基因工程概论
- 格式:doc
- 大小:118.00 KB
- 文档页数:4
复习题一、名词解释1. 原核基因(Prokaryotic gene):由原核生物(如大肠杆菌)基因组编码的基因,以及高等生物细胞器线粒体基因组和叶绿体基因组等编码的基因,统称原核基因。
2. 真核基因(Eukaryotic gene):真核生物基因组DNA编码的基因,以及感染真核细胞的DNA病毒和反转录病毒基因组编码的基因,统称真核基因。
3. .前导序列(Leader sequence):又叫前导序列区或5'-非翻译区(5'-UTR),,系指位于mRNA5'-起始密码子之前的一段长数百个核苷酸的不翻译的RNA 区段。
4. 尾随序列(Tai1er sequence):又称尾随序列区或3'-非翻译区(3'-UTR),系指位于mRNA3'-终止密码子之后一段100多核苷酸的不翻译的RNA区段。
5 复制子(Replicon):指有一个复制起始区(oriC)和起始基因的DNA复制单元。
例如细菌染色体、病毒基因组、质粒基因组等,凡其DNA能够进行复制的遗传单元,均称复制子。
真核细胞基因组的复制子是指含有一个复制起始位点的DNA(RNA)的复制子特称复制单元。
6. 增强子(Enhancer):又叫增强子序列或增强子元件,是真核基因中发现的一种特异序列,能够在距离目标基因50kb以上的位置,从上游或下游的不同位置及方向增强该基因的转录活性。
7. 沉默子(Silencer)在真核基因启动子中除了增强子之外,沉默子同样也是一种可远距离调控相关基因转录活性的顺式元件。
与增强子一样,沉默子也能够从启动子的上游、下游甚至是基因内部三种不同的位置以及正向或反向,影响相关基因启动子的转录起始效率。
同时沉默子往往是以组织特异性或时间特异的作用方式,控制基因的表达作用。
但与增强子的功能效应相反,沉默子只能抑制而不能激活相关基因的转录起始活性。
8. 绝缘子(Insulator)亦即是增强子活性的物理边界元件(physical boundaryelement),它是一段能够抑制或隔离增强子功能效应的顺式转录调节序列。
一、简述基因研究所取得主要成就,及其与基因工程创立与发展的关系。
1、基因学说的创立孟德尔提出遗传因子学说到后来的摩尔根染色体理论,揭示了在染色体上基因的线性排列。
2、DNA是遗传物质从Avery的细菌转化实验到沃森和克里克揭示了DNA的双螺旋模型及半保留复制机理,表明DNA是遗传物质。
3、DNA是基因的载体4、基因是细胞中RNA及蛋白质的“蓝图”。
5、随着中心法则的提出和64种密码子的破译,基因碱基顺序与蛋白质氨基酸顺序得到对应。
6、随着基因克隆和DNA序列分析技术的发展,人们对基因的分子结构有了进一步的认识。
7、随着操纵子模型的提出,人们对基因的表达调控有了进一步的认识。
8、随着基因分离与克隆技术的不断改良与发展,基因组文库、cDNA文库、分子探针、PCR 等技术不断被人们运用。
9、目前,不仅能够分离天然基因,还能结合化学合成等方法,在实验室内进行基因的合成、构建,并进行相应的表达分析。
基因工程是在分子生物学和分子遗传学等学科综合发展的基础上诞生的一门新兴学科,它的创立和发展,直接依赖于基因及其分子生物学研究的进步,基因及其研究为基因工程的创立奠定了坚实的理论基础。
二、基因工程建立的三大理论基础和技术条件是什么?并简述其在基因工程中的应用。
1、三大理论基础:(1)1940年艾弗里(O.Avery)等人通过肺炎球菌的转化试验证明了生物的遗传物质是DNA,而且证明了通过DNA可以把一个细菌的性状转移给另一个细菌;(2)1950年沃森(J.D.Watson)和克里克(F.Crick)发现了DNA分子的双螺旋结构及DNA半保留复制机理;(3)1960年关于遗传信息中心法则的确立。
2、三大技术条件:(1)限制性内切核酸酶和DNA连接酶的发现;(2)基因工程载体;(3)大肠杆菌转化体系的建立。
3、应用:通过限制性内切核酸酶和DNA连接酶,可以将切割得到的目的基因与载体连接在一起,经由大肠杆菌转化体系增值复制,为基因工程的后续研究提供基础材料。
基因工程的概述定义:狭义的基因工程仅指用体外重组DNA技术去获得新的重组基因;广义的基因工程则指按人们意愿设计,通过改造基因或基因组而改变生物的遗传特性。
如用重组DNA技术,将外源基因转入大肠杆菌中表达,使大肠杆菌能够生产人所需要的产品;将外源基因转入动物,构建具有新遗传特性的转基因动物;用基因敲除手段,获得有遗传缺陷的动物等。
基因工程又被称为基因拼接技术或者DNA重组技术,可分为微生物基因工程、动物基因工程和植物基因工程三种生物转基因技术。
其主要特点是通过人工转移的方式,将一种生物的基因转移到另外一个受体细胞中,并使该转移基因在受体细胞中表达,从而获得全新的具有生物活性的产物。
基因工程技术为遗传物质研究和医药研究提供了重要的技术支撑。
动物基因工程技术利用先进的生物技术手段对动物基因进行编辑和改造,以达到揭示基因功能和利用基因治疗疾病等目的。
常见的动物基因工程技术包括基因敲除、基因敲入、基因编辑和转基因技术等。
通过使用基因编辑工具精确地切割和删除目标基因的特定区域,使该基因在动物个体中的表达缺失,可以揭示该基因在特定生理过程中的功能和调控机制。
基因治疗能够通过修复或替换患有遗传性疾病的动物个体的缺陷基因来达到治疗和预防遗传疾病的目的。
如利用基因编辑技术可以修复猫头鹰视网膜变性等遗传性视网膜疾病,从而改善视力。
微生物具有结构简单、迅速繁殖的特性,在其繁殖发展中应用生物基因工程技术能取得显著的效果。
将外源基因转入微生物中表达,使微生物能够生产人所需要的产品,如抗体和药用蛋白质等。
利用基因工程技术开发的重组亚单位疫苗、重组活载体疫苗及基因疫苗,有利于打破传统疫苗的局限性。
植物细胞具有全能性,在特定环境下,植物组织或者细胞能够生长出完整的植株。
所以,可以将药物基因组合到植物细胞内,通过分别培养,得到具有药物基因的植株。
植物独特的稳定遗传特性为医药领域的发展提供了充足而良好的条件。
目前,借助植物基因工程制造的药物有纯化的血清蛋白、干扰素与脑啡肽等。
中国农科院历年考博基因工程概论试题2023年中国农科院博士入学基因工程概论试题一、简答题1、聚丙烯酰胺、琼脂糖在dna电泳中的区别是什么?2、举出动物转基因的两种方法,并说明其原理。
3、双脱氧法测序的原理。
4、以拟南芥或玉米为例,说明转座子标签法进行基因转移的原理。
5、southern印迹的原理及应用。
三、试论述植物基因工程研究进展以及在农业生产上的意义。
2023年中国农科院博士入学基因工程概论试题一、名词解释1、限制性内切酶2、同裂酶3、核酶4、2μ环5、hat选择6、ti质粒7、t-dna8、同功trna9、反义trna 10、有义链11、α互补12、基因文库13、cdna 14、染色体步查二.简答题01、举两种植物基因转移的方法?简述其原理。
2、southern印迹的基本原理,这种方法有何应用。
3、噬菌体与cos作载体有何区别?4、aflp的原理及其应用5、普通pcr与rapd有何区别,何谓普通pcr?6、何谓双元载体,简述其组装过程及其作用机理?三、判断题1、无论用哪种转化方法均可用pbr322作载体2、进入细菌的外来dna之所以被降解,是由于细菌只修饰自身dna,不修饰外来dna3、只有粘粒端才可以被连接起来4、用自身作引物合成的cdna链,往往cdna并不完整1998年中国农科院博士入学基因工程概论试题一、什么是基因工程,基因工程在农业生产上有何意义?二、简答:1、聚丙烯酰胺凝胶电泳和琼脂糖凝胶电泳应用有何特点?2、举两种植物基因转移的方法?简述其原理。
3、双脱氧法测序的原理4、转座子标签法克隆植物基因的原理5、southern印迹的基本原理,这种方法有何应用?6、在dna复制过程中会形成一种复制体(replisome)的结构,它是由哪几部分组成的?7、sanger测序法的基本原理是什么?1999年中国农科院博士入学基因工程概论试题一.名词解释:1.cdna 2 ti质粒3. 2u环4. hat选择5 a互补6 yac 7 转导8 基因文库9 限制性内切酶10 染色体步查二.问答题:1 举例说明两种植物转基因的方法。
第一章基因工程概论
第一节基因工程的基本概述
一、基因工程的基本概念
1、基因工程的基本定义:
按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA 直接进行体外重组操作与改造,将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。
广义基因工程:DNA重组技术的产业化设计与应用。
分为上游和下游技术。
2、上游技术:外源基因重组、克隆和表达的设计与构建(狭义基因工程)
3、下游技术:含有外源基因的生物细胞(基因工程菌或细胞)的大规模培养以及外源基因的表达、分离、纯化过程。
基因工程又称为:gene manipulation, gene cloning, recombinant DNA technoglogy, genetic modification, new genetics, molecular agriculture
二、基因工程的基本过程:
1、材料的准备:目的基因、载体、工具酶和受体细胞(宿主)的准备。
用限制性内切酶分别将外源DNA和载体分子切开。
2、目的基因与载体DNA的体外重组,形成重组DNA分子。
3、重组的DNA分子引入受体细胞,并建立起无性繁殖系。
4、筛选出所需要的无性繁殖系,并保证外源基因在受体细胞中稳定遗传、正确表达。
进一步可将基本步骤概括为:切、接、转、增、检[步骤演示]
图1-1 基因工程的基本步骤
三、基因工程的基本原理:
主体战略思想是外源基因的高效表达,可从四方面达到目的:
1、利用载体DNA在受体细胞中独立于染色体DNA而自主复制的特性与载体分子重组,通过载体分子的扩增提高外源基因在受体细胞中的剂量,借此提高宏观表达水平。
2、筛选、修饰重组基因表达的转录调控元件:启动子、增强子、上游调控序列、操作子、终止子。
3、修饰和构建蛋白质生物合成的翻译调控元件:序列、密码子。
4、工程菌(微型生物反应器)的稳定生产及增殖。
第二节基因工程的发展
一、基因工程的诞生
基因工程是一项新兴的工程技术,它的诞生需要理论和技术上的支持:
1. 理论上的三大发现:
证明了生物的遗传物质是DNA(基因工程的先导)
DNA的双螺旋结构和半保留复制机理
遗传信息的传递方式(中心法则)和三联体密码子系统的建立
2. 技术上的三大发现
限制性内切酶和DNA连接酶的发现(标志着DNA重组时代的开始)
载体的使用
1970年,逆转录酶的发现。
1973年,C o h e n等获得了抗四环素和新霉素的重组菌落T c r N e r,标志着基因工程的诞生。
二、基因工程的发展:
1. 1972-1976年,日本人,somatostatin;
2. 1978年,美国人,生长激素基因(HGH);
3. 1980年,美国/瑞士人,a干扰素-基因;
4. 1984年,日本人,白细胞介素2(IL-2);
三、基因工程的腾飞:
1. 1982年,美国人,大鼠生长激素基因转入小鼠;
2. 1983年,美国人,Ti质粒导入植物细胞(细菌Neor基因)
3. 1990年,美国人,腺苷脱氨酶(ADA)基因治疗,重度联合免疫缺陷症(SDID)
4. 1991年,美国倡导,人类基因组计划109bp,15年时间30亿USD;
5. 1997年,美国人,威尔英特克隆多利绵羊
大鼠生长激素基因转入小鼠
第三节基因工程的研究意义
基因工程可以绕过远缘有性杂交的困难,使基因在微生物、植物、动物之间交流,迅速并定向的获得人类需要的新的生物类型。
概括地讲,其意义体现在以下三个方面:
大规模生产生物分子;
设计构建新物种;
搜集、分离、鉴定生物信息资源
一、第四次工业大革命:
1980年11月15日,美国纽约证券交易所开盘的20分钟内,Genentech公司的新上市股要从3.5USD上至89USD,胰岛素基因表达
1. 医学:抗病毒、抗癌因子、新型抗生素、疫苗、抗衰老保健品、心脏血管药物、生长因子诊断剂
2. 轻工食品:氨基酸、助鲜剂、甜味剂、淀粉酶、纤维素酶、脂肪酶蛋白酶、生物拆分混旋体
3. 能源:石油二次开采、纤维素分解、太阳能转换
4. 环保:微生物生态种群
5. 信息:蛋白芯片、基因芯片
日本政府称基因工程为战略工业
二、第二次农业大革命:
1. 蛋白类杀虫剂(生物农药)、抗广谱虫害植物;
2. 农作物品种改良;高营养、长保存、抗环境压力、花卉颜色与型状;
3. 畜牧业;高蛋白乳汁、鱼生长激素、饲料利用率
4. 固氮
三、第二次医学大革命:(麻醉外科术是第一次医学大革命)
1. 分子病:(文明病富贵病)基因治疗,遗传病、心脑血管病、糖尿病、癌症过度肥胖综合症、老年痴呆症、骨质疏松症
2. 抗衰老:端粒酶编码基因
基因疗法
补充突变基因原始产物、更换突变基因。