液体管网水力特征与水力计算
- 格式:ppt
- 大小:4.28 MB
- 文档页数:74
《流体输配管网》主要知识要点学习指导与本专业有关的流体输配管网,种类很多,技术繁杂。
同时,平台课的教学计划学时又非常有限。
《流体输配管网》课程共48学时,其中理论教学为44学时,实验4学时。
若采用原来专业课的教学方法,面面俱到,讲授新构成的平台课程,难以获得好的教学效果。
《流体输配管网》课程的两个关键是:(1)必须把本专业各类流体输配管网共同的技术原理和方法讲深、讲透,讲完整,即构造一个共性体系;(2)要注意平台课沟通基础课与专业课的桥梁作用,不能脱离具体的工程实践,讲成纯粹的网络理论。
共性原理要能解决个性(具体管网)问题。
-----课前准备由于要联系具体的工程管网,这就要求学生在学习本门课程前,对实际的管网有基本的了解。
学生在本门课程之前,要学习《制图》、《建筑环境与设备工程概论》、《流体力学》等课程和进行认识实习。
可在认识实习任务书中,给学生下达如下任务:认真观察1~3个不同的流体输配管网,并绘制出管网轴测图。
管网类型不限。
要求学生结合《建筑环境与设备工程概论》课程学习的知识和《流体输配管网》教材的第一章,根据自己所观察的实际工程的流体输配管网,回答以下问题:(1)该管网的作用是什么?(2)该管网中流动的流体是液体还是气体?还是水蒸气?是单一的一种流体还是两种流体共同流动?或者是在某些地方是单一流体,而其他地方有两种流体共同流动的情况?如果有两种流体,请说明管网不同位置的流体种类、哪种流体是主要的。
(3)该管网中工作的流体是在管网中周而复始地循环工作,还是从某个(某些)地方进入该管网,又从其他地方流出管网?(4)该管网中的流体与大气相通吗?在什么位置相通?(5)该管网中的哪些位置设有阀门?它们各起什么作用?(6)该管网中设有风机(或水泵)吗?有几台?它们的作用是什么?如果有多台,请分析它们之间是一种什么样的工作关系(并联还是串联)?为什么要让它们按照这种关系共同工作?(7)该管网与你所了解的其他管网(或其他同学绘制的管网)之间有哪些共同点?哪些不同点?如果认识实习安排在本课开课前一学期,可将这个与认识实习结合。
排水管道纯公式水力计算排水管道水力计算是指根据管道的水力特性和流体力学原理,计算管道内流体的速度、压力、流量等参数,以确定管道的水力性能。
下面将介绍一些常见的排水管道水力计算公式,并对其进行说明。
1.流量公式:流量是指单位时间内通过管道截面的液体体积。
流量公式可以用来计算流量,其表示为:Q=A*v式中,Q表示流量,单位为体积/时间;A表示管道截面积,单位为面积;v表示流速,单位为长度/时间。
该公式根据负责流量为截面面积与流速的乘积。
2.流速公式:流速是指单位时间内通过管道其中一点的液体线速度。
流速公式可以用来计算流速,其表示为:v=Q/A式中,v表示流速;Q表示流量;A表示管道截面积。
3.斯怀默公式:斯怀默公式用来计算管道中的流速,其表示为:v=C*R^(2/3)*S^(1/2)式中,v表示流速,单位为长度/时间;C为经验系数(一般根据实际情况取值);R表示液体在管道内运动的惯性系数;S表示液体在管道内运动的能量消耗系数。
4.伯努利方程:伯努利方程是描述流体在管道中运动的一种基本物理原理。
对于水力平衡的平稳流动有:z+(P/γ)+(v^2/2g)=常数式中,z表示位置高度;P表示压力;γ表示液体的比重;v表示流速;g表示重力加速度。
该方程表达了位置高度、压力和速度之间的关系。
5.里德伯格公式:里德伯格公式用来计算管道中的摩阻损失,其表示为:Hf=f*(L/D)*(v^2/2g)式中,Hf表示摩阻损失;f表示摩阻系数;L表示管道长度;D表示管道直径;v表示流速;g表示重力加速度。
以上是一些常见的排水管道水力计算公式,用于计算排水管道的流量、流速、摩阻损失等参数。
在实际应用中,还可以根据具体情况选择适用的公式进行计算。
需要注意的是,公式的使用需要考虑实际情况,并结合实际数据进行合理调整,以保证计算结果的准确性。
第 2 章气体管流水力特征与水力计算2-1 某工程中的空调送风管网,在计算时可否忽略位压的作用?为什么?(提示:估计位压作用的大小,与阻力损失进行比较。
)答:民用建筑空调送风温度可取在15~35℃(夏季~冬季)之间,室内温度可取在25~20℃(夏季~冬季)之间。
取20℃空气密度为1.204kg/m3,可求得各温度下空气的密度分别为:15℃:==1.225 kg/m335℃:==1.145 kg/m325℃:==1.184 kg/m3因此:夏季空调送风与室内空气的密度差为1.225-1.184=0.041kg/m3冬季空调送风与室内空气的密度差为1.204-1.145=0.059kg/m3空调送风管网送风高差通常为楼层层高,可取H=3m,g=9.807 N/m.s2,则夏季空调送风位压=9.807×0.041×3=1.2 Pa冬季空调送风位压=9.807×0.059×3=1.7 Pa空调送风系统末端风口的阻力通常为15~25Pa,整个空调送风系统总阻力通常也在100~300 Pa之间。
可见送风位压的作用与系统阻力相比是完全可以忽略的。
但是有的空调系统送风集中处理,送风高差不是楼层高度,而是整个建筑高度,此时H可达50米以上。
这种情况送风位压应该考虑。
2-2 如图 2-1-1 是某地下工程中设备的放置情况,热表示设备为发热物体,冷表示设备为常温物体。
为什么热设备的热量和地下室内污浊气体不能较好地散出地下室?如何改进以利于地下室的散热和污浊气体的消除?图2-1-1图2-1-2图2-1-3图2-1-4答:该图可视为一 U 型管模型。
因为两侧竖井内空气温度都受热源影响,密度差很小,不能很好地依靠位压形成流动,热设备的热量和污浊气体也不易排出地下室。
改进的方法有多种:(1)将冷、热设备分别放置于两端竖井旁,使竖井内空气形成较明显的密度差,如图 2-1-2 ;(2)在原冷物体间再另掘一通风竖井,如图 2-1-3 ;(3)在不改变原设备位置和另增竖井的前提下,采用机械通风方式,强制竖井内空气流动,带走地下室内余热和污浊气体,如图 2-1-4 。
第 2 章气体管流水力特征与水力计算2-1 某工程中的空调送风管网,在计算时可否忽略位压的作用?为什么?(提示:估计位压作用的大小,与阻力损失进行比较。
)答:民用建筑空调送风温度可取在15~35℃(夏季~冬季)之间,室内温度可取在25~20℃(夏季~冬季)之间。
取20℃空气密度为1.204kg/m3,可求得各温度下空气的密度分别为:15℃:==1.225 kg/m335℃:==1.145 kg/m325℃:==1.184 kg/m3因此:夏季空调送风与室内空气的密度差为1.225-1.184=0.041kg/m3冬季空调送风与室内空气的密度差为1.204-1.145=0.059kg/m3空调送风管网送风高差通常为楼层层高,可取H=3m,g=9.807 N/m.s2,则夏季空调送风位压=9.807×0.041×3=1.2 Pa冬季空调送风位压=9.807×0.059×3=1.7 Pa空调送风系统末端风口的阻力通常为15~25Pa,整个空调送风系统总阻力通常也在100~300 Pa之间。
可见送风位压的作用与系统阻力相比是完全可以忽略的。
但是有的空调系统送风集中处理,送风高差不是楼层高度,而是整个建筑高度,此时H可达50米以上。
这种情况送风位压应该考虑。
2-2 如图 2-1-1 是某地下工程中设备的放置情况,热表示设备为发热物体,冷表示设备为常温物体。
为什么热设备的热量和地下室内污浊气体不能较好地散出地下室?如何改进以利于地下室的散热和污浊气体的消除?图2-1-1 图2-1-2图2-1-3 图2-1-4答:该图可视为一 U 型管模型。
因为两侧竖井内空气温度都受热源影响,密度差很小,不能很好地依靠位压形成流动,热设备的热量和污浊气体也不易排出地下室。
改进的方法有多种:(1)将冷、热设备分别放置于两端竖井旁,使竖井内空气形成较明显的密度差,如图 2-1-2 ;(2)在原冷物体间再另掘一通风竖井,如图 2-1-3 ;(3)在不改变原设备位置和另增竖井的前提下,采用机械通风方式,强制竖井内空气流动,带走地下室内余热和污浊气体,如图 2-1-4 。
第三章作业3-1 计算习题 3-1 中各散热器所在环路的作用压力 t g =95℃, t g1=85℃, t g2=80℃,t n =70℃。
解:如图示可知,第一个为并联环路双管管网,第二个为串联环路单管管网 系统供回水温度,t g =95℃, t n =70℃,t g1=85℃, t g2=80℃, 对应的密度为,3g kg/m 92.961=ρ,3n kg/m 81.977=ρ,3g1kg/m 65.968=ρ,3g2kg/m 83.971=ρ并联:【双管路各层散热器的进出水温度是相同的,但是循环作用动力相差很大;】第一楼散热器作用压力:()()Pa 6.46792.96181.977381.9gh P g h 11=-⨯⨯==∆-ρρ第二楼散热器作用压力:()()Pa 3.93592.96181.977681.9gh P g h 22=-⨯⨯==∆-ρρ第三楼散热器作用压力:()()Pa 132592.96181.977681.9gh P g h 33=-⨯⨯==∆-ρρ 串联:【单管路各层散热器的循环作用动力是同一个数,但进出水温度越到下层越低】()()()()()()Pa 3.92492.96165.9685.881.965.96883.971681.983.97181.977381.9gH gH gH P g 1g 3g1g22g2n 1h =-⨯⨯+-⨯⨯+-⨯⨯=-+-+=∆-ρρρρρρ3-2 通过水力计算确定习题图 3-2 所示重力循环热水采暖管网的管径。
图中立管Ⅲ、Ⅳ、Ⅴ各散热器的热负荷与Ⅱ立管相同。
只算 I 、II 立管,其余立管只讲计算方法,不作具体计算,散热器进出水管管长 ,进出水支管均有截止 阀和乙字弯,每根立管和热源进出口设有闸阀。
解:(1)选择最不利环路。
有图3-2可知,最不利环路是通过立管I 的最底层散热器I 1(1800w )的环路,这个环路从散热器I 1顺序经过○1、○2、○3、○4、○5、○6、进入锅炉,再经管段○7、○8、○9、○10、○11、○12进入散热器I 1。
给水管网水力计算
1.确定给水管网各管段的管径
给水管道的流速控制范围:
1、对于生活或生产给水管道,一般采用1.0~1.5m/s,不宜大于2.0m/s,当有防噪声要求,且管径小于或等于25mm时,生活给水管道内的流速可采用0.8~1.0m/s;
2、消火栓给水管道的流速不宜大于2.5m/s;
3、其自动喷水灭火系统给水管道的流速不宜大于5m/s,其配水支管在特殊情况下不得大于10m/s。
2.给水系统水压的确定
H=H1+H2+H3+H4
H1——引入管起点至配水最不利点位置高度所要求的静水压;
H2——引入管起点至配水最不利点的给水管路即计算管路的沿程与局部阻力水头损失之和;
H3——水表的水头损失;
H4——配水最不利点所需的流出水头。
3.水力计算方法和步骤
1、根据综合因素初定给水方式;
2、根据建筑功能、空间布局及用水点分布情况,布置给水管道,并绘制出给水平面图和轴侧草图;
3、绘制水利计算表格;
4、根据轴侧图选择配水最不利点,确定计算管路;
5、以流量变化处为节点,从配水最不利点开始,进行节点编号,并标注两节点间的计算管段的长度;
6、按建筑的性质选择设计秒流量的计算公式,计算各管道的设计秒流量;
7、根据设计秒流量,考虑流速,查水利计算表进行管网的水利计算,确定管径,并求出给水系统所需压力;
8、校核(H0≥H;H0略<H ;H0远<H )
9、确定非计算管路各管径。
给排水工艺中的水力特性与水流分析方法随着城市化进程的不断加速,给排水工艺的重要性日益凸显。
在给排水系统的设计与运行中,水力特性与水流分析是十分关键的方面。
本文将介绍给排水工艺中的水力特性以及常用的水流分析方法。
一、水力特性1. 水力特性的概念水力特性指的是给排水系统中涉及到液体(通常是水)的流动规律和性质。
了解和掌握给排水工艺中的水力特性是进行系统设计、运行和维护的基础。
2. 水力特性的参数(1)液体的流速:指的是液体在管道或河道中流动的速度,通常以米/秒为单位。
(2)液体的压力:指的是液体在管道或河道中所受到的力的作用,通常以帕斯卡为单位。
(3)液体的流量:指的是单位时间内通过管道或河道的液体体积,通常以立方米/秒为单位。
3. 水力特性的影响因素(1)管道或河道的形状和尺寸:不同形状和尺寸的管道或河道对液体的流动有不同的影响。
(2)液体的黏度:黏度较大的液体对流动的阻力较大。
(3)管道或河道的摩擦:摩擦力导致液体流动时发生能量损失。
二、水流分析方法1. 流态分析流态分析是对给排水工艺中的水流流态进行研究和分析的方法。
常用的流态分析方法有屈服分析、流态判别图和稳态分析等。
(1)屈服分析:通过确定给定管道或河道的临界流速来确定流态的转变点。
当液体流速低于临界流速时,流态为屈服状态;当液体流速高于临界流速时,流态为非屈服状态。
(2)流态判别图:绘制流态判别图可以帮助我们快速判断液体在给定管道或河道中的流态,并进行相应的设计和操作调整。
流态判别图将流态与管道或河道的尺寸、液体的黏度等参数进行关联。
(3)稳态分析:稳态分析是对流速、流量以及管道或河道的形状尺寸等参数进行综合分析,以确定给定工况下的液体流态。
通过稳态分析,我们可以预测和评估给排水系统在不同条件下的性能。
2. 水力模型试验水力模型试验是通过建立和操作实验室中的减缩模型,对实际工程中的水流进行模拟和测试。
水力模型试验可以帮助我们了解复杂的水力特性和水流行为。
第一章流体输配管网型式与装置1.什么是流体输配管网?它包括哪些内容?将流体输送并分配到各相关设备或空间,或者从哥接受点将流体收集起来输送都指定点的管网系统。
内容:管道,动力装置,调节装置,末端装置和其他附属装置2.通风工程的风管系统常分为哪两类?送风系统和排风系统3.理解什么是回风系统、双风道系统、定风量系统、变风量系统?回风:重新利用的风双:一根送冷风,一根送热风定:风量一定,但是参数改变变:风量改变,但是参数不变4.同时具有控制、调节两种功能的阀有哪几种?只具有控制功能的阀常见的有哪几种?同时:各种调节阀控制:防火阀(平常全开),排烟阀(平常全关),逆止阀参数:全开时的阻力性能,和全闭时的漏风性能5.燃气输配管网由哪几部分组成?分配管段,用户引入管,室内管段6.燃气输配管道按压力分可分为哪几类?一、二、三、多级管网的构成分别如何?七级:单位:MP 高压A:2.5~4 高压B 1.6~2.5 次高压A 0.8~1.6 次高压B 0.4~0.8 中压A 0.2~0.4 中压B 0.01~0.2 低压<0.017.燃气输配管网的储配站、调压站各自的作用是什么?储配站:1.储配必要的燃气量,用以调峰:2.使多种燃气进行混合,保证用气组分均匀3.将燃气加压以保证每个燃气用具前与足够的压力调压站:1.将燃气管网的压力调到下一级管网或者用户需要的压力2.保证调压后的压力稳定8. 供暖空调冷热水管网按动力方式、水流路径、水流量是否变化、循环水泵的设置、是否与大气接触等方式分类时,各分为哪些型式?动力方式:机械循环,重力(自然)循环水流路径:同程式,异程式水流量是否变化:定流量,变流量循环水泵的设置:单式泵,复式泵是否与大气接触:开式,闭式9. 膨胀水箱的作用是什么?贮存冷热水系统水温上升时的膨胀水量10.了解建筑给水管网的基本类型。
1.直接给水管网2.设水箱的给水管网3.设水泵的给水管网4.设水箱水泵的给水管网5.气压给水管网6.分区给水管网7.分质给水管网11.自动喷水灭火系统常见的型式有哪几种?干式自动喷水灭火系统,湿式自动喷水灭火系统,预作用自动喷水灭火系统12.供暖系统热用户与热水网路有哪些连接方式?P14直接连接:热网的水力工况和热力工况与用户管网有着密切的联系和间接连接(设置表面式水-水换热器):用户管网和热力管网被表面式水-水换热器隔开,形成两个独立系统,只进行热交换,而水力工况互不影响。
第一章流体输配管网的功能与类型1.1空气输配管网的装置及管件有风机、风阀、风口、三通、弯头、变径管等还有空气处理设备。
它们是影响官网性能的重要因素。
1.2燃气输配管网由分配管道、用户引入馆和室内管道三部分组成。
居民和小型公共建筑用户一般由低压管道供气。
1.3冷热水输配管网系统:按循环动力可分为重力循环系统和机械循环系统;按水流路径可分为同程式和异程式系统;按流量变化可分为定流量和变流量系统;按水泵设置可分为单式泵和复式泵系统;按与大气解除情况可分为开示和闭式系统。
1.4采暖空调冷热水管网装置:膨胀水箱;排气装置;散热器温控阀;分水器、集水器;过滤器;阀门;换热装置。
1.5膨胀水箱的作用与安装方式:(1)是用来储存冷热水系统水温上升时的膨胀水量。
在重力循环上供下回式系统中,它还起着排气作用。
膨胀水箱的另一个作用是恒定水系统压力。
(2)膨胀水箱的膨胀管与水系统管路的连接,在重力循环系统中,应接在供水总立管的顶端;在机械循环中,一般接至循环水泵吸入口前。
连接点处的压力,无论在系统不工作或运行时,都是恒定的。
此点为定压点。
(3)膨胀水箱的循环管应接到系统定压点前的水平回水干管上。
该点与定压点之间保持1.5-3m的距离。
1.6采暖用户与热网的连接方式:可分为直接连接(1无混合装置的直接连接2装水喷射器的直接连接3装混合水泵的直接连接)和间接连接两种。
1.7补偿器及不同类型的原理:(1)为了防止供热管道升温时,由于热伸长或温度应力而引起管道变形或破坏,需要在管道上设置补偿器,以补偿管道的热伸长,从而减少管壁的应力和作用在阀件或支架结构上的作用力。
(2)自然补偿、方形补偿器、波纹管补偿器是利用补偿器材料的变形来吸热伸长,套筒补偿器、球形补偿器是利用管道的位移来吸热伸长。
1.8建筑给水管网的功能和类型:(1)功能:建筑给水系统将城镇给水管网或自备水源给水管网的水引入室内,经支管配水管送至用水的末端装置,满足各用水点对水量、水压和水质的需求。