压力管道的水力计算和直径的确定.
- 格式:doc
- 大小:44.00 KB
- 文档页数:2
浅谈市政污水压力管道的设计韩猛摘要传统的重力管道排水技术虽然历史悠久、技术成熟,但是对于目前市政污水管道排水来说,由于受到地面高程、软土地基等不利自然环境因素影响,单纯依靠污水重力管道排水变得很不现实。
因此,污水压力管道的建设势在必行。
本文主要从污水压力管道及其附属构筑物的设计、管道跨越桥梁等障碍物几个方面对污水压力管道系统的总体设计进行深入论述。
关键词市政;污水压力管道;设计0引言传统的重力流污水管道技术成熟,使用广泛,但在设计中有时会遇到污水由地势低洼处排向地势高处,此时依靠重力流排水就变得很不现实,一是过深的管沟开挖增加了人工及物资成本,还存在着施工过程中深基坑的安全问题。
二是对于已建成的高处污水管道而言,低洼处污水管道的标高较低,无法接入已建管道。
同时,重力流污水管道通过检查井连接,不可避免地存在渗漏污水的现象。
因此,在城市中仅仅依靠重力流来实现城市污水转输是不够的。
此时,就有必要进行污水压力管道的建设,以弥补重力流管道在污水输送方面的不足。
1污水压力管道的特点污水压力管道是以压力管道输送污废水的排水系统,相对于重力流污水管道,具有如下几个方面的特点:(1)可以避免重力流污水管道因铺设距离长、埋深大而造成的在复杂地质条件下施工困难的问题;污水压力管道铺设不受土质地形限制,可适用于各种复杂地质、地形条件下施工的特殊要求。
(2)各个不同企业所排出的污水共同使用一条排水压力污水干管,可以有效简化污水管网。
(3)对现代城市快速发展的环境适应性强,在排水管径不能满足远期水量要求的特殊情况下,可进行延伸而无须过分担心高程污水接入的问题。
2污水压力管道设计污水压力管道设计中,管材选择是基础环节,直接关系后续的设计与计算,因此,应该予以特别重视,本文对几种常见管材的优缺点进行了分析总结,便于根据实际情况进行选择。
污水压力管道设计需要先对其进行平面定线、划分产污区的面积,从而精确地计算污水压力管道设计管段的设计流量、确定压力管道管径,然后根据污水排入干管的曲线走向及附近地形及标高,确定系统的各个控制点,再根据每个控制点的设计高程、设计管段管径、设计流量等因素进行计算,可得出系统沿程压力高程曲线,该压力高程曲线为系统实现压力平衡的基础,同时也是污水压力泵选择的重要依据。
关于如何确定管径的问题
管道输水工程设计最关键最主要的问题就是管径大小的选择。
在压力管道输、供水工程中无论采用什么材质的管材,其管径大小直接影响到工程造价。
那么,如何确定管径呢?
管网设计的终极目的其实就是选择经济合理的管径。
影响管径大小的有四个要素:管道设计流量、流速、水损及节点之间的高差。
在流量、节点之间的高差为定值的前提下,如何选择流速就是关键了。
根据目前较成熟的且得到广范应用的理论就是根据经济流速试算。
什么是经济流速呢?满足工程设计输水流量要求、且符合不淤、不冲的流速。
如果是大流量、长距离、高落差的项目,要选得一个经济合理的管径,往往要经过数学模型分析计算。
我们接触的这些小项目,经济流速在规范提供的范围选择一下就行了。
计算步骤如下:
根据我上传的“管道水力计算表”把管长、流量、节点高程填入相应的单元格,拟定1个流速值填好,看最后一栏末端自由水压是多少,如果是单纯的输水管(水源到蓄水池),只要满足自由水压不为负数就行了(如果自由水压太大,说明流速值选得太小,不经济)。
如果是配水管网请按树枝状管网计算方法计算,确保各节点水压满足要求。
不同压力等级管材壁厚不一样,为方便,现把1.25Mpa 的PE管实际内径统计如下:(供大家选择公径外径使用)
DN20-15.4;DN25-19.9;DN32-26;DN40-32.6;DN50-40. 8;
DN63-51.4;DN75-61.4;DN90-73.6;DN110-90;DN125-1 02.2;。
一、有压隧洞的水力计算1、沿程水头损失:h f =Lv²/(C²R)=λLv²/(d2g)=Ln²Q²/(F²R^4/3)R=A/χi上游调压室的设置条件λ=8g/C²C=R^(1/6)/n2、局部水头损失:hj=ζv²/(2g)3、有压隧洞的基本计算公式:①自由出流:Q=μω√(2g(T 0-h p ))式中,Tw—压力水道中水流惯性h p =0.5a+p ′/γLi—压力水道及蜗壳和压②淹没出流:Q=μω√(2g(T 0-h s ))vi—压力水道内各分段流 Hp—水轮机设计水头,m 4、①自由出流:μ=1/(1+∑ζj *(ω/ωj )^2+∑2gl i *(ω/ωi )^2/(C i ²*R i ))^0.5; [Tw]—Tw 的允许值,一般②淹没出流:μ=1/((ω/ω2)^2+∑ζj *(ω/ωj )^2+∑2gli*(ω/ωi)^2/(C i ²*R i ))^0.5,式中:ω2—隧洞出口下游渠道断面面积 ω—隧洞出口断面面积 ζj —几部水头损失系数ωj —与 ζj 相应流速之断面面积L i 、ωi 、R i 、C i —某均匀洞段之长度、面积、水力半径、谢才系数压力钢管经济直径D=1.128(Q/v e )^0.5= 或 压力钢管经济直径D=(5.2*Q max ^[]w w T T >iw i pL vT gH =∑二、阻抗式调压室(一)、托马断面计算:A=K*A th =K*L*A 1/(2g*(α+1/(2g))*(H 0-h w0-3*h wm ))式中:A th —托马临界稳定断面面积 L—压力引水道长度 A 1—压力引水道断面面积H 0—发电最小静水头(电站上下游水位差)α—自水库至调压室水头损失系数,α=h w0/v²,(包括局部水头损失与沿程摩擦水头损失),在无连接管 v—压力引水道流速h w0—压力引水道水头损失 h wm —压力管道水头损失K—系数,一般可采用1.0~1.1(二)、最高涌波计算(《水电站调压室设计规范》计算公式):A=K*A th =K*L*A 1/(2g*(α+1/(2g))*(H 0-h w0-3*1、阻抗孔水头损失计算:h c =(Q/(Ψs)^2)/(2g)式中: h c —通过阻抗孔的水头损失 S—阻抗孔断面面积0.6~0.8之间选用2、丢弃全负荷时的最高涌波计算(《水电站调压室设计规范》计算公式):λ′=2gA(h c0+h w0)/(LA 1v 0²)(1+λ′Z max )-ln(1+λ′Z max )=(1+λ′h w 0)-ln(1-λ′h c 0)(λ′|Z max -1|)+ln(λ′|Z max |-1)=ln(λ′h c 0-1)-(λ′h w 0+1)34、增加负荷时的最低涌波计算:1+(((0.5ε-0.275m ′^0.5)^0.5)+0.1/ε-0.9)×(1-m ′)(1-m ′/(0.65ε^0.62))m ′=Q/Q 03、甩负荷时的第二振幅Z2m′=Q/Q0ε=LA1v0²/(gAh w0²)上游调压室的设置条件式中,Tw—压力水道中水流惯性时间常数,s;i—压力水道及蜗壳和压力尾水道各分段长度,m ;i—压力水道内各分段流速,m/s ;Hp—水轮机设计水头,m ;Tw]—Tw 的允许值,一般取2~4s式中: v e —经济流速,明钢管和地下埋管为4~6m ∕s ;管经济直径D=1.128(Q/v e )^0.5= 3.140219≈3.1 钢筋砼管为2~4m/s ;坝内埋管为3~7m/s 压力钢管经济直径D=(5.2*Q max ^3/H)^(1/7)=3.434174≈3.4Q max —管道的最大流量[]w w T T >iw i pL vT gH =∑二、阻抗式调压室水力计算程摩擦水头损失),在无连接管时用α代替(α+1/(2g))A1/(2g*(α+1/(2g))*(H0-h w0-3*h wm))141216441618 m′)(1-m′/(0.65ε^0.62))管为4~6m∕s;埋管为3~7m/s。
目录1 总则2 一般规定工艺计算站、场、库及石油化工装置设备和管道布置输油、输气管道线路工程材料选用管道应力设计管道和设备隔热管道和设备涂漆压力管道支吊架设计规定压力管道强度计算规定聚乙烯管道设计规定3 压力管道设计遵循的标准和规范1 总则目的: 为了统一压力管道设计技术要求,提高压力管道设计水平,确保压力管道设计质量,特制定本规定。
遵守的原则:优化设计方案,确定经济合理的工艺及最佳工艺参数;做到技术先进,经济合理,安全适用。
适用范围:本规定适用于输油、输气管道工程、给排水及消防工程、热力工程、城市燃气工程及石油化工工程。
2 一般规定工艺计算2.1.1 输油、输气管道需要进行管道的水力计算、温降计算。
其计算公式按《输油管道工程设计规范》(GB50253-2014)、《输气管道工程设计规范》(GB50251-2015)《城镇燃气设计规范》(GB50028-2006)执行。
2.1.2 对于特殊的管道穿跨越工程按《油气输送管道穿越工程设计规范》(GB 50423-2007)和《油气输送管道跨越工程设计规范》(GB 50459-2009)执行。
站、场、库及石油化工装置设备及管道的布置2.2.1 设备布置2.2.1.1 装置的总体布置应根据装置在工厂总平面上的位置以及与有关装置、罐区、主管廊、道路等相对位置确定,并与相邻装置的布置相协调。
2.2.1.2 装置的竖向布置应根据装置生产特点,充分考虑操作、检修要求,满足交通运输要求;考虑装置内外地坪标高的协调及其内外道路、排水的合理衔接,尽量减少土方工程量;装置场地应采用平坡式布置,并采用有组织排水,所有的雨水经过暗管排入地下排水管网。
2.2.1.3 设备布置应满足工艺流程、安全生产、环境保护的要求,并应便于操作、维护、检修、防爆及消防,并注意节约用。
2.2.1.4 设备布置应按工艺流程顺序和同类设备适当集中相结合的方式,并结合风向条件确定设备、建筑物与其它设施的相对位置。
压力管道的水力计算和经济直径的确定
一、水力计算
压力管道的水力计算包括恒定流计算和非恒定流计算两种。
(一)恒定流计算恒定流计算主要是为了确定管道的水头损失。
管道的水头损失对于
水电站装机容量的选择、电能的计算、经济管径的确定以及调压室稳定断面计算等都是不可缺少的。
水头损失包括摩阻损失和局部损失两种。
1、摩阻损失
管道中的水头损失与水流形态有为。
水电站压力管道中的水流的雷诺数Re一般都超过3400,因而水流处于紊流状态,摩阻水头损失可用曼宁公式或斯柯别公式计算。
曼宁公式应用方便,在我国应用较广。
该公式中,水头损失与流速平方成正比,这对于钢筋混凝土管和隧洞这类糙率较大的水道是适用的。
对于钢管,由于糙率较小,水流未、能完全进人阻力平方区,但随着时间的推移,管壁因锈蚀糙率逐渐增大,按流速平方关系计算摩阻损失仍然是可行的。
曼宁公式因一般水力学书中均可找到,此处从略。
斯柯别根据198段水管的1178个实测资料,推荐用以下公式计算每米长钢管的摩阻损失
(13-1式中a-水头损失系数,焊接管用0.00083。
为考虑水头损失随使用年数t的增加而增大的系数,清水取K=0.01,腐蚀性水可取K=0.015。
2.局部损失
在流道断面急剧变化处,水流受边界的扰动,在水流与边界之间和水流的内部形成旋涡,在水流质量强烈的混掺和大量的动量交换过程中,在不长的距离内造成较大的能量损失,这种损失通常称为局部损失。
压力管道的局部损失发生在进口、门槽、渐变段、弯段、分岔等处。
压力管道的局部损失往往不可忽视,一尤其是分岔的损失有时可能达到相当大的数值。
局部损失的计算公式通常表示为
系数可查有关手册。
(二)非恒定流计算
管道中的非恒定流现象通常称为水锤。
进行非恒定流计算的目的是为了推求管道各点i的动水压强及其变化过程,为管道的布置、结构设计和机组的运行提供依据。
非恒定流计算的内容见第九章。
二、管径的确定
压力管道的直径应通过动能经济计算确定。
在第七章中我们已经研究了决定渠道和隧洞经济断面的方法,其基本原理对压力管道也完全适用,可以拟定几个不同管径的方案,进行誉比较,选定较为有利的管道直径,也可以将某些条件加以简化,推导出计算公式,直接求解。
在可行性研究和初步设计阶段,可用以下彭德舒公式来初步确定大中型压力钢管的经济直径
式中Qmax-钢管的最大设计流量,;
H-设计水头,m。