晶体提拉法
- 格式:ppt
- 大小:3.49 MB
- 文档页数:48
晶体生长方法单晶体原则上可以由固态、液态(熔体或溶液)或气态生长而得。
实际上人工晶体多半由熔体达到一定的过冷或溶液达到一定的过饱和而得。
晶体生长是用一定的方法和技术,使单晶体由液态或气态结晶成长。
由液态结晶又可以分成熔体生长或溶液生长两大类。
熔体生长法这类方法是最常用的,主要有提拉法(又称丘克拉斯基法)、坩埚下降法、区熔法、焰熔法(又称维尔纳叶法)等。
提拉法此法是由熔体生长单晶的一项最主要的方法,被加热的坩埚中盛着熔融的料,籽晶杆带着籽晶由上而下插入熔体,由于固液界面附近的熔体维持一定的过冷度、熔体沿籽晶结晶,并随籽晶的逐渐上升而生长成棒状单晶。
坩埚可以由高频感应或电阻加热。
半导体锗、硅、氧化物单晶如钇铝石榴石、钆镓石榴石、铌酸锂等均用此方法生长而得。
应用此方法时控制晶体品质的主要因素是固液界面的温度梯度、生长速率、晶转速率以及熔体的流体效应等。
坩埚下降法将盛满材料的坩埚置放在竖直的炉内,炉分上下两部分,中间以挡板隔开,上部温度较高,能使坩埚内的材料维持熔融状态,下部则温度较低,当坩埚在炉内由上缓缓下降到炉内下部位置时,材料熔体就开始结晶。
坩埚的底部形状多半是尖锥形,或带有细颈,便于优选籽晶,也有半球形状的以便于籽晶生长。
晶体的形状与坩埚的形状是一致的,大的碱卤化合物及氟化物等光学晶体是用这种方法生长的。
区熔法将一个多晶材料棒,通过一个狭窄的高温区,使材料形成一个狭窄的熔区,移动材料棒或加热体,使熔区移动而结晶,最后材料棒就形成了单晶棒。
这方法可以使单晶材料在结晶过程中纯度提得很高,并且也能使掺质掺得很均匀。
图3为区熔法的原理图。
区熔技术有水平法和依靠表面张力的浮区熔炼两种。
焰熔法这个方法的原理是利用氢和氧燃烧的火焰产生高温,使材料粉末通过火焰撒下熔融,并落在一个结晶杆或籽晶的头部。
由于火焰在炉内形成一定的温度梯度,粉料熔体落在一个结晶杆上就能结晶。
小锤敲击料筒震动粉料,经筛网及料斗而落下,氧氢各自经入口在喷口处,混合燃烧,结晶杆上端插有籽晶,通过结晶杆下降,使落下的粉料熔体能保持同一高温水平而结晶。
第三章提拉法及其合成宝石的鉴定要点:∙晶体提拉法的原理方法∙提拉法合成宝石的鉴定提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
这种方法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等重要的宝石晶体。
2O世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。
它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。
它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。
第一节提拉法一、提拉法的基本原理提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。
图 3-1 提拉法合成装置(点击可进入多媒体演示)二、提拉法的生长工艺首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。
1.晶体提拉法的装置晶体提拉法的装置由五部分组成:(1)加热系统加热系统由加热、保温、控温三部分构成。
最常用的加热装置分为电阻加热和高频线圈加热两大类。
采用电阻加热,方法简单,容易控制。
保温装置通常采用金属材料以及耐高温材料等做成的热屏蔽罩和保温隔热层,如用电阻炉生长钇铝榴石、刚玉时就采用该保温装置。
控温装置主要由传感器、控制器等精密仪器进行操作和控制。
(2)坩埚和籽晶夹作坩埚的材料要求化学性质稳定、纯度高,高温下机械强度高,熔点要高于原料的熔点200℃左右。
常用的坩埚材料为铂、铱、钼、石墨、二氧化硅或其它高熔点氧化物。
其中铂、铱和钼主要用于生长氧化物类晶体。
人工晶体制备方法——提拉法提拉法又称丘克拉斯基法,是丘克拉斯基(J.Czochralski)在1917年发明的从熔体中提拉生长高质量单晶的方法。
这种方法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等重要的宝石晶体。
20世纪60年代,提拉法进一步发展为一种更为先进的定型晶体生长方法——熔体导模法。
它是控制晶体形状的提拉法,即直接从熔体中拉制出具有各种截面形状晶体的生长技术。
它不仅免除了工业生产中对人造晶体所带来的繁重的机械加工,还有效的节约了原料,降低了生产成本。
生长要点(1)温度控制在晶体提拉法生长过程中,熔体的温度控制是关键。
要求熔体中温度的分布在固液界面处保持熔点温度,保证籽晶周围的熔体有一定的过冷度,熔体的其余部分保持过热。
这样,才可保证熔体中不产生其它晶核,在界面上原子或分子按籽晶的结构排列成单晶。
为了保持一定的过冷度,生长界面必须不断地向远离凝固点等温面的低温方向移动,晶体才能不断长大。
另外,熔体的温度通常远远高于室温,为使熔体保持其适当的温度,还必须由加热器不断供应热量。
(2)提拉速率提拉的速率决定晶体生长速度和质量。
适当的转速,可对熔体产生良好的搅拌,达到减少径向温度梯度,阻止组分过冷的目的。
一般提拉速率为每小时6-15mm。
在晶体提拉法生长过程中,常采用“缩颈”技术以减少晶体的位错,即在保证籽晶和熔体充分沾润后,旋转并提拉籽晶,这时界面上原子或分子开始按籽晶的结构排列,然后暂停提拉,当籽晶直径扩大至一定宽度(扩肩)后,再旋转提拉出等径生长的棒状晶体。
这种扩肩前的旋转提拉使籽晶直径缩小,故称为“缩颈”技术。
来源:中科院上海硅酸盐研究所。
编辑:SARS。
最全的材料晶体生长工艺汇总提拉法提拉法又称直拉法,丘克拉斯基(Czochralski)法,简称CZ法。
它是一种直接从熔体中拉制出晶体的生长技术。
用提拉法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等多种重要的人工宝石晶体。
提拉法的原理:首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶下降至接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,并在不断提拉和旋转过程中,最终生长出圆柱状的大块单晶体。
提拉法的工艺步骤可以分为原料熔化、引晶、颈缩、放肩、等径生长、收尾等几个阶段。
具体过程如示意图。
提拉法晶体生长工艺有两大应用难点:一是温度场的设置和优化;二是熔体的流动和缺陷分析。
下图为提拉法基本的温度场设置以及五种基本的熔体对流模式。
在复杂的工艺条件下,实际生产需要调整的参数很多,例如坩埚和晶体的旋转速率,提拉速率等。
因此实际中熔体的温度场和流动模式也更复杂。
下图是不同的坩埚和晶体旋转速率下产生的复杂流动示意图。
这两大应用难点对晶体生长的质量和效率都有很大影响,是应用和科研领域中最关心的两个问题。
通常情况下为了减弱熔体对流,人为地引入外部磁场是一种有效办法,利用导电流体在磁场中感生的洛伦兹力可以抑制熔体的对流。
常用的磁场有横向磁场、尖端磁场等。
下图是几种不同的引入磁场类型示意图。
引入磁场可以在一定程度上减弱对流,但同时磁场的引入也加大了仿真模拟的难度,使得生长质量预测变的更难,因此需要专业的晶体生长软件才能提供可靠的仿真数据。
晶体提拉法有以下优点:(1)在晶体生长过程中可以直接进行测试与观察,有利于控制生长条件;(2)使用优质定向籽晶和“缩颈”技术,可减少晶体缺陷,获得优质取向的单晶;(3)晶体生长速度较快;(4)晶体光学均一性高。
晶体提拉法的不足之处在于:(1)坩埚材料对晶体可能产生污染;(2)熔体的液流作用、传动装置的振动和温度的波动都会对晶体的质量产生影响。
晶体生长方法1) 提拉法(Czochralski,Cz )晶体提拉法的创始人是J. Czochralski ,他的论文发表于1918年。
提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。
近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC ),如图1,能够顺利地生长某些易挥发的化合物(GaP 等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。
所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。
这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。
提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。
提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。
图1 提拉法晶体生长装置结构示意图2)热交换法(Heat Exchange Method, HEM)热交换法是由D. Viechnicki和F.Schmid于1974年发明的一种长晶方法。
其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。
特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有图2HEM晶体生长装置结构示意图特定形状要求的晶体。
晶体提拉生长法流程晶体提拉生长法呀,这可是个很有趣的东西呢。
一、准备工作。
要开始晶体提拉生长,那得先把各种东西都准备好。
就像我们做饭得先买菜一样。
我们得有合适的原料,这个原料得是那种高纯度的,杂质太多可不行,就像我们做蛋糕不能用坏鸡蛋一样。
然后就是坩埚啦,这就像是晶体生长的小窝,要选择耐高温又合适的坩埚,这样晶体在里面才会舒舒服服地长大。
还有加热设备,得能给原料加热到足够高的温度,让它变成熔融状态。
这加热设备就像一个暖炉,给原料提供热量,让它能有变化的能量。
另外,籽晶也不能少,籽晶就像是一个小种子,晶体就从这个小种子开始慢慢长大的呢。
二、开始加热。
东西都准备好了,就可以开始加热原料了。
加热的时候,温度要控制好哦。
如果温度太高了,原料可能会变得太疯狂,到处乱溅或者出现一些不好的反应。
如果温度太低了,原料又不能完全融化,就像我们烧水,要是火太小,水半天都烧不开。
当原料慢慢融化的时候,就像看着一块冰慢慢变成水一样,不过这个过程可比冰化成水要热得多啦。
在这个过程中,我们得时刻盯着温度,就像盯着锅里煮的粥,不能让它糊了。
三、引入籽晶。
原料都融化得差不多了,就到了引入籽晶的时候了。
这时候要小心翼翼地把籽晶放到熔融的原料里面。
这就像把小种子种到土里一样,要轻手轻脚的。
籽晶一放进去,就会和熔融的原料有个接触,然后神奇的事情就开始发生了。
晶体就开始在籽晶的基础上慢慢生长起来了。
这个过程就像是魔法一样,看着一点点东西在籽晶上出现,然后慢慢变大,真的很让人兴奋呢。
四、提拉过程。
接下来就是提拉了。
要慢慢地把籽晶往上提起来,同时呢,要保证晶体在生长过程中各个部分都很均匀。
这就像我们拉面条一样,要拉得均匀,不能有的地方粗有的地方细。
在提拉的时候,速度也要合适,如果提得太快了,晶体可能还没长好就被拉断了,就像我们拔萝卜,要是太用力太快,萝卜可能就断在地里了。
如果提得太慢,晶体可能会长得歪歪扭扭的,不好看也不符合要求。
而且在提拉过程中,周围的环境也很重要,温度、气氛这些都要保持稳定,就像我们睡觉的时候,周围环境安静稳定我们才能睡得好,晶体在稳定的环境下才能健康成长。
晶体生长方法(新)晶体生长方法1) 提拉法(Czochralski,Cz)晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。
提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。
近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),如图1,能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。
所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生图1 提拉法晶体生长装置结构示意图长出几何形状及内在质量都合格单晶的过程。
这种方法的主要优点是:(a) 在生长过程中,可以方便地观察晶体的生长情况;(b) 晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c) 可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。
提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。
提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。
2) 热交换法(Heat Exchange Method, HEM)热交换法是由D. Viechnicki和F.Schmid于1974年发明的一种长晶方法。
其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。
特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。
提拉法生产单晶的工艺过程
提拉法是一种常用的单晶生长工艺,主要用于生产硅单晶。
以下是提拉法生产单晶的工艺过程:
1. 原料准备:将高纯度的硅原料加入石英坩埚中并加热熔化,得到硅熔体。
2. 晶体种植:在石英坩埚内放入种子晶体,使其与硅熔体接触,形成晶体的初步生长。
3. 晶体提拉:将种子晶体与坩埚底部相连的拉杆慢慢向上拉升,使硅熔体慢慢提拉,晶体就会逐渐延伸。
4. 形成单晶棒:通过适当的控制拉杆的上升速度和熔体的温度,使得晶体在提拉的过程中逐渐形成单晶。
5. 控制温度和速度:在整个提拉过程中,需要严格控制熔体的温度和晶体提拉速度,以保证单晶的质量和尺寸。
6. 切割和修整:当单晶棒的长度达到一定要求后,将其切割成单个硅片,并进行修整和打磨,以得到最终的单晶硅片。
需要注意的是,提拉法生产单晶的过程需要在高真空环境下进行,以避免杂质的
污染。
此外,提拉法虽是一种常用的单晶生长工艺,但其过程控制较为复杂,需要经验丰富的技术人员进行操作。
LiNbO晶体提拉法生长3材料物理 0910278 吴纯治一、实验目的(1) 了解提拉法生长单晶的生长机制;(2) 学习LiNbO晶体的生长特性及生产工艺,熟悉设备结构与功能。
3二、实验原理当一个结晶固体的温度高于熔点时,固体就熔化为熔体,当熔体的温度低于凝固点时,熔体就凝固为固体。
单晶的生长涉及到固液相变,这个过程中,原子(或分子)的随机堆积的阵列转变为有序阵列,即结晶。
提拉法生长单晶:,将制备好的原料放进坩埚,然后把坩埚放入盛有绝热材料Al O泡沫颗粒)的加热炉中,加热炉采用中频感应线圈加热法或是电阻加热(23法。
原材料在高温下转变为熔体,提拉杆上放置一个单晶核,然后将晶核下端部分浸入熔体中。
在晶核和熔体的交界面上不断地进行分子与原子的有序排列,这样提拉杆旋转着往上提拉,单晶体就缓慢的生长出来了。
温度场:因为熔体温度高于材料熔点,而要生长单晶,籽晶浸入部分又不能融化(只能软化),所以要求温度满足低于材料熔点。
这势必要在熔体与晶核之间界面处形成一定的温度梯度,从熔体到晶体,温度以一定趋势降低。
引颈:缓慢向熔体下降,避免热冲击,降至离熔体0.5~1mm处,等待1小时,待籽晶与熔体温度相近时,开始引颈。
引颈的过程必须要进行“缩颈”,以减少籽晶的位错向晶体的扩展。
放肩:经“缩颈”一定长度后,开始缓慢放肩,要获得高品质的单晶,放肩的角度一定要小,肩型要缓,放肩角小于60度为好。
实验步骤:原料处理,装料,抽真空(对于LiNbO晶体不需要),升温,熔料,3引颈,放肩,等径,提拉。
三、实验内容(1)认知学习:学习了解晶体生长的各个设备及流程。
四、思考题1.什么叫晶体的同成分配比生长,有那些因素会影响晶体的组分?同成分配比:满足生长出的单晶成分与熔体中成分比例一致的配比。
影响因素有温度,过冷度等。
2.为防止晶体开裂,应当注意什么事项?应保证同成分,即熔体与生长出的晶体成分比例是相同的,而且要保证温度梯度要合适。