桁架的内力
- 格式:ppt
- 大小:7.85 MB
- 文档页数:39
桁架内力桁架内力是指桁架结构在受到外部力作用时所承受的内部力。
桁架结构是由多根互相连接的直线构成的一种空间结构形式,常见于建筑和机械工程中,用于支撑和分担结构的载荷。
了解桁架内力对于设计和分析桁架结构的稳定性和安全性非常重要。
以下是一些相关参考内容:1. 桁架结构和内力分析基本原理桁架结构的原理是将力沿桁架的元素进行传递和分担。
在受力分析中,通过应用平衡原理和静力学等基本原理,可以推导出桁架结构中各个桁架元素所受的内力。
这些内力包括张力、压力和剪力等。
了解这些基本原理对于理解桁架内力分析的方法和原则非常重要。
2. 桁架内力的计算方法桁架内力的计算可以通过静力平衡和弹性力学原理进行。
一般来说,可以根据桁架结构的几何形状和外部荷载,采用基本的力平衡原理和弹性力学公式,推导出各个桁架元素所受的内力。
计算方法包括节点法、截面法、力法和位移法等。
这些方法在不同场景和结构要求下应用于桁架结构的内力计算和分析。
3. 桁架内力的影响因素桁架内力的大小和分布受到多个因素的影响,包括结构的几何形状、荷载情况、边界条件和材料性能等。
通过对这些因素的研究和分析,可以更好地了解和预测桁架内力的变化规律。
例如,在分析桁架结构的受力性能时,需要考虑荷载的大小、方向和分布情况,以及桁架元素的尺寸和刚度等。
4. 桁架内力的应用案例桁架内力的计算和分析在实际工程中有广泛的应用。
例如,在建筑结构设计中,桁架结构常用于大跨度的屋顶、桥梁和支撑结构中。
通过分析桁架结构的内力,可以评估其受力性能和稳定性,并确保结构的安全性。
在机械工程中,桁架结构常用于起重机、吊车和机械臂等设备中,用于承载和分担重物。
通过分析桁架内力,可以评估结构的承载能力和运动性能。
总结来说,桁架内力是桁架结构在受到外部荷载作用时所承受的内部力。
了解桁架内力对于设计和分析桁架结构的稳定性和安全性非常重要。
通过应用平衡原理和弹性力学等基本原理,可以计算出桁架内力的大小和分布。
桁架结构内力计算方法
在计算桁架结构内力时,可以采用以下步骤:
1.给定载荷:首先确定桁架结构所受到的外部载荷,包括竖向荷载、
水平荷载和斜向荷载等。
这些载荷可以通过静力学分析或者实际测量得到。
2.确定支座反力:根据结构平衡条件,计算出桁架结构支座的反力。
支座反力是由桁架结构与支座之间的约束关系决定的。
3.确定节点平衡条件:桁架结构中的每个节点都应满足平衡条件,即
节点受力平衡。
根据节点的受力平衡条件,可以得到每个节点处的力平衡
方程。
4.建立杆件的受力方程:根据构件材料的力学性质和几何形状,建立
每根杆件的受力方程。
通常使用杆件受力平衡和伸缩力平衡方程。
5.解方程求解内力:将节点平衡条件和杆件受力方程组合起来,得到
一个线性方程组。
通过求解这个方程组,可以求解出各个构件的内力大小
和方向。
在具体计算过程中,可以采用不同的计算方法来求解桁架结构的内力。
以下是几种常用的计算方法:
1.切线法:切线法是一种基于几何形状的方法,通过假设桁架结构各
个构件处于弧形变形状态,利用切线关系计算出内力。
该方法适用于相对
简单的桁架结构。
2.牛顿-拉夫逊法:牛顿-拉夫逊法是一种基于力的平衡条件的方法,
通过迭代计算桁架结构内力。
该方法适用于复杂的桁架结构。
3.力法:力法是一种基于力平衡方程和几何条件的方法,通过逐个构件计算内力。
该方法适用于任意形状的桁架结构。
以上是桁架结构内力计算的基本方法和一些常用的计算方法。
在实际应用中,还可以根据具体情况选择适合的方法进行计算。
桁架内力桁架内力是指桁架结构在承受荷载时产生的内力分布状态。
桁架结构是一种由杆件组成的空间结构,具有轻质、高刚度的特点,广泛应用于建筑、航空航天等领域。
了解桁架内力对于设计和分析桁架结构至关重要。
为了更好地理解桁架内力,我们需要了解桁架结构的基本原理和一些相关的参考内容。
1. 桁架结构的基本原理:桁架结构是由若干根杆件组成的三维结构系统,常见的有三角形、四边形、六边形等形式。
桁架结构通过杆件的刚性连接形成一个整体,使得整个结构能够承受外部荷载。
桁架结构的主要特点是杆件之间的内力分布较简单,大多数是轴力和剪力。
2. 桁架内力的分类:桁架内力可以分为轴力(拉力和压力)和剪力。
轴力是指杆件上的拉力或压力,主要由于结构受到的外部拉力或压力而产生。
剪力是指杆件上的横向力,主要由荷载和结构支座的约束而引起。
3. 桁架内力分析的基本方法:桁架内力的计算可以通过以下基本方法进行:- 方法一:平衡法。
根据平衡条件,将所有受力杆件上的力求和为零,推导出每个杆件上的轴力和剪力分布。
- 方法二:位移法。
假设结构中某个杆件的位移,通过位移和力的关系求解出杆件上的内力。
- 方法三:方法一和方法二的结合。
结合平衡条件和位移条件,求解出杆件上的内力分布。
4. 桁架内力分布的影响因素:桁架内力的分布与结构的荷载情况、支座约束以及杆件的刚度相关。
当荷载增加时,杆件上的轴力和剪力也会增加。
当支座约束变化时,杆件的内力分布也会随之改变。
此外,杆件的刚度和几何形状也会影响桁架内力的分布。
5. 桁架内力分布的分析工具:对于较复杂的桁架结构,可以使用计算机辅助设计和分析工具进行内力计算。
常用的软件包括SAP2000、AutoCAD等。
这些软件可以提供桁架结构的详细内力分布图和分析结果。
总之,桁架内力是研究桁架结构行为的重要内容之一。
通过了解桁架结构的基本原理、内力的分类和分析方法,可以更好地理解桁架内力的产生和分布,为桁架结构的设计和分析提供参考依据。
图1 屋架节点荷载的计算桁架的内力计算当桁架只受节点荷载时,其杆件内力一般按节点荷载作用下的铰接桁架计算。
这样,所有杆件都是轴心受压或轴心受拉杆件,不承受弯矩。
具体计算可用数解法(节点法或截面法)、图解法(主要是节点法)、图解法(主要是节点法)、计算机法(常用有限元位移法)等。
实际桁架节点为焊缝、铆钉或螺栓连接,具有很大的刚性,接近于刚接。
按刚接节点分析桁架时,各杆件将既受力又受弯矩。
但是,通常钢桁架中各杆件截面的高度都较小,仅为其长度的1/15(腹杆)和1/10(弦杆)以下,抗弯刚度较小;因而按刚接桁架算得的杆件弯矩M 常较小,且杆件轴心力N 也与桁架计算结果相差很小。
故一般情况都按铰接桁架计算。
对少数荷载较大的重型桁架,例如铁路桥梁等,当杆件截面高度超过其长度的1/10时,次应力份额逐渐增大,可达10~30%或以上,必要时应作计算。
目前用计算机计算刚接桁架已无困难。
据上所述,檩条或大型屋面板等集中荷载只作用在屋架节点处时,可按铰接桁架承受节点荷载计算杆件内力,例如图1。
这时节点荷载值即为檩条或边肋处的集中荷载值,按式上一小节公式,即:100011122F qA qbd d F qA qb d d d F qA qb == ==++== 来计算。
该图中檐口檩条集中荷载F 0在桁架计算时可归并入F 1内(或端节间按伸臂梁而将F 0(1+d 1/ d )并入F 1,-F 0 d 1/d 并入第二节点F );另外在计算上弦杆的支座截面时,除考虑轴心压力外还考虑偏心弯矩M e =F 0 d 1。
当檩条或屋面板等布置未与屋架节点相配合,屋面板没有边肋而是全宽度支图2 承受节间荷载的屋架 承于屋架上弦(上弦均布荷载)、或其它特殊情况时,桁架将受节间荷载,例如图1。
这时桁架内力计算可按下列近似方法:(1)把所有节间内荷载按该段节间为简支的支座反力关系分配到相邻两个节点上作为节点荷载,据此按铰接桁架计算杆件的轴心力。
5.2 《结构力学》静定桁架和组合结构的内力分析-知识点归纳总结一、桁架按几何组成特征分类(1)简单桁架:由基础或一个基本铰结三角形依次增加二元体形成;(2)联合桁架:由几个简单桁架按几何不变体系的几何组成规则形成;(3)复杂桁架:不是按简单桁架或联合桁架几何组成方式形成。
二、桁架计算的结点法1、取隔离体截取桁架结点为隔离体,作用于结点上的各力(包括外荷载、反力和杆件轴力)组成平面汇交力系,存在两个独立的平衡方程,可解出两个未知杆轴力。
采用结点法计算桁架时,一般从内力未知的杆不超过两个的结点开始依次计算。
计算时,要注意斜杆轴力与其投影分力之间的关系(图1):图1式中,为杆件长度,和分别为杆件在两个垂直方向的投影长度;为杆件轴力,和分别为轴力在两个相互垂直方向的投影分量。
结点法一般适用于求简单桁架中所有杆件轴力。
2、特殊杆件(如零杆、等力杆等)的判断L 形结点(图2a ):呈L 形汇交的两杆结点没有外荷载作用时两杆均为零杆。
T 形结点(图2b ):呈T 形汇交的三杆结点没有外荷载作用时,不共线的第三杆必为零杆,而共线的两杆内力相等且正负号相同(同为拉力或同为压力)。
X 形结点(图2c ):呈X 形汇交的四杆结点没有外荷载作用时,彼此共线的杆件轴力两两相等且符号相同。
K 形结点(图2d ):呈K 形汇交的四杆结点,其中两杆共线,而另外两杆在共线杆同侧且夹角相等。
若结点上没有外荷载作用,则不共线杆件的轴力大小相等但符号相反(即一杆为拉力另一杆为压力)。
Y 形结点(图2e ):呈Y 形汇交的三杆结点,其中两杆分别在第三杆的两侧且夹角相等。
若结点上没有与第三杆轴线方向倾斜的外荷载作用,则该两杆内力大小相等且符号相同。
对称桁架在正对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相y N x x yF F F l l l ==l x l y l N F x F y F同(同为拉杆或压杆)的轴力;在反对称荷载下,在对称轴两侧的对称位置上的杆件,应有大小相等、性质相反(一拉杆一压杆)的轴力。