压电陶瓷的物理性能与压电方程
- 格式:ppt
- 大小:1.45 MB
- 文档页数:80
压电陶瓷材料压电陶瓷材料摘要:本文包括压电陶瓷压电陶瓷的产生发展,机理,生产及其应用,从各方面阐述了压电陶瓷材料的种种物理性能,以及压电陶瓷为我们生活带来的便利,对科技发展带来的种种贡献。
前言:压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料-压电效应 ,压电陶瓷除具有压电性外 ,还具有介电性、弹性等, 已被广泛应用于医学成像、声传感器、声换能器、超声马达等。
随着现代电子信息技术的飞速发展 ,对于性能优异的压电陶瓷材料的开发和探索已成为各国研究的热点问题。
本文专注介绍了压电陶瓷的产生发展,机理,生产及其应用,从各方面阐述了压电陶瓷材料。
压电陶瓷发展史:1880年,居里兄弟首先发现电气石的压电效应,从此开始了压电学的历史。
1881年,居里兄弟实验验证了逆压电效应,给出石英相同的正逆压电常数。
1894年,Voigt指出,仅无对称中心的二十种点群的晶体才有可能具有压电效应,石英是压电晶体的一种代表,它被取得应用。
第一次世界大战,居里的继承人郎之万,最先利用石英的压电效应,制成了水下超声探测器,用于探测潜水艇,从而揭开了压电应用史篇章。
第二次世界大战中发现了BaTiO3陶瓷,压电材料及其应用取得划时代的进展。
1946年美国麻省理工学院绝缘研究室发现,在钛酸钡铁电陶瓷上施加直流高压电场,使其自发极化沿电场方向择优取向,除去电场后仍能保持一定的剩余极化,使它具有压电效应,从此诞生了压电陶瓷。
压电陶瓷概念:压电材料分为压电晶体和压电陶瓷。
压电晶体一般指压电单晶体,是指按晶体空间点阵长程有序生长而成的晶体。
这种晶体结构无对称中心,因此具有压电性。
如水晶(石英晶体)、镓酸锂、锗酸锂、锗酸钛以及铁晶体管铌酸锂、钽酸锂等。
压电陶瓷则泛指压电多晶体。
压电陶瓷是指用必要成份的原料进行混合、成型、高温烧结,由粉粒之间的固相反应和烧结过程而获得的微细晶粒无规则集合而成的多晶体。
具有压电性的陶瓷称压电陶瓷,实际上也是铁电陶瓷。
实验一 压电陶瓷的压电性能测量一、实验目的1. 了解压电陶瓷元件的电性能参数2. 掌握压电应变常数d 33的测试原理和测试技术3. 掌握谐振法测定压电振子的频率响应曲线及压电耦合系数的测试原理的方法 二.实验原理压电陶瓷元件在极化后的初始阶段,压电性能要发生一些较明显的变化,随着极化后时间的增长,性能越来越稳定,变化量也越来越小,所以,试样应存放一定时间后再进行电性能的测试。
一般最好存放10天。
按压电方程,其压电材料的d 33常数定义为:T E E S T D d )()(333333== 此处,D 3及E 3分别为电位移和电场强度;T 3及S 3分别为应力和应变。
对于仪器的具体情况,上式可简化为:FCVF Q A F A Q d ==÷=)()(33,这时,A 为试样的受力面积;C 为与试样并联的比试样大很多(如大100倍)的大电容,以满足测量d 33常数时的恒定电场边界条件。
在仪器测量头内,一个约0.25N,频率为110Hz 的低频交变力,通过上下探头加到比较样品与被测试样上,由正压电效应产生的两个电信号经过放大、检波、相除等必要的处理后,最后把代表试样的d 33常数的大小及极性送三位半数字面板表上直接显示。
准静态法比通常的静态法精确。
静态法由于压电非线性及热释电效应,测量误差可达30%~50%。
三.仪器设备ZJ-3准静态d33测量仪(的测量头结构外观见下图。
四、实验步骤1.一般操作(1) 选档:试样电容值小于0.01μF 对应×1档,小于0.001μF 对应×0.1档。
(2) 用两根多芯电缆把测量头和仪器本体连接好。
(3) 把附件盒内的塑料片插于测量头的上下两探头之间,调节测量头顶端的手轮,使塑料片刚好压住为止。
(4) 把仪器后面板上的“d 33-力”选择开关置于“d 33”一侧。
(5) 使仪器后面板上的d 33量程选择开关,按照被测样品的d 33估计值,处于适当位置。
压电陶瓷性能参数解析压电陶瓷的性能参数解析表示.上角标s表示机械夹持条件.由于在机械自由条件下存在由形变而产生的附加电场. 而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。
T T 根据上面所述,沿3方向极化的压电陶鞭具有四个介电常数,EP e 11 , e … ,£ 11 »£ 11 O<2)介质损耗介质损耗是包括压电陶瓷在内的任何介质材料所具有的重要品质指标之一.在交变电场下,介质所积番的电荷有两部分:一种为有功部分(同相),由电导过程所引起的;一种为无功部分(异相),是由介质弛豫过程所引起的•介质损耗的异相分址与同相分址的比值如图所示,Ic为同相分量,IR为异相分绘,"与总电流I的夹角为6 ,其正切值为(1-4)1WCRIR V因1-1交流电賂中电流电压矢呈因(有损耗吋)对于一般的固体,应力T 只引起成比例的应变S,用弹性模量联系起来,即T=YS ;乐电陶瓷具有压电性.即施加应力时能产生额外的电荷。
其所产生的电荷与施加的应力成 比例,对于压力和张力来说,其符号是相反的,用介质电位移D (单位面积的电荷)籾应力 T (单位面积所受的力)表示如下:D=Q/A=dT式中,d 的单位为库仑/牛顿(C/N )这正是正压电效应。
还有一个逆压电效应,既施加电场E 时成比例地产生应变S, 其所产生的Q D厂D 广D 广DQ Dv 1], V 12, v ]3, V 33, V 44。
广 E pE Q E pEV 12 f U 13, V 33, U 4-1机械品质因数机械品质因数也是衡量压电陶瓷的一个重要参数。
它表示在振 动转换时材料内部能量消耗的程度。
机械品质因数越大,能量的损耗越 小。
产生损耗的原因在于内摩擦。
机械品质因数可以根据等效电路计算 而得:----- —— OsCiRi(l-io)式中,R1为等效电阻,3S 为串联谐振角频率,C1为振子谐振时的等效电容,其 值为Wp 2- W s ZCl=— ------------ (Co+Cl)3 p 2(1-11)其中,3p 为振子的并联谐振角频率.Co 为振子的静电容。
压电陶瓷基本特性:1.位移特性KS EEQL r2 2εεε+=∆式中,Q r为极化后的剩余电荷,ε为压电介质的介电常数,E为压电陶瓷内部电场强度,S为压电陶瓷的横截面积,K为压电陶瓷碟片的弹性模量,ε0 为真空的介电常数式中的ε不是常量,而是和所加电压和加压史有关,因而压电陶瓷位移和电场强度(电压)的关系存在迟滞特性。
下图为这一陶瓷在正负电压下的位移-电压特性曲线:2.出力位移特性在空载的情况下压电陶瓷的输出位移为最大输出位移,在最大输出力的作用下,压电陶瓷的输出位移将为零,压电陶瓷的输出力和位移的关系曲线如下图:3.温度特性①压电陶瓷随着温度的变化而伸长。
②压电/电致伸缩陶瓷的输出位移随着温度的增加而减少,压电陶瓷的减少幅度较小,电致伸缩陶瓷减少幅度较大。
4.迟滞特性压电陶瓷的迟滞一般在14%左右,目前提出的减少迟滞的方法主要有:①采用电荷控制方法;②采用压电陶瓷两端串联小电容的方法;③运用模型;④采用电阻和电容组成桥路;⑤压电陶瓷元件位移闭环压电陶瓷作动器是高精度定位中的关键部件,它能满足纳米级定位精度,具有体积小、刚度高、响应快等优点。
然而它的相应位移和驱动电压之间存在着非对称迟滞特性,同时自身的蠕变和环境温度的变化也会造成其定位精度的漂移。
而且压电陶瓷作动器的非对称迟滞特性对控制精度的影响十分显著。
为减少和消除该不利影响,目前主要有两种解决途径:①电荷控制:它需要特别设计的电荷驱动放大器,但该放大器价格昂贵,且存在漂移和过饱和等问题,因而极大的限制了其应用;②电压控制:需要建立非线性迟滞的数学模型,并通过逆模型前馈补偿来控制精度。
电压控制逐渐成为压电陶瓷作动器精密控制的首选方案,其关键是非线性迟滞的精确建模。
对于迟滞特性建模存在两个困难:1)非局部存储现象.2)上升曲线和下降曲线是不对称曲线迟滞模型的研究主要分为两个方向:一种是基于机理的物理模型,从基本物理原理出发描述物理特性;如Maxwell模型,Jiles-Atherton模型,Duherm模型。
压电性能:
压电常数是表征压电体的弹性效应和电极化效应相互耦合关系的宏观物理量。
压电常数越大,表明材料弹性性能与介电性能之间的耦合越强。
(耦合是指两个或两个以上的电路元件或电网络等的输入与输出之间存在
紧密配合与相互影响,并通过相互作用从一侧向另一侧传输能量的现象。
即耦合是两者相互作用的现象。
)
分为压电应变常数d ij和压电电压常数g ij。
D33:(纵向压电应变常数)d33是针对正压电效应来说的,而g33是针对逆压电效应来说的
纵向压电应变常数对d33是压电材料在纵向应力作用下,在纵向产生电荷强弱的描述。
压电复合材料样品的d33采用准静态法测量lzl,测量原理依据正压电效应。
结课论文开题报告2014 年4月 13日特种陶瓷的力学性能与压电陶瓷的结构原理和性能参数引言: 随着新技术革命的,功能陶瓷愈来愈受到世界各国的重视,品种日益增多,应用也愈来愈普遍。
几乎在工业、宇航、军工等所有的领域都可以找到特种题 目: 特种陶瓷的力学性能与压电陶瓷的结构原理和性能参数学 院: 化学工程学院专业班级: 材料化学112班学生姓名: 顾鹏 学 号: 2011121272 指导教师:陶瓷的应用。
应该指出,许多陶瓷都具有十分优异的综合性能。
摘要:特种陶瓷是发展高新技术的物质基础,也是改造传统产业的必备条件,因此材料科学被列为对世纪六大高科技领域之一。
特种陶瓷是新材料的一个组成部分,由于它具有其他材料所没有的各种优良性能,耐高温、高强度、重量轻、耐磨、耐腐蚀、优异的电、磁、声、光等物理特点,它在国民中的能源、电子、航空航天、机械、汽车、冶金和生物等各方面都有广阔的应用前景,成为各工业技术特别是尖端技术中不可缺少的关键材料,在国防现代化建设中,武器装备的发展也离不开特种陶瓷材料。
除此之外,在当今世界各国把环境保护作为重要的问题来考虑时,以环境保护、生活优化为背景的环境净化功能陶瓷的研究与开发也必然对改善人类生存环境,实施可持续发展战略起到积极的推动作用。
Abstract: special ceramics is the material basis for the development of high technology, is the transformation of traditional industries essential condition, so the materials science is listed as the six major high-tech fields. Special ceramics is a part of the new material, because it has excellent resistance to various other materials do not have, high temperature resistance, high strength, light weight, corrosion resistance, wear resistance, excellent electrical, magnetic, acoustic, optical and other physical characteristics, it is in the national energy, electronics, aerospace, machinery, automobile, metallurgy and biological aspects have broad application prospects, has become the industry technology is the key technology in the essential material, in the modernization of national defense construction, the development of weapons and equipment also cannot do without special ceramic materials. In addition, the environmental protection as an important consideration in the world, with environmental protection, life optimization as the background of the environmental research and development of functional ceramics are bound to improve human living environment, implementing the strategy of sustainable development plays a positive role in promoting.关键词:特种陶瓷、压电陶瓷、性能1特种陶瓷定义特种陶瓷又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大 ... 在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能。
压电陶瓷第三面上单一应力压电效应方程1、压电材料是弹性体,它在力学效应上服从胡克定律,即应力τ和应变e之间服从弹性关系:τ=ce或e=sτ式中c为弹性模量,又称弹性刚度常数或弹性劲度常数,表示物体产生单位应变所需的力;s为弹性顺从系数,又称弹性柔顺常数,表示材料的应力与应变之间的关系并且:s=1/c上述关系式的物理意义是:在弹性限度内,弹性体的应力与应变成正比。
2、压电材料是铁电体,它在电学效应中,其电学参数-电场强度E和电位移强度D之间服从介电关系式:E=βD或D=εE,式中ε为电容率,又称介电常数(单位:法/米),它反映材料的介电性质,对压电体则反映其极化性质,与压电体附上电极所构成的电容有关,即电容C=εA/t,式中A为两极板相对面积,t为两极间距离或者说是压电晶片的厚度,因而与压电体的电阻抗有关。
介电常数ε常用相对介电常数εr表示,其值等于同样电极情况下介质电容与真空电容之比:εr=C介/C真空=ε介/ε真空(ε真空=8.85x10-2法/米)β为介电诱导系数,又称介电隔离率,它表示电介质的电场随电位移矢量变化的快慢,并且β=1/ε,不过这个系数一般较少使用。
上述介电关系式的物理意义就是:当一个电介质处于电场E中时,电介质内部的电场可以用电位移D表示。
3、压电材料在磁学效应中有:B=μH,式中B为磁感应强度,H 为磁场强度,μ为磁导率4、压电材料在热学效应中有:Q=φσ/ρc,式中Q为热量;φ为温度;σ为熵;ρ为介质密度;c为材料比热。
对于压电体,我们通常不考虑磁学效应并且认为在压电效应过程中无热交换(当然这并不确实,而仅仅是在简化分析时略去这两方面)。
因此,一般只考虑前面所述的力学效应和电学效应,而且还必须同时考虑它们之间存在的相互作用。
把两个力学量--应力τ和应变e与两个电学量--电场强度E和电位移强度D联系在一起,描述它们之间相互作用的表达式就是所谓的压电方程。
处在工作状态下的压电体,其力学边界条件可以有机械自由与机械夹紧两种情况,而电学边界条件则有电学短路和电学开路两种情况,根据不同的边界条件,选择不同的自变量与因变量,就可以得到不同类型的压电方程。