轴心受力构件
- 格式:ppt
- 大小:3.21 MB
- 文档页数:58
第4章 轴心受力构件4.1 概述轴心受力构件广泛地应用于钢结构承重构件中,如钢屋架、网架、网壳、塔架等杆系结构的杆件,平台结构的支柱等。
这类构件,在节点处往往做成铰接连接,节点的转动刚度在确定杆件计算长度时予以适当考虑,一般只承受节点荷载。
根据杆件承受的轴心力的性质可分为轴心受拉构件和轴心受压构件。
一些非承重构件,如支撑、缀条等,也常常由轴心受力构件组成。
轴心受力构件的截面形式有三种:第一种是热轧型钢截面,如图4-1(a )中的工字钢、H 型钢、槽钢、角钢、T 型钢、圆钢、圆管、方管等;第二种是冷弯薄壁型钢截面,如图4-1(b )中冷弯角钢、槽钢和冷弯方管等;第三种是用型钢和钢板或钢板和钢板连接而成的组合截面,如图4-1(c )所示的实腹式组合截面和图4-1(d ) 所示的格构式组合截面。
轴心受力构件的截面必须满足强度、刚度要求,且制作简单、便于连接、施工方便。
因此,一般要求截面宽大而壁厚较薄,能提供较大的刚度,尤其对于轴心受压构件,承载力一般由整体稳定控制,宽大的截面因稳定性能好从而用料经济,但此时应注意板件的局部屈曲问题,板件的局部屈曲势必影响构件的承载力。
4.2 轴心受力构件的强度轴心受力构件的强度计算是以构件的净截面达到屈服应力为限ynf A N ==σ根据概率极限状态设计法,N 取设计值(标准值乘以荷载分项系数),yf 也去设计值(除以抗力分项系数087.1=Rγ)即f,钢材设计强度见附表1.1,P313。
表达式为fA N n≤ (4.1)nA 为轴心受力构件的净截面面积。
在螺栓连接轴心受力构件中,需要特别注意。
4.3 轴心受力构件的刚度为满足正常使用要求,受拉构件(包括轴心受拉、拉弯构件)、受压构件(轴心受压构件、压弯构件)不宜过分细长,否则刚度过小,制作、运输、安装过程中易弯曲(P118列出四种不利影响)。
受拉和受压构件的刚度通过长细比λ控制][),max(max λλλλ≤=y x (4.4) 式中x x x i l /0=λ,yy y i l /0=λ;][λ为容许长细比,见表4.1,4.2。
轴心受力构件是指受到力沿着其中心轴线方向作用的构件,包括拉杆、柱子、管道等等。
在机械工程中,充当着至关重要的角色,它们能够在不同的应用场景中承受压力、弯曲和剪切等力量,从而使得机械设备得以正常运转。
让我们深入探讨的运用和作用。
一、的类型及应用常常分为拉压杆和管子。
拉杆用于承受拉伸力,管子用于承受高压液力或燃气力。
在机械设计中,这些构件通常被用于桥梁、塔楼、建筑物和车辆等结构的建造中。
同时,也被广泛应用在航空、航天和船舶设计中,纤维材料的应用更是增强了的使用范围。
二、的受力分析的设计需要考虑很多因素,如承受的荷载大小、材料的强度和刚度、构件的长度和支承方式等。
在实际使用过程中,还需要考虑力的传导和使构件具备符合要求的变形能力等因素。
在受力分析中,的力学特性是重要的。
如果设计不当,构件可能会承受破坏性变形,从而导致严重事故的发生。
例如,当长度超过一定比例时,由于柔性构件的配重达到了高峰值,会导致塔架的共振而倒塌。
三、的设计方法的设计需要考虑构件的应用领域、材料的种类和强度、以及构件长度及支承方式等因素。
设计师需要根据具体的要求进行选择和修改,并根据设计结果进行适当的测试和验证。
其中,材料的选择是重要的一环。
常见的材料有钢、铝和钛合金,选择合适的材料可以提高构件的强度和硬度,从而承受更大的压力。
在设计过程中,还需要使用工具进行力学分析,如荷载分析、变形分析和应力分析等。
对于复杂的结构,还可以通过CAD或其他软件进行模拟和分析。
最终的结果需要根据实际的实验测试结果进行优化,以确保能够达到设计要求。
四、的优化和改进的优化和改进是一个长期的研究领域。
近年来,各国的专家学者已经提出了许多新的方法和技术,如新材料的应用、优化的结构设计和精确的力学分析方法等。
这些技术的不断进步和应用,使得的质量和使用效果都得到了极大的提高。
总之,是机械工程中不可或缺的部分。
在未来,随着科技的进步,的研究将逐步深化,并得到更广泛的应用。
钢结构轴心受力构件在钢结构的世界里,轴心受力构件是其中一类至关重要的组成部分。
它们在建筑结构、桥梁工程以及各类工业设施中都扮演着不可或缺的角色。
那么,什么是钢结构轴心受力构件呢?简单来说,就是在承受外力作用时,构件的截面形心与外力的作用线重合,从而使构件沿着其轴线方向承受拉力或压力的钢结构部件。
钢结构轴心受力构件主要包括轴心受拉构件和轴心受压构件两种类型。
先来说说轴心受拉构件。
这类构件在实际应用中非常常见,比如钢结构中的吊车梁、屋架中的下弦杆等。
当构件受到拉力作用时,其内部的应力分布相对均匀,主要承受拉应力。
在设计轴心受拉构件时,我们需要重点考虑的是材料的抗拉强度。
因为一旦拉力超过了材料的抗拉极限,构件就会发生破坏。
为了保证轴心受拉构件的可靠性和安全性,我们在选材上要格外谨慎。
一般会选择高强度的钢材,以充分发挥其抗拉性能。
同时,在连接节点的设计上也不能马虎,要确保连接牢固,避免出现松动或断裂的情况。
接下来谈谈轴心受压构件。
轴心受压构件在钢结构中也有着广泛的应用,例如柱子、桁架中的受压弦杆等。
与轴心受拉构件不同,轴心受压构件的受力情况要复杂得多。
当受到压力作用时,构件可能会发生整体失稳或者局部失稳的现象。
整体失稳是指整个构件突然发生弯曲变形,失去承载能力。
而局部失稳则是指构件的某个局部区域出现了屈曲现象。
为了防止这些失稳情况的发生,我们在设计轴心受压构件时,需要考虑很多因素。
首先,要合理选择构件的截面形状和尺寸。
常见的截面形状有圆形、方形、矩形等。
对于较大的压力,通常会选择回转半径较大的截面形状,以提高构件的稳定性。
其次,要控制构件的长细比。
长细比是指构件的计算长度与截面回转半径的比值。
长细比越大,构件越容易失稳。
因此,在设计时要通过合理的布置和支撑,减小构件的计算长度,从而降低长细比。
此外,还需要考虑材料的抗压强度和屈服强度。
在实际工程中,为了提高轴心受压构件的稳定性,常常会采用一些加强措施,比如设置纵向加劲肋、横向加劲肋等。
轴心受力构件设计轴心受拉构件时需进行强度和刚度的验算,设计轴心受压构件时需进行强度、整体稳定、局部稳定和刚度的验算。
一、轴心受力构件的强度和刚度1.轴心受力构件的强度计算轴心受力构件的强度是以截面的平均应力达到钢材的屈服点为承载力极限状态f A N n ≤=σ (1) 式中 N ——构件的轴心拉力或压力设计值;n A ——构件的净截面面积;f ——钢材的抗拉强度设计值。
采用高强度螺栓摩擦型连接的构件,验算最外列螺栓处危险截面的强度时,按下式计算:f A N n≤='σ (2) 'N =)5.01(1n n N - (3)式中 n ——连接一侧的高强度螺栓总数;1n ——计算截面(最外列螺栓处)上的高强度螺栓数;0.5——孔前传力系数。
采用高强度螺栓摩擦型连接的拉杆,除按式(2)验算净截面强度外,还应按下式验算毛截面强度f A N ≤=σ (4)2.轴心受力构件的刚度计算轴心受力构件的刚度是以限制其长细比保证][λλ≤ (5) 式中 λ——构件的最大长细比;[λ]——构件的容许长细比。
二、 轴心受压构件的整体稳定1.理想轴心受压构件的屈曲形式理想轴心受压构件可能以三种屈曲形式丧失稳定:①弯曲屈曲 双轴对称截面构件最常见的屈曲形式。
②扭转屈曲 长度较小的十字形截面构件可能发生的扭转屈曲。
③弯扭屈曲 单轴对称截面杆件绕对称轴屈曲时发生弯扭屈曲。
2.理想轴心受压构件的弯曲屈曲临界力若只考虑弯曲变形,临界力公式即为著名的欧拉临界力公式,表达式为N E =22l EI π=22λπEA (6) 3.初始缺陷对轴心受压构件承载力的影响实际工程中的构件不可避免地存在初弯曲、荷载初偏心和残余应力等初始缺陷,这些缺陷会降低轴心受压构件的稳定承载力。
1)残余应力的影响当轴心受压构件截面的平均应力p f >σ时,杆件截面内将出现部分塑性区和部分弹性区。
由于截面塑性区应力不可能再增加,能够产生抵抗力矩的只是截面的弹性区,此时的临界力和临界应力应为:N cr =22l EI e π=22lEI π·I I e (7) cr σ=22λπE ·I I e (8) 式中 I e ——弹性区的截面惯性矩(或有效惯性矩);I ——全截面的惯性矩。
第四章轴心受力构件§4-1 概述1、工程实例(假设节点为铰接,无节间荷载作用时,构件只受轴心力作用)(1)桁架(2)塔架(3)网架、网壳2、分类⑴按受力来分:①轴心受拉构件②轴心受压构件到某临界值时,理想轴心受压构件可能以三种屈曲形式丧失稳定。
(1) 弯曲屈曲构件的截面只绕一个主轴旋转,构件的纵轴由直线变为曲线,这是双轴对称截面构件最常见的屈曲形式。
如图4-2 (a)就是两端铰接工字形截面构件发生的绕弱轴的弯曲屈曲。
(2) 扭转屈曲失稳时构件除支承端外的各截面均绕纵轴扭转,图4-2 (b)为长度较小的十字形截面构件可能发生的扭转屈曲。
(3) 弯扭屈曲单轴对称截面构件绕对称轴屈曲时,在发生弯曲变形的同时必然伴随着扭转。
图4-2 (c)即T 形截面构件发生的弯扭屈曲。
图4-2 轴心受压构件的三种屈曲形式欧拉临界力和欧拉临界应力临界应力其中:——单位剪力时的轴线转角,;通常剪切变形的影响较小,忽略其对临界力或临界应力的影响。
E N E σ1222211γλπλπσ⋅⋅+⋅⋅==EAEAN cr cr1γ)(1GA βγ=这样,※上述推导基于材料处于弹性阶段,即,或。
(二)初始缺陷对轴心受压构件稳定承载力的影响 1. 残余应力的影响残余压应力对压杆弯曲失稳的影响: 对弱轴的影响比对强轴的影响要大的多。
稳定应力上限,弱轴:强轴:其中:,0<<1.0。
2.初弯曲的影响图4-3 考虑初弯曲的压力—挠度曲线图示压力—挠度曲线有如下特点:1有初弯曲时,挠度v 不是随着N 按比例增加;N 较小时,挠度增加较慢,N 趋于时,挠度增加较快,并趋向于无限大;2相同压力N 的作用下,压杆的初挠度值越大,杆件的挠度也越大;Ecr N EAlEI N =⋅=⋅=2222λππEcr cr E AN σλπσ=⋅==22pcr f E≤⋅=22λπσpp f E λπλ=≥322kEx crx ⋅⋅=λπσkEycry⋅⋅=22λπσ翼缘宽度翼缘弹性区宽度=k k E N3由于有的存在,轴心压杆的承载力总是低于,因此是弹性压杆承载力的上限。
第四章轴心受力构件公式整理1.应变公式:轴心受力构件的应变公式描述了受力构件在轴向受力作用下的变形情况。
应变公式主要有以下两种形式:(1)需要计算伸长形变的情况下:在受力过程中,轴心受力构件发生的伸长形变与受力大小和材料的弹性模量有关。
应变公式可表示为:ε=ΔL/L其中,ε表示轴向应变;ΔL表示受力构件发生的伸长形变;L表示受力构件的初始长度。
(2)不需要考虑伸长形变的情况下:在一些情况下,受力构件的长度相对较短,可以忽略伸长形变的影响。
此时,应变公式可以表示为:ε=δ/h其中,ε表示轴向应变;δ表示构件上其中一截面上的位移;h表示受力构件的高度。
2.应力公式:轴心受力构件的应力公式描述了受力构件在轴向受力作用下的应力分布情况。
应力公式主要有以下两种形式:(1)线性弹性应力公式:在弹性阶段,应力与应变成正比,最常用的应力公式是线性弹性应力公式:σ=E*ε其中,σ表示轴向应力;E表示受力构件材料的弹性模量;ε表示轴向应变。
(2)线性弹塑性应力公式:在考虑弹塑性情况下,应力与应变的关系不再是线性的。
此时,应力公式可以表示为:σ=σe+σp其中,σ表示轴向应力;σe表示弹性应力;σp表示塑性应力。
3.弯矩公式:轴心受力构件在受到弯矩作用时,会引起构件的弯曲变形。
弯矩公式描述了轴心受力构件在弯矩作用下的变形情况。
弯矩公式主要有以下几种形式:(1)切线法公式:根据切线法,弯曲截面上的任意一点都受到一个弯矩的作用。
弯矩公式可以表示为:M=σ*S其中,M表示弯矩;σ表示轴向应力;S表示截面的静矩。
(2)一阶弹性理论公式:在一阶弹性理论中,构件的截面仍然平面,但允许在截面平面上有变形。
弯矩公式可以表示为:M=σ*I/y其中,M表示弯矩;σ表示轴向应力;I表示截面的惯性矩;y表示截面上任一点到中性轴的距离。
(3)符合木尔斯定理的公式:木尔斯定理适用于构件截面受平面弯矩时产生的应力。
弯矩公式可以表示为:M=W*y/I其中,M表示弯矩;W表示截面上的轴向力;y表示截面上任一点到中性轴的距离;I表示截面的惯性矩。
轴心受力构件的概念及其类型轴心受力构件是工程结构中常见的一种构件形式,它由多个轴心受力元件组成,能够承受内力、外力和变形。
轴心受力构件广泛应用于建筑、桥梁、机械等各种领域,具有结构简单、强度高、稳定可靠等特点。
本文将详细介绍轴心受力构件的概念、分类、设计原则和应用领域。
一、概念介绍轴心受力构件是指由一根或多根轴向受力的线材、板条、形状复杂的截面、系统部件等构成的构件。
轴心受力构件通常具有良好的轴向力传递能力,能够在内力作用下产生轴向应变和轴向应力。
在设计中,轴心受力构件通常通过选取适当的截面形状和尺寸来满足强度、刚度和稳定性的要求。
二、类型分类根据构件的材料和截面特点,轴心受力构件可以分为以下几种类型:1.线材构件:线材构件通常由圆钢、角钢、工字钢等线材形成。
这种构件截面形状简单,常用于承受拉力和压力。
2.板条构件:板条构件通常由薄板和矩形截面钢材构成,如钢板、钢带等。
板条构件适用于承受弯曲力、剪切力和压力。
3.有孔构件:有孔构件通常应用于承受剪切力和扭矩,如圆孔、槽孔等形状的构件。
4.混凝土构件:混凝土构件通常由钢筋和混凝土组成。
这种构件在承受压力和弯曲力时具有良好的性能。
5.复合构件:复合构件由不同材料组成,可以充分发挥各种材料的特点以及各自的优势。
三、设计原则在轴心受力构件的设计过程中,需要遵循以下原则:1.合理选材:根据结构的要求,选择合适的材料,考虑强度、刚度、稳定性等因素。
2.合理选截面:根据内力的特点和作用方式,选择合适的截面形状和尺寸。
3.合理分布内力:在设计中,应尽量合理分配内力,避免集中在某一截面或某一部位,提高构件的整体性能。
4.考虑边界条件:结构系统的边界条件对构件的应力分布和变形有重要影响,应在设计中充分考虑。
5.考虑构件的连接方式:在设计中需考虑构件之间的连接方式和连接强度,保证构件的力学性能。
四、应用领域轴心受力构件广泛应用于各个工程领域,包括建筑、桥梁、航空航天、交通运输、能源等。
轴心受力构件知识点总结一、概念轴心受力构件是指受力对象的截面积负重心和受力方向一致的构件,在受力作用下,截面上各点受到的应力主要是轴向拉力或轴向压力,受力构件一般用材料强度和截面形状进行受力设计。
轴心受力构件的主要特点是受力为单轴应力,只产生轴向应力,不产生剪切应力。
轴心受力构件一般用钢、木、混凝土、玻璃等材料制作。
二、受力情况1. 轴向拉力当受力构件受到拉力作用时,构件内部各点受到的应力都是轴向拉力。
这时构件上每一个截面都受到一般的拉力,截面上的应力为均匀的拉应力。
2. 轴向压力当受力构件受到压力作用时,构件内部各点受到的应力都是轴向压力。
这时构件上每一个截面都受到一般的压力,截面上的应力也为均匀的压应力。
三、受力工作原理受力构件在受力作用下,内部各点受到的应力都是轴向拉力或轴向压力,主要受力方式包括:拉伸、压缩、弯曲、扭转等。
受力构件的受力工作原理主要包括静力平衡条件和应力平衡条件。
1. 静力平衡条件轴心受力构件在受力作用下,整个构件的外力和内力要达到平衡,即受力构件所受外力和内力的合力和合力矩为零。
2. 应力平衡条件轴心受力构件在受力作用下,截面上各个微元受到的应力要达到平衡,即受力构件所受应力和强度平衡,截面上各点的应力和应变满足静力平衡和变形条件。
四、受力公式1. 拉力公式受力构件受到拉力作用时,其拉力公式为N = A * σN为拉力,A为受力构件的截面积,σ为截面受力构件所受的应力。
2. 压力公式受力构件受到压力作用时,其压力公式为N = A * σN为压力,A为受力构件的截面积,σ为截面受力构件所受的应力。
3. 应变公式受力构件在受力情况下,其应变公式为ε = δ / Lε为应变,δ为受力构件的变形量,L为受力构件的长度。
五、受力计算1. 根据静力平衡和应力平衡条件,可以计算受力构件所受的拉力和压力大小,受力构件的承载能力等。
2. 在计算受力构件的承载能力时,需要考虑受力构件的截面形状、材料强度、受力方式等因素。