压电陶瓷基本知识
- 格式:pptx
- 大小:1.14 MB
- 文档页数:49
简述压电陶瓷压电陶瓷是一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料,是一种具有压电效应的陶瓷材料。
与压电单晶材料相比,具有机电耦合系数高,压电性能可调节性好,化学性质稳定,易于制备且能制得各种形状、尺寸和任意极化方向的产品、价格低廉等优点。
它具有压电效应。
所谓压电效应是正电压效应和负电压效应。
前者是指由应力诱导出极化或电场的现象,后者则是由电场诱导出应力或应变的现象,二者统称为压电效应。
目前为止,压电陶瓷的这种压电效应已被广泛应用于与人们生活息息相关的许多领域,遍及卫星广播、电子设备、生物、航空航天、医疗卫生、日常生活等等。
由此可见压电陶瓷的应用十分广泛,研究意义非常重大。
一些材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷的现象,称为压电效应。
具有这种性能的陶瓷称为压电陶瓷,它的表面电荷的密度与所受的机械应力成正比。
反之,当这类材料在外电场作用下,其内部正负电荷中心移位,又可导致材料发生机械变形,形变的大小与电场强度成正比。
常用的压电陶瓷有钛酸钡系、锆钛酸铅二元系及在二元系中添加第三种ABO3(A表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3Nb2/3)O3和Pb(Co1/3Nb2/3)O3等组成的三元系。
如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。
此外,还有一种偏铌酸盐系压电陶瓷,如偏铌酸钾钠(Na0.5·K0.5·NbO3)和偏铌酸锶钡(Ba x·Sr1-x·Nb2O5)等,它们不含有毒的铅,对环境保护有利。
目前,我国所使用的压电陶瓷体系主要是铅基压电陶瓷,材料其中含铅化合物PbO(或Pb3O4)约占原料总质量的百分之七十左右。
由于含铅化合物在高温时具有挥发性,这些材料在生产、使用、废弃过程中都会对人类健康和生态环境造成很大的危害。
压电陶瓷材料在我们的生活中随处可见的物质,材料的发展深深的影响着人们的生活质量,同时也是我们人类社会进步和文明的重要标志。
随着社会的进步和发展,电子陶瓷材料在信息技术中占有非常重要的作用,常常被用来制作一些重要的电子元器件如:传感器、电容器、超声换能器。
因此,高性能的电子陶瓷材料是信息技术发展和研究的重要方向。
压电陶瓷是一种具有压电性能的多晶体,是信息功能陶瓷的重要组成部分。
其具有机电耦合系数高(压电振子在振动过程中,将机械能转变为电能,或将电能转变为机械能的效率)、价格便宜、易于批量生产等优点,已被广泛应用于社会生产的各个领域,尤其是在超声领域及电子科学技术领域中,压电陶瓷材料已逐渐处于绝对的支配地位,如医学及工业超声检测、水声探测、压电换能器、超声马达、显示器件、电控多色滤波器等。
1.压电陶瓷性能1.1压电性压电陶瓷最大的特性是具有正压电性和逆压电性。
正压电性是指某些电介质在机械外力作用下,介质内部正负电荷中心发生相对位移而引起极化,从而导致电介质两端表面内出现符号相反的束缚电荷。
反之,当给具有压电性的电介质加上外电场时,电介质内部正负电荷中心不但发生相对位移而被极化,同时由于此位移而导致电介质发生形变,这种效应称之为逆压电性。
1.2介电性能材料在电场作用下,表现出对静电能的储蓄和损耗的性质,通常用介电常数(ε r )和介质损耗(tanδ)来表示。
当在两平板之间插入一种介质(材料)时,电容C将增加,此时电容 C与真空介质时该电容器的电容量 C0的比即为相对介电常数k:k=C/C= (εA/d)/(ε0A/d)=ε/ε(ε—真空介电常数:8.854×10-12F/m)当一个正弦交变电场V=Vexpiωt施加于一介电体上时,电荷随时间而变化而产生了电流Ic, Ic在无损耗时比 V 超前90°。
但实际是有损耗的。
有损耗时,总电流超前电压不再是90°而是90°-δ。
压电陶瓷的工作原理及其应用1. 什么是压电陶瓷嘿,朋友们,今天咱们就聊聊一个神奇的材料——压电陶瓷。
乍一听这个名字,可能会让你觉得有点高大上,但其实它可比你想的要简单有趣多了!压电陶瓷是一种能够把机械压力转化为电能的陶瓷材料。
听着是不是感觉像魔法?其实,这就是科学的魅力所在!它们就像是“电力小精灵”,无论我们是用手一碰,还是给它施加点压力,它们就能乖乖地输出电流,太神奇了吧!1.1 工作原理说到工作原理,咱们就要提到“压电效应”了。
简单来说,压电效应就是那些陶瓷在受到压缩时,内部的分子结构发生了变动,从而产生电荷。
这种原理就像我们玩橡皮泥,捏捏搓搓后,形状有了变化,当然,压电陶瓷一旦受到力的作用,电流便会流动起来!所以乍一看,这可不是一个传统的电池,但说它是一个“力”的发电机,应该是无可厚非的。
同样,它也能反向运作——当施加电压时,陶瓷会发生微小的形变,变得扭来扭去,宛如小舞者一样,摸起来可是特别有趣哦。
1.2 材料构成说到这里,有人可能会好奇,压电陶瓷到底是什么“做”的呢?实际上,它们一般是由一种叫做钛酸铅或锆钛酸铅的化合物制成的。
这些材料在高温下经过特殊处理,就能形成压电特性。
嘿,这听起来是不是好像科学实验室里那些复杂的步骤?别担心,这只是为我们赠送了这些神奇小玩意的“开机”密码!而且,压电陶瓷的种类也很多,像是单晶压电材料、陶瓷复合材料等等,各种各样的人才齐上阵,因为不同的应用需求,各有所长嘛。
2. 压电陶瓷的应用说完了原理,咱们再聊聊这些压电陶瓷到底能在哪儿派上用场。
其实,咱们的日常生活中,很多地方都藏着它们的身影哦。
比如说——声纳和麦克风,这些小玩意能把声波转化成电信号,或者把电信号转化为声波,而其中的关键材料就是压电陶瓷。
是不是感觉涨知识了呢?此外,在医疗器械中,超声波诊断仪也是用得上压电陶瓷,通过振动产生声波图像,助医生“大显神通”呢!2.1 家庭中的应用你还知道吗,在咱们的家庭中,压电陶瓷其实也贡献了不少力量呢!比如常见的点火器,尤其是在烧烤的时候,叮的一声,火就起来了,这可全靠压电陶瓷的的“点石成金”之功。
压电陶瓷的压电原理及制作工艺压电陶瓷是一种能够通过外加电压变形的材料,具有压电效应,即在外加电场的作用下,材料会产生机械变形;同时,当材料产生机械应力时,也会在其表面产生电荷分布。
压电陶瓷的压电效应是通过压电晶体的极化现象实现的。
压电陶瓷的制作工艺包括成分设计、制备、成型、烧结和极化等环节。
压电陶瓷的压电原理是基于压电效应的。
压电效应是指在应力作用下,晶体的分子结构发生改变,电荷重新排列,从而产生电荷的分布。
压电陶瓷的分子结构中,锆、钛、铁等离子在晶体中反复摆动,使得晶体的极性发生改变,从而引起电荷的分布。
当外加电场存在时,电场作用下的电荷摆动会增强压电效应。
1.成分设计:根据所需的电特性和机械特性,选择适当的无机氧化物材料组成压电陶瓷的成分。
通常采用的材料有PZT(铅锆钛)、PZN(铅锆钛酸钠)和PMN(铅镁钼酸钠)等。
2.制备:以合适的方式将所需的材料按照一定比例混合,形成混合物。
通常可以采用球磨或干法混合等方式进行材料的制备。
3.成型:将混合物进行成形,常用的方法有注塑成型、挤出成型和压制成型等。
在成型过程中,可以加入适量的添加剂,以调整材料的流动性和成型性能。
4.烧结:将成型后的陶瓷坯体进行烧结,使其在高温下形成致密的结构。
烧结的温度和时间会对陶瓷的性能产生重要影响。
5.极化:将烧结后的陶瓷材料放入极化装置中,施加高强度的电场进行极化处理。
极化可以增强材料的压电效应,提高其性能。
除了以上几个主要的制作步骤,还有一些其他的辅助工艺,比如表面处理、切割和电极连接等,以满足具体的应用需求。
总之,压电陶瓷是一种利用压电效应实现机械变形和电能转换的材料。
其制作工艺包括成分设计、制备、成型、烧结和极化等步骤。
压电陶瓷在各个领域都有广泛的应用,如声波和超声波发生器、压电换能器、压电陶瓷驱动器等。
压电陶瓷及其测量原理近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。
由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。
同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。
(一)压电陶瓷的主要性能及参数(1)压电效应与压电陶瓷在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。
这两种正、逆压电效应统称为压电效应。
晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。
在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。
(2)压电陶瓷的主要参数1、介质损耗介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。
在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。
介质损耗是异相分量与同相分量的比值,如图1 所示,C I为同相分量,R I为异相分量,C I与总电流I 的夹角为 ,其正切值为CR I I C R ωδ1tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。
图 1 交流电路中电压-电流矢量图(有损耗时)2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。
机械品质因数越大,能量的损耗越小。
产生能量损耗的原因在于材料的内部摩擦。
机械品质因数m Q 的定义为:π2的机械能谐振时振子每周所损失能谐振时振子储存的机械⨯=m Q机械品质因数可根据等效电路计算而得 11111R L C R Q s s m ωω==式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。