行阶梯形变换等价于矩阵乘法——LU分解
- 格式:pdf
- 大小:240.51 KB
- 文档页数:2
2矩阵代数1. 设A,B为可以相乘的矩阵,AB的每一列都是A的各列的线性组合,以B的对应列的元素为权。
同样,AB的每一行都是B的各行的线性组合,以A的对应行的元素为权。
例如,AB的第m列是以B的第m列为权的A的各列的线性组合;AB的第n行是以A的第n行为权的B的各行的线性组合。
2. 矩阵乘法恒等式:I m A = A = AI n3. 逆矩阵的概念仅对方阵有意义。
4. 若A可逆,则对每一R n中的b,方程Ax=b有唯一解x=A-1b5. 初等矩阵:将单位矩阵进行一次初等行变换所得的矩阵。
6. 对mxn矩阵A进行初等行变换所得的矩阵,等于对单位矩阵进行相同行变换所得初等矩阵与A相乘的结果。
设对单位矩阵I m进行初等行变换所得初等矩阵为E,对A进行相同初等行变换的结果可写为EA。
因为初等行变换可逆,所以必有另一行变换将E变回I。
设该“另一行变换”对应初等矩阵为F,结合上一行,F对E的作用可写为FE=I。
因此,每个初等矩阵均可逆。
7. 当n阶方阵A行等价于I n时,A可逆。
此时,将A变为I n的一系列初等行变换同时将I n变为A-1。
8. 求A-1:将增广矩阵[A I] 进行行化简,若A可逆,则[A I] ~ [I A-1]将 [A I] 行变换为[I A-1]的过程可看作解n个方程组:Ax=e1, Ax=e2, ... Ax=e n这n个方程组的“增广列”都放在A的右侧,就构成矩阵[A e1 e2 ... e n] = [A I]如果我们只需要A-1的某一列或某几列,例如需要A-1的j列,只需解方程组Ax=e j,而不需要求出整个A-1。
[注:根据此条可以导出利用克拉默法则求逆矩阵的公式]9. 可逆矩阵定理对于n阶方阵,以下命题等价:a) A可逆b) A与n阶单位矩阵等价c) A有n个主元位置d) 方程Ax=0仅有平凡解e) A各列线性无关f) 线性变换x|->Ax是一对一的g) 对R n中任意b,Ax=b至少有一个解(有且仅有唯一解?)h) A各列生成R ni) 线性变换x|->Ax将R n映上到R nj) 存在nxn阶矩阵B,使AB=BA=Ik) A T可逆l) A的列向量构成R n的一个基m) ColA=R nn) dim(Col(A))=no) rank(A)=np) Nul(A)=0q) dim(Nul(A))=0r) det(A)≠0 <=> A可逆s) A可逆当且仅当0不是A的特征值t) A可逆当且仅当A的行列式不等于零再次强调,以上命题仅对n阶方阵等价。
一:LU解法:# include<iostream>//命名空间的声明using namespace std;int i,j,k;//程序的入口点主函数int main(){//声明两个全局变量double s1=0,s2=0;//定义一个二维矩阵来存储该线性方程组的系数double A[4][4]={{2,-1,0,0},{-1,2,-1,0},{0,-1,2,-1},{0,0,-1,2}};//定义一个一维数组来存储该线性方程组的右端项double B[4]={1,0,0,1};//声明两个二维数组的长度分别是四行四列double L[4][4];double U[4][4];//利用双重for 循环使得下三角矩阵L的上三角元素以及上三角矩阵U的下三角元素都为0for( i=0;i<4;i++){for( j=i+1;j<4;j++){L[i][j]=0;U[j][i]=0;}}//利用双重for 循环将下三角矩阵L的对角线上的元素都初始化为1for( i=0;i<4;i++)for( j=0;j<4;j++)if(i==j)L[i][j]=1;//利用for 循环根据系数矩阵A 以及右端矩阵B 来计算下三角矩阵L 以及上三角矩阵U 的其他元素for( i=0;i<4;i++){for( j=i;j<4;j++)//求上三角矩阵u的第一行以及下三角矩阵l的第一列if(i==0){U[i][j]=A[i][j]/L[i][i];L[j][i]=A[j][i]/U[i][i];}//接下来再继续求u的行元素以及l的列元素else{//加入一个循环来求其中涉及到的求和式for( k=0;k<i;k++){s1+=L[i][k]*U[k][j];s2+=L[j][k]*U[k][i];}//上三角u的行元素以及下三角l的列元素U[i][j]=(A[i][j]-s1)/L[i][i];L[j][i]=(A[j][i]-s2)/U[i][i];//清空全局变量s1 s2 的值s1=s2=0;}}//最后利用for 循环分别将下三角矩阵L的所有元素全部输出for( i=0;i<4;i++){for(j=0;j<4;j++)cout<<L[i][j]<<" ";cout<<endl<<endl;}//换行语句cout<<endl<<endl;//利用for 循环将上三角矩阵U的所有元素全部输出for(i=0; i<4;i++){for(j=0;j<4;j++)cout<<U[i][j]<<" ";cout<<endl<<endl;}cout<<endl<<endl;return 0;}。
matlab的lu分解(实用版)目录1.MATLAB 的 LU 分解简介2.LU 分解的算法原理3.MATLAB 中进行 LU 分解的方法4.LU 分解的应用示例5.总结正文一、MATLAB 的 LU 分解简介LU 分解(LU Factorization)是一种常见的线性代数方法,用于将一个给定的矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积。
这种分解方法在求解线性方程组、矩阵的特征值和特征向量等问题中具有广泛的应用。
MATLAB(Matrix Laboratory)是一款强大的数学软件,提供了丰富的矩阵操作和线性代数计算功能,其中就包括 LU 分解。
二、LU 分解的算法原理LU 分解的核心思想是高斯消元法,其基本步骤如下:1.对矩阵进行初等行变换,化为行最简阶梯形矩阵。
2.对阶梯形矩阵进行高斯消元,得到一个下三角矩阵和一个上三角矩阵。
3.将下三角矩阵和上三角矩阵组合成一个 LU 分解矩阵。
三、MATLAB 中进行 LU 分解的方法在 MATLAB 中,可以使用`lu`函数进行 LU 分解。
以下是一个简单的示例:```matlab% 定义一个矩阵 AA = [1 2 3; 4 5 6; 7 8 9];% 对矩阵 A 进行 LU 分解[L, U] = lu(A);% 输出 LU 分解结果disp("LU 分解结果:");disp(L);disp(U);```四、LU 分解的应用示例LU 分解在求解线性方程组方面具有广泛的应用。
例如,给定线性方程组:```AX = B```其中 A 是系数矩阵,X 是待求解的变量向量,B 是常数项向量。
可以通过 LU 分解求解该线性方程组。
具体步骤如下:1.对系数矩阵 A 进行 LU 分解,得到分解矩阵 L 和 U。
2.计算 U 的逆矩阵 U^-1。
3.将线性方程组改写为:```LUX = B```4.求解得到:```X = U^-1B```五、总结MATLAB 的 LU 分解功能为线性代数计算提供了极大的便利,可以帮助用户轻松地解决许多实际问题。
线性方程组解法总结与应用线性方程组是数学中的基础概念,广泛应用于各个领域,如物理学、经济学、工程学等。
解决线性方程组的问题对于理解和应用这些领域的知识至关重要。
本文将总结一些常见的线性方程组解法,并探讨其在实际问题中的应用。
一、高斯消元法高斯消元法是解决线性方程组的经典方法之一。
其基本思想是通过一系列的行变换将线性方程组转化为简化的行阶梯形式,从而求解方程组的解。
高斯消元法的优势在于其简单直观的操作步骤,适用于各种规模的线性方程组。
在实际应用中,高斯消元法常用于解决矩阵方程组的问题。
例如,在电力系统中,通过电流和电压的关系可以建立一个矩阵方程组,通过高斯消元法可以求解出电流和电压的值,从而实现对电力系统的分析和控制。
二、矩阵的逆与克拉默法则矩阵的逆是另一种常见的线性方程组解法。
当线性方程组的系数矩阵可逆时,可以通过求解矩阵的逆来得到方程组的解。
这种方法在计算机科学和工程学中得到广泛应用,例如在图像处理中,通过求解逆矩阵可以实现图像的旋转、缩放和变换。
克拉默法则是一种基于行列式的线性方程组解法。
它通过计算方程组的行列式和各个未知数的行列式来求解方程组的解。
克拉默法则的优势在于其简单的计算步骤,适用于规模较小的线性方程组。
在经济学中,克拉默法则常用于求解供求模型和投资决策模型等问题。
三、矩阵分解方法矩阵分解方法是一种将线性方程组转化为矩阵乘法的解法。
常见的矩阵分解方法包括LU分解、QR分解和奇异值分解等。
这些方法通过将系数矩阵分解为两个或多个矩阵的乘积,从而简化方程组的求解过程。
LU分解是将系数矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积。
它的优势在于可以将线性方程组的求解过程分解为两个步骤,从而提高计算效率。
在计算机图形学中,LU分解常用于求解图像变换和光照模型等问题。
QR分解是将系数矩阵分解为一个正交矩阵和一个上三角矩阵的乘积。
它的优势在于可以将线性方程组的求解问题转化为最小二乘问题,从而提高求解的精度。
矩阵解方程组的方法全文共四篇示例,供读者参考第一篇示例:矩阵是线性代数中的重要概念,而矩阵解方程组也是线性代数中的基础内容之一。
在实际应用中,往往会遇到包含多个未知数和多个方程的方程组,如何通过矩阵的方法来高效地解决这些方程组成了一项重要的技能。
本文将介绍矩阵解方程组的方法,包括高斯消元法、矩阵求逆法以及克拉默法则等。
一、高斯消元法高斯消元法是解线性方程组的一种基本方法。
它的基本思想是通过对方程组进行一系列的行变换,将其转化为简化的阶梯形或行最简形,从而得到方程组的解。
下面通过一个具体的例子来说明高斯消元法的应用。
考虑如下的线性方程组:\begin{cases}2x + 3y - z = 1 \\3x + 2y + z = 3 \\x - y + 2z = 9\end{cases}首先将上述的方程组写成增广矩阵的形式:然后通过一系列的行变换,将增广矩阵转化为简化的阶梯形:\begin{bmatrix}1 & -1 &2 & | & 9 \\0 & 5 & -5 & | & -10 \\0 & 0 & 1 & | & 0\end{bmatrix}最后通过反向代入法,可以求得方程组的解为x=2, y=-2, z=0。
二、矩阵求逆法A = \begin{bmatrix}1 &2 \\2 & 1\end{bmatrix},X = \begin{bmatrix}x \\y\end{bmatrix},B = \begin{bmatrix}3 \\4\end{bmatrix}然后求解系数矩阵A 的逆矩阵A^{-1}:最后通过矩阵乘法,可以求得方程组的解为X = A^{-1}B =\begin{bmatrix}1 \\1\end{bmatrix}。
三、克拉默法则首先求解系数矩阵A 的行列式|A|:然后求解系数矩阵A 分别替换成结果矩阵B 的行列式|B_x| 和|B_y|:最后通过克拉默法则,可以求得方程组的解为x = \frac{|B_x|}{|A|} = \frac{-5}{-3} = \frac{5}{3},y = \frac{|B_y|}{|A|} = \frac{-2}{-3} = \frac{2}{3}。
矩阵LU分解求逆(学习笔记)矩阵的一种有效而广泛应用的分解方法是矩阵的LU三角分解,将一个n阶矩阵A分解为一个下三角矩阵L和一个上三角矩阵U的乘积。
所以首先对矩阵进行三角分解,这里采用Doolittle分解,即分解为一个下三角矩阵(对角元素为1),和一个上三角矩阵的乘积。
再进行相应的处理。
所以,矩阵求逆的算法流程可表述如下:1)进行LU分解;2)对分解后的L阵(下三角矩阵)和U阵(上三角矩阵)进行求逆;3)L阵的逆矩阵和U阵的逆矩阵相乘,即可求得原来矩阵的逆。
即:程序实现如下:#include<stdio.h>#include <string.h>#define N 4void main(){float a[N][N];float L[N][N],U[N][N],out[N][N], out1[N][N];float r[N][N],u[N][N];memset( a , 0 , sizeof(a)); //初始化memset( L , 0 , sizeof(L));memset( U , 0 , sizeof(U));memset( r , 0 , sizeof(r));memset( u , 0 , sizeof(u));int n=N;int k,i,j;int flag=1;float s,t;////////////////////input a matrix////printf("input A=\n");for(i=0;i<n;i++)for(j=0;j<n;j++)scanf("%f",&a[i][j]);//////////////////figure the input matrix//////////////////////////printf("输入矩阵:\n");for(i=0;i<n;i++){for (j = 0; j < n; j++){printf("%lf ", a[i][j]);}printf("\n");}for(j=0;j<n;j++)a[0][j]=a[0][j]; //计算U矩阵的第一行for(i=1;i<n;i++)a[i][0]=a[i][0]/a[0][0]; //计算L矩阵的第1列for(k=1;k<n;k++){for(j=k;j<n;j++){s=0;for (i=0;i<k;i++)s=s+a[k][i]*a[i][j]; //累加a[k][j]=a[k][j]-s; //计算U矩阵的其他元素}for(i=k+1;i<n;i++){t=0;for(j=0;j<k;j++)t=t+a[i][j]*a[j][k]; //累加a[i][k]=(a[i][k]-t)/a[k][k]; //计算L矩阵的其他元素}}for(i=0;i<n;i++)for(j=0;j<n;j++){if(i>j){L[i][j]=a[i][j];U[i][j]=0;}//如果i>j,说明行大于列,计算矩阵的下三角部分,得出L的值,U的//为0else{U[i][j]=a[i][j];if(i==j)L[i][j]=1; //否则如果i<j,说明行小于列,计算矩阵的上三角部分,得出U的//值,L的为0elseL[i][j]=0;}}if(U[1][1]*U[2][2]*U[3][3]*U[4][4]==0){flag=0;printf("\n逆矩阵不存在");}if(flag==1){/////////////////////求L和U矩阵的逆for (i=0;i<n;i++) /*求矩阵U的逆 */{u[i][i]=1/U[i][i];//对角元素的值,直接取倒数for (k=i-1;k>=0;k--){s=0;for (j=k+1;j<=i;j++)s=s+U[k][j]*u[j][i];u[k][i]=-s/U[k][k];//迭代计算,按列倒序依次得到每一个值,}}for (i=0;i<n;i++) //求矩阵L的逆{r[i][i]=1; //对角元素的值,直接取倒数,这里为1for (k=i+1;k<n;k++){for (j=i;j<=k-1;j++)r[k][i]=r[k][i]-L[k][j]*r[j][i]; //迭代计算,按列顺序依次得到每一个值}}/////////////////绘制矩阵LU分解后的L和U矩阵///////////////////////printf("\nLU分解后L矩阵:");for(i=0;i<n;i++){printf("\n");for(j=0;j<n;j++)printf(" %lf",L[i][j]);}printf("\nLU分解后U矩阵:");for(i=0;i<n;i++){printf("\n");for(j=0;j<n;j++)printf(" %lf",U[i][j]);}printf("\n");////////绘制L和U矩阵的逆矩阵printf("\nL矩阵的逆矩阵:");for(i=0;i<n;i++){printf("\n");for(j=0;j<n;j++)printf(" %lf",r[i][j]);}printf("\nU矩阵的逆矩阵:");for(i=0;i<n;i++){printf("\n");for(j=0;j<n;j++)printf(" %lf",u[i][j]);}printf("\n");//验证将L和U相乘,得到原矩阵printf("\nL矩阵和U矩阵乘积\n"); for(i=0;i<n;i++){for(j=0;j<n;j++){out[i][j]=0;}}for(i=0;i<n;i++){for(j=0;j<n;j++){for(k=0;k<n;k++){out[i][j]+=L[i][k]*U[k][j];}}}for(i=0;i<n;i++){for(j=0;j<n;j++){printf("%lf\t",out[i][j]);}printf("\r\n");}//////////将r和u相乘,得到逆矩阵printf("\n原矩阵的逆矩阵:\n");for(i=0;i<n;i++){for(j=0;j<n;j++){out1[i][j]=0;}}for(i=0;i<n;i++){for(j=0;j<n;j++){for(k=0;k<n;k++){out1[i][j]+=u[i][k]*r[k][j];}}}for(i=0;i<n;i++){for(j=0;j<n;j++){printf("%lf\t",out1[i][j]); }printf("\r\n");}}}。