液体管网水力特征与水力计算
- 格式:ppt
- 大小:4.28 MB
- 文档页数:74
《流体输配管网》主要知识要点学习指导与本专业有关的流体输配管网,种类很多,技术繁杂。
同时,平台课的教学计划学时又非常有限。
《流体输配管网》课程共48学时,其中理论教学为44学时,实验4学时。
若采用原来专业课的教学方法,面面俱到,讲授新构成的平台课程,难以获得好的教学效果。
《流体输配管网》课程的两个关键是:(1)必须把本专业各类流体输配管网共同的技术原理和方法讲深、讲透,讲完整,即构造一个共性体系;(2)要注意平台课沟通基础课与专业课的桥梁作用,不能脱离具体的工程实践,讲成纯粹的网络理论。
共性原理要能解决个性(具体管网)问题。
-----课前准备由于要联系具体的工程管网,这就要求学生在学习本门课程前,对实际的管网有基本的了解。
学生在本门课程之前,要学习《制图》、《建筑环境与设备工程概论》、《流体力学》等课程和进行认识实习。
可在认识实习任务书中,给学生下达如下任务:认真观察1~3个不同的流体输配管网,并绘制出管网轴测图。
管网类型不限。
要求学生结合《建筑环境与设备工程概论》课程学习的知识和《流体输配管网》教材的第一章,根据自己所观察的实际工程的流体输配管网,回答以下问题:(1)该管网的作用是什么?(2)该管网中流动的流体是液体还是气体?还是水蒸气?是单一的一种流体还是两种流体共同流动?或者是在某些地方是单一流体,而其他地方有两种流体共同流动的情况?如果有两种流体,请说明管网不同位置的流体种类、哪种流体是主要的。
(3)该管网中工作的流体是在管网中周而复始地循环工作,还是从某个(某些)地方进入该管网,又从其他地方流出管网?(4)该管网中的流体与大气相通吗?在什么位置相通?(5)该管网中的哪些位置设有阀门?它们各起什么作用?(6)该管网中设有风机(或水泵)吗?有几台?它们的作用是什么?如果有多台,请分析它们之间是一种什么样的工作关系(并联还是串联)?为什么要让它们按照这种关系共同工作?(7)该管网与你所了解的其他管网(或其他同学绘制的管网)之间有哪些共同点?哪些不同点?如果认识实习安排在本课开课前一学期,可将这个与认识实习结合。
排水管道纯公式水力计算排水管道水力计算是指根据管道的水力特性和流体力学原理,计算管道内流体的速度、压力、流量等参数,以确定管道的水力性能。
下面将介绍一些常见的排水管道水力计算公式,并对其进行说明。
1.流量公式:流量是指单位时间内通过管道截面的液体体积。
流量公式可以用来计算流量,其表示为:Q=A*v式中,Q表示流量,单位为体积/时间;A表示管道截面积,单位为面积;v表示流速,单位为长度/时间。
该公式根据负责流量为截面面积与流速的乘积。
2.流速公式:流速是指单位时间内通过管道其中一点的液体线速度。
流速公式可以用来计算流速,其表示为:v=Q/A式中,v表示流速;Q表示流量;A表示管道截面积。
3.斯怀默公式:斯怀默公式用来计算管道中的流速,其表示为:v=C*R^(2/3)*S^(1/2)式中,v表示流速,单位为长度/时间;C为经验系数(一般根据实际情况取值);R表示液体在管道内运动的惯性系数;S表示液体在管道内运动的能量消耗系数。
4.伯努利方程:伯努利方程是描述流体在管道中运动的一种基本物理原理。
对于水力平衡的平稳流动有:z+(P/γ)+(v^2/2g)=常数式中,z表示位置高度;P表示压力;γ表示液体的比重;v表示流速;g表示重力加速度。
该方程表达了位置高度、压力和速度之间的关系。
5.里德伯格公式:里德伯格公式用来计算管道中的摩阻损失,其表示为:Hf=f*(L/D)*(v^2/2g)式中,Hf表示摩阻损失;f表示摩阻系数;L表示管道长度;D表示管道直径;v表示流速;g表示重力加速度。
以上是一些常见的排水管道水力计算公式,用于计算排水管道的流量、流速、摩阻损失等参数。
在实际应用中,还可以根据具体情况选择适用的公式进行计算。
需要注意的是,公式的使用需要考虑实际情况,并结合实际数据进行合理调整,以保证计算结果的准确性。
第 2 章气体管流水力特征与水力计算2-1 某工程中的空调送风管网,在计算时可否忽略位压的作用?为什么?(提示:估计位压作用的大小,与阻力损失进行比较。
)答:民用建筑空调送风温度可取在15~35℃(夏季~冬季)之间,室内温度可取在25~20℃(夏季~冬季)之间。
取20℃空气密度为1.204kg/m3,可求得各温度下空气的密度分别为:15℃:==1.225 kg/m335℃:==1.145 kg/m325℃:==1.184 kg/m3因此:夏季空调送风与室内空气的密度差为1.225-1.184=0.041kg/m3冬季空调送风与室内空气的密度差为1.204-1.145=0.059kg/m3空调送风管网送风高差通常为楼层层高,可取H=3m,g=9.807 N/m.s2,则夏季空调送风位压=9.807×0.041×3=1.2 Pa冬季空调送风位压=9.807×0.059×3=1.7 Pa空调送风系统末端风口的阻力通常为15~25Pa,整个空调送风系统总阻力通常也在100~300 Pa之间。
可见送风位压的作用与系统阻力相比是完全可以忽略的。
但是有的空调系统送风集中处理,送风高差不是楼层高度,而是整个建筑高度,此时H可达50米以上。
这种情况送风位压应该考虑。
2-2 如图 2-1-1 是某地下工程中设备的放置情况,热表示设备为发热物体,冷表示设备为常温物体。
为什么热设备的热量和地下室内污浊气体不能较好地散出地下室?如何改进以利于地下室的散热和污浊气体的消除?图2-1-1图2-1-2图2-1-3图2-1-4答:该图可视为一 U 型管模型。
因为两侧竖井内空气温度都受热源影响,密度差很小,不能很好地依靠位压形成流动,热设备的热量和污浊气体也不易排出地下室。
改进的方法有多种:(1)将冷、热设备分别放置于两端竖井旁,使竖井内空气形成较明显的密度差,如图 2-1-2 ;(2)在原冷物体间再另掘一通风竖井,如图 2-1-3 ;(3)在不改变原设备位置和另增竖井的前提下,采用机械通风方式,强制竖井内空气流动,带走地下室内余热和污浊气体,如图 2-1-4 。
第 2 章气体管流水力特征与水力计算2-1 某工程中的空调送风管网,在计算时可否忽略位压的作用?为什么?(提示:估计位压作用的大小,与阻力损失进行比较。
)答:民用建筑空调送风温度可取在15~35℃(夏季~冬季)之间,室内温度可取在25~20℃(夏季~冬季)之间。
取20℃空气密度为1.204kg/m3,可求得各温度下空气的密度分别为:15℃:==1.225 kg/m335℃:==1.145 kg/m325℃:==1.184 kg/m3因此:夏季空调送风与室内空气的密度差为1.225-1.184=0.041kg/m3冬季空调送风与室内空气的密度差为1.204-1.145=0.059kg/m3空调送风管网送风高差通常为楼层层高,可取H=3m,g=9.807 N/m.s2,则夏季空调送风位压=9.807×0.041×3=1.2 Pa冬季空调送风位压=9.807×0.059×3=1.7 Pa空调送风系统末端风口的阻力通常为15~25Pa,整个空调送风系统总阻力通常也在100~300 Pa之间。
可见送风位压的作用与系统阻力相比是完全可以忽略的。
但是有的空调系统送风集中处理,送风高差不是楼层高度,而是整个建筑高度,此时H可达50米以上。
这种情况送风位压应该考虑。
2-2 如图 2-1-1 是某地下工程中设备的放置情况,热表示设备为发热物体,冷表示设备为常温物体。
为什么热设备的热量和地下室内污浊气体不能较好地散出地下室?如何改进以利于地下室的散热和污浊气体的消除?图2-1-1 图2-1-2图2-1-3 图2-1-4答:该图可视为一 U 型管模型。
因为两侧竖井内空气温度都受热源影响,密度差很小,不能很好地依靠位压形成流动,热设备的热量和污浊气体也不易排出地下室。
改进的方法有多种:(1)将冷、热设备分别放置于两端竖井旁,使竖井内空气形成较明显的密度差,如图 2-1-2 ;(2)在原冷物体间再另掘一通风竖井,如图 2-1-3 ;(3)在不改变原设备位置和另增竖井的前提下,采用机械通风方式,强制竖井内空气流动,带走地下室内余热和污浊气体,如图 2-1-4 。
第三章作业3-1 计算习题 3-1 中各散热器所在环路的作用压力 t g =95℃, t g1=85℃, t g2=80℃,t n =70℃。
解:如图示可知,第一个为并联环路双管管网,第二个为串联环路单管管网 系统供回水温度,t g =95℃, t n =70℃,t g1=85℃, t g2=80℃, 对应的密度为,3g kg/m 92.961=ρ,3n kg/m 81.977=ρ,3g1kg/m 65.968=ρ,3g2kg/m 83.971=ρ并联:【双管路各层散热器的进出水温度是相同的,但是循环作用动力相差很大;】第一楼散热器作用压力:()()Pa 6.46792.96181.977381.9gh P g h 11=-⨯⨯==∆-ρρ第二楼散热器作用压力:()()Pa 3.93592.96181.977681.9gh P g h 22=-⨯⨯==∆-ρρ第三楼散热器作用压力:()()Pa 132592.96181.977681.9gh P g h 33=-⨯⨯==∆-ρρ 串联:【单管路各层散热器的循环作用动力是同一个数,但进出水温度越到下层越低】()()()()()()Pa 3.92492.96165.9685.881.965.96883.971681.983.97181.977381.9gH gH gH P g 1g 3g1g22g2n 1h =-⨯⨯+-⨯⨯+-⨯⨯=-+-+=∆-ρρρρρρ3-2 通过水力计算确定习题图 3-2 所示重力循环热水采暖管网的管径。
图中立管Ⅲ、Ⅳ、Ⅴ各散热器的热负荷与Ⅱ立管相同。
只算 I 、II 立管,其余立管只讲计算方法,不作具体计算,散热器进出水管管长 ,进出水支管均有截止 阀和乙字弯,每根立管和热源进出口设有闸阀。
解:(1)选择最不利环路。
有图3-2可知,最不利环路是通过立管I 的最底层散热器I 1(1800w )的环路,这个环路从散热器I 1顺序经过○1、○2、○3、○4、○5、○6、进入锅炉,再经管段○7、○8、○9、○10、○11、○12进入散热器I 1。
给水管网水力计算
1.确定给水管网各管段的管径
给水管道的流速控制范围:
1、对于生活或生产给水管道,一般采用1.0~1.5m/s,不宜大于2.0m/s,当有防噪声要求,且管径小于或等于25mm时,生活给水管道内的流速可采用0.8~1.0m/s;
2、消火栓给水管道的流速不宜大于2.5m/s;
3、其自动喷水灭火系统给水管道的流速不宜大于5m/s,其配水支管在特殊情况下不得大于10m/s。
2.给水系统水压的确定
H=H1+H2+H3+H4
H1——引入管起点至配水最不利点位置高度所要求的静水压;
H2——引入管起点至配水最不利点的给水管路即计算管路的沿程与局部阻力水头损失之和;
H3——水表的水头损失;
H4——配水最不利点所需的流出水头。
3.水力计算方法和步骤
1、根据综合因素初定给水方式;
2、根据建筑功能、空间布局及用水点分布情况,布置给水管道,并绘制出给水平面图和轴侧草图;
3、绘制水利计算表格;
4、根据轴侧图选择配水最不利点,确定计算管路;
5、以流量变化处为节点,从配水最不利点开始,进行节点编号,并标注两节点间的计算管段的长度;
6、按建筑的性质选择设计秒流量的计算公式,计算各管道的设计秒流量;
7、根据设计秒流量,考虑流速,查水利计算表进行管网的水利计算,确定管径,并求出给水系统所需压力;
8、校核(H0≥H;H0略<H ;H0远<H )
9、确定非计算管路各管径。