄膜的红外光谱,为聚乙烯醇薄膜的红外光谱,图中标明了几个主要键和基团特征频率变化情况。
图中3587 cm–1处的强吸收峰对应于二级羟基σ键的振动,2950 cm–1处的吸收对应于C–H2σ键的振动,
1652cm–1处的强吸收属于残留的聚醋酸乙烯酯结构中C=O键的伸缩振动,1320 cm–1附近的强吸收对应于C–H键和O–H键共同作用的σ键的变形振
动。
2.聚乙烯醇的醇解及溶解性能聚乙烯醇的醇解度(摩尔分数)通常有三种,即78%、88%和98%。
完全醇解的聚乙烯醇的醇解度为98%~100%;而部分醇解的聚乙烯的醇解度通常为87%~89%;78%的则为低醇解度聚乙烯醇。
我国聚乙烯醇牌号命名是取聚合度的千、百位数放在牌号的前两位,把醇解度的百分数放在牌号的后两位,如1799,即聚合度为1700,醇解度为99%,完全醇解的聚乙烯醇。
溶于水,为了完全溶解一般需加热到65~75℃。
不溶于汽油、煤油、植物油、
苯、甲苯、二氯乙烷、四氯化碳、丙酮、醋酸乙酯、甲醇、乙二醇等。
微溶于二甲基亚砜。
120~l50℃可溶于甘油.但冷至室温时成为胶冻。
一般说来,聚合
度增大,相同浓度水溶液的粘度增大,但在水中的溶解度下降。
醇解度增大,在冷水中的溶解度下降,在热水中的溶解度提高。
一般规律,对PVA溶解性的影响,醇解度大于聚合度。
醇解度87%~89%的产品水溶性最好,不管是在冷水中还是在热水中它都能很快地溶解;醇解度为99%及以上的聚乙烯醇只溶于
95℃以上的热水中。
随着聚合度的增大,水溶液表面生成的皮膜强度都要增大。
PVA溶解过程是分阶段进行的,即:亲和润湿一溶胀一无限溶胀一溶解。
3、聚乙烯醇的热稳定性能及其分解产物
在空气中,将聚乙烯醇加热至100℃以上,它就会慢慢地变色、脆化;在150℃以上,会充分软化而熔融;加热至160℃以上,颜色会变得很深;在170℃以上,颜色更深;加热至220℃以上,聚乙烯醇很快分解,生成醋酸、乙醛、丁烯醇和水;至250℃以上来不及分解的聚乙烯醇则变成含有共轭双键的聚合物。
聚乙烯醇的分解速度受加热温度、保温时间及气氛中的氧含量和分解物的蒸汽压等因素的影响。
在空气中,聚乙烯醇开始分解的温度为230℃左右,而在氧气中却为180℃。
气氛中氧含量过低,开始分解的温度会增高。
聚乙烯醇由于规格、品种不同,两种化学结构所占的比例不同,开始分解温度和分解曲线也有一定的差异,其开始分解的温度差异可达80℃左右。
PVA分解反应式如下:(CH2CHOH)n+O2→CH3COOH+CH3CHO+CH3CH=CHCHO+H2O分解
后生成的水形成过热水蒸气。
生成的醋酸、乙醛和丁烯醛也是过热蒸汽。
它们是否燃烧,视窑炉内的温度、氧含量等情况而定。
乙醛蒸气在空气中自然点为
156℃,分解后遇到空气中的氧气会燃烧,生成CO2和过热水蒸汽。
其燃烧热为1164.8J/mol。
丁烯醛燃点8℃,燃烧同样生成CO2和过热水蒸汽,燃烧热3239.5J/mol。
醋酸自燃点为454℃,其过热蒸汽是否燃烧视混合气体中氧含量高低及有无名火而定。
若无明火,则在454℃以上、氧含量21%左右才会燃烧,燃烧热876.1J/mol
聚乙烯醇薄膜的DSC曲线如图2所示。
一般说来,聚乙烯醇的玻璃化转变点依测量条件而异,受热历程的影响较大。
由于聚乙烯醇分子侧链较强的极性形图2聚乙烯醇薄膜的DSC曲线成分子间或分子内的结合,从而导致主链的旋转
运动被束缚的转变点温度约为–15℃,这一温度点又叫第一转变点温度。
而在此
之后,非晶区的侧链间的键合在一定程度上得到减弱。
在聚乙烯醇DSC曲线中,264℃处的吸热峰需特别注意,因为该温度对应于聚
乙烯醇的分解吸热。
聚乙烯醇的分解速度受加热温度、保温时间及气氛中的氧含量和分解物的蒸汽压等因素的影响较为显著。
3、聚乙烯醇的使用及储存聚乙烯醇水溶液的制备方法如下:将一定量聚乙烯
醇分散于常温去离子水中,在烘箱内于80℃浸泡2 h左右,并适当搅拌,使其
充分溶胀、分散。
然后逐步升温并磁力搅拌直至完全溶解,搅拌速度为60~100 r/min。
为了避免剧烈发泡,限制升温速度不超过150℃/h。
聚乙烯醇完全溶解后,边搅拌边冷却,直至常温,补加去离子水至计算量并搅拌均匀得8%(质量分数)溶液,于40℃过120目筛,密封贮存备用。
聚乙烯醇的醇解度不同,其溶解的温度和保温时间也不同。
一般说来,完全醇解的聚乙烯醇的溶解温度为95~100℃,保温时间为2~2.5h;醇解度为87%~89%的聚乙烯醇溶解温度为65~85℃,保温时间为0.5~1.0h,过高的溶解温度可能会产生不良影
响。
聚乙烯醇是否已完全溶解,仅用肉眼观察是无法判断的,必须进行检验。
检验方法是:取少量溶液,加入1~2滴碘液,并适当摇动,然后进行观察。
对完全醇解聚乙烯醇而言,若出现兰紫色团粒状透明体,对部分醇解聚乙烯醇而言,若出现红紫色团粒状透明体,则说明尚未完全溶解。
若色泽能均匀扩散,说明已完全溶解。
聚乙烯醇完全溶解后,边搅拌边冷却,直至常温,并补加水至计算量并搅拌均匀为止。
再过60目筛,贮存备用。
聚乙烯醇水溶液长期存放,溶液中的水会腐败,若加入0.01%~0.05%(以PVA为基准)的甲醛、水杨酸,则可以防腐。
完全醇解聚乙烯醇水溶液的粘度随存放时间的延长而上升,若存放时间过长或贮存温度过低,甚至会产生凝胶化。
为了使其粘度稳定,除保持其温度在常温外,还可向溶液中加入5%~10%(以PVA为基准)的硫氰酸胺或苯酚丁醇。
一般说来,聚合度增大,相同浓度的水溶液的粘度明显增高:醇解度增大,相同浓度的水溶液的粘度稍有增高;同一牌号聚乙烯醇的浓度增大,粘度增大;贮存温度升高,水溶液粘度降低;完全醇解聚乙烯醇的水溶液的粘度随存放时间的延长而升高;部分醇解聚乙烯醇的水溶液的粘度基本上不随时间的延长而变化。
聚合度越高,浓度越高,聚乙烯醇水溶液的粘度稳定性就越差。
适当延长溶解时间或加强搅拌,均能提高其水溶液的粘度稳定性。
储存注意事项:储存于阴凉、通风的库房。
远离火种、热源。
应与氧化剂分开存放,切忌混储。
配备相应品种和数量的消防器材。
储区应备有合适的材料收容泄漏物。