(完整版)选修4-5文科数学基本不等式练习题及答案
- 格式:doc
- 大小:68.01 KB
- 文档页数:4
一、选择题1.下列结论不正确的是( ) A .若a b >,0c >,则ac bc > B .若a b >,0c >,则c c a b> C .若a b >,则a c b c +>+D .若a b >,则a c b c ->-2.若存在实数x 使得不等式2113x x a a +--≤-成立,则实数a 的取值范围为( )A .3317,22⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭B .(][) ,21,-∞-+∞C .[]1,2D .(][),12,-∞+∞3.两个正实数a ,b 满足3a ,12,b 成等差数列,则不等式2134m m a b+≥+恒成立时实数m 的取值范围是( ) A .[]4,3-B .[]2,6-C .[]6,2-D .[]3,4-4.若不等式()()2||20x a b x x ---≤对任意实数x 恒成立,则a b +=( )A .-1B .0C .1D .25.若a 、b 、R c ∈,且a b >,则下列不等式中一定成立的是( )A .11a b<B .ac bc ≥C .20c a b >-D .()20a b c -≥6.已知log e a π=,ln eb π=,2e lnc π=,则( ) A .a b c << B .b c a <<C .b a c <<D .c b a <<7.若112a b <<<,01c <<,则下列不等式不成立...的是( ) A .log log a b c c < B .log log b a a c b c < C .c c ab ba <D .c c a b <8.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b >D .若a b >, 则22ac bc >9.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y-> D .ln x +ln y >010.不等式5310x x -++≥的解集是( )A .[-5,7]B .[-4,6]C .(][),57,-∞-+∞ D .(][),46,-∞-+∞11.已知,a b ∈R ,且2a bP +=,222a b Q +=,则P ,Q 的关系是( ) A .P Q ≥B .P Q >C .P Q ≤D .P Q <12.若a b >,则下列不等式成立的是( ) A .22a b >B .11a b< C .a b >D .a b e e >二、填空题13.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 14.已知平面向量a ,b ,c 满足1a =,||1b =,()c a b a b -+≤-,则||c 的最大值为___________.15.若不等式2240x x m +--≥的解集为R ,则实数m 的取值范围是_______.16.已知函数,若关于的不等式的解集为,则实数的取值范围是_______.17.若110a b>>有下列四个不等式①33a b <;②21log 3log 3a b ++>;b a b a -④3322a b ab +>.则下列组合中全部正确的为__________ 18.关于x 的不等式12x x m +--≥恒成立,则m 的取值范围为________19.已知正实数x ,y 满足40x y xy +-=,若x y m +≥恒成立,则实数m 的取值范围为_____________.20.若函数()f x 满足:对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有函数值()()(),,f a f b f c 也是某个三角形的三边长.则称函数()f x 为保三角形函数,下面四个函数:①()()20f x x x =>;②())0f x x x =>;③()sin 02f x x x π⎛⎫=<< ⎪⎝⎭;④()cos 02f x x x π⎛⎫=<<⎪⎝⎭为保三角形函数的序号为___________.三、解答题21.已知函数()36f x x =+,()3g x x =-. (Ⅰ)求不等式()()f x g x >的解集;(Ⅱ)若()3()f x g x a +≥对于任意x ∈R 恒成立,求实数a 的最大值. 22.函数()212f x x x =-++.(1)求函数()f x 的最小值;(2)若()f x 的最小值为M ,()220,0a b M a b +=>>,求证:141213a b +≥++. 23.(1)设1≥x ,1y ≥,证明:111x y xy xy x y++≤++; (2)设1a b c ≤≤≤,证明:log log log log log log a b c b c a b c a a b c ++≤++. 24.已知()13f x x x =++-.(1)求直线8y =与函数()y f x =的图象所围图形的面积; (2)若()211f x a a ≥++-对一切实数x 成立,求a 的取值范围. 25.已知()|1||21|f x x x =+--. (1)求不等式()0f x >的解集;(2)若x ∈R ,不等式()23f x x a ≤+-恒成立,求实数a 的取值范围. 26.已知0a >,0b >,函数()|||2|f x x a x b =++-的最小值为1. (1)求2a b +的值;(2)若2a b tab +≥恒成立,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据不等式的性质,对选项逐一分析,由此得出正确选项. 【详解】对于A 选项,不等式两边乘以一个正数,不等号不改变方程,故A 正确.对于B 选项,若2,1,1a b c ===,则c ca b<,故B 选项错误.对于C 、D 选项,不等式两边同时加上或者减去同一个数,不等号方向不改变,故C 、D 正确.综上所述,本小题选B. 【点睛】本小题主要考查不等式的性质,考查特殊值法解选择题,属于基础题.2.D解析:D 【分析】由题意可转化为()2min311a a x x -≥+--,转化为求11x x +--的最小值,解不等式,求a 的取值范围. 【详解】若存在实数x 使得不等式2113x x a a +--≤-成立,可知()2min311a a x x -≥+--当1x ≤-时,11112x x x x +--=--+-=-,当11x -<<时,11112x x x x x +--=++-=,222x -<<, 当1≥x 时,11112x x x x +--=+-+=, 所以11x x +--的最小值为-2, 所以232a a -≥-,解得:2a ≥或1a ≤. 故选:D 【点睛】本题考查不等式能成立,求参数的取值范围,重点考查转化思想,计算能力,属于基础题型,本题的关键是将不等式能成立,转化为求函数的最小值.3.C解析:C 【分析】由题意利用等差数列的定义和性质求得13a b =+,再利用基本不等式求得112ab,根据题意,2412m m +,由此求得m 的范围. 【详解】 解:两个正实数a ,b 满足3a ,12,b 成等差数列, 13a b ∴=+,123ab ∴,112ab∴,∴112ab. ∴不等式2134m m a b ++恒成立,即234a b m m ab++恒成立, 即214m m ab+恒成立. 2412m m ∴+,求得62m -,故选:C . 【点睛】本题主要考查等差数列的定义和性质,不等式的恒成立问题,基本不等式的应用,属于基础题.4.D解析:D 【分析】可采用分类讨论法,分别讨论22x x -与x a b --的正负,确定,a b 之间的关系即可求解.【详解】当220x x -≥时,即[]02x ,∈时,||0x a b --≤恒成立,所以b a x b a -+≤≤+恒成立,所以2a b +≥且a b ≤; 当220x x -≤时,即(][),02,x ∈-∞+∞时,||0x a b --≥恒成立所以x a b ≥+或x a b ≤-恒成立,所以2a b +≤且a b ≥,综上,2a b += 故选:D 【点睛】本题考查一元二次不等式的解法,由含参数绝对值不等式求参数关系,分类讨论的数学思想,属于中档题5.D解析:D 【分析】利用不等式的性质证明,或者构造反例说明,即得解. 【详解】由题意可知,a 、b 、R c ∈,且a b > A .若1,2a b ==-,满足a b >,则11a b>,故本选项不正确; B .若1,2a b =-=-,满足,1a b c >=-,则ac bc <,故本选项不正确; C . 若0c,则20c a b=-,故本选项不成立;D .22,0,()0a b c a b c >≥∴-≥ 故选:D 【点睛】本题考查了利用不等式的性质,判断代数式的大小,考查了学生综合分析,转化与划归的能力,属于基础题.6.B解析:B 【分析】因为1b c +=,分别与中间量12做比较,作差法得到12b c <<,再由211log e log e 22a ππ==>,最后利用作差法比较a 、c 的大小即可.【详解】解:因为1b c +=,分别与中间量12做比较,2223111ln ln e ln 022e 2eb ππ⎛⎫-=-=< ⎪⎝⎭,432211e 1e ln ln e ln 0222c ππ⎛⎫-=-=> ⎪⎝⎭,则12b c <<,211log e log e 22a ππ==>,()112ln ln 20ln ln a c ππππ-=--=+->,所以b c a <<, 故选:B . 【点睛】 本题考查作差法比较大小,对数的运算及对数的性质的应用,属于中档题.7.B解析:B 【分析】根据幂函数和对数函数的图象和性质,结合不等式的基本性质,对各选项逐一判断即可. 【详解】 对于A :当112a b <<<,01c <<,由对数函数的单调性知,0log log a b c c <<,故A 正确; 对于B :当112a b <<<,01c <<,设函数log c y x =为减函数,则log log 0c c a b >>,所以log log 0b a c c >>,因112a b <<<,则log b a c 与log a b c 无法比较大小,故B 不正确; 对于C :当112a b <<<,01c <<,则10c -<,由指数函数的单调性知,11c c b a --<,将不等式11c c b a --<两边同乘ab ,得c c ab ba <,故C 正确;对于D :当112a b <<<,01c <<,由不等式的基本性质知,c c a b <,故D 正确. 故选: B 【点睛】本题考查了幂函数和对数函数的图象和性质,不等式的基本性质,属于基础题.8.D解析:D 【分析】根据不等式的性质、对数函数和指数函数的单调性,对选项逐一分析,由此得出正确选项. 【详解】对于A 选项,根据不等式传递性可知,A 选项命题正确.对于B 选项,由于ln y x =在定义域上为增函数,故B 选项正确.对于C 选项,由于2x y =在定义域上为增函数,故C 选项正确.对于D 选项,当0c 时,命题错误.故选D.【点睛】本小题主要考查不等式的性质,考查指数函数和对数函数的单调性,属于基础题.9.A解析:A 【分析】结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析: 对于选项A ,0x y ->,110y x x y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确; 对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.10.D解析:D 【分析】零点分段后分类讨论求解不等式的解集即可. 【详解】 分类讨论:当5x ≥时,不等式即:5310x x -++≥,解得:6x ≥; 当35x -<<时,不等式即5310x x ---≥,此时不等式无解; 当3x ≤-时,不等式即:5310x x -+--≥,解得:4x ≤-; 综上可得,不等式的解集为(][),46,-∞-⋃+∞. 本题选择D 选项. 【点睛】本题主要考查绝对值不等式的解法,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.11.C解析:C 【解析】分析:因为P 2﹣Q 2=﹣2()4a b -≤0,所以P 2≤Q 2,则P≤Q ,详解:因为a ,b ∈R ,且P=2a b +,,所以P 2=2224a b ab ++,Q 2=222a b +,则P 2﹣Q 2=2224a b ab ++﹣222a b +=2224ab a b --=﹣2()4a b -≤0, 当且仅当a=b 时取等成立,所以P 2﹣Q 2≤0,即P 2≤Q 2,所以P≤Q , 故选:C .点睛:比较大小的常用方法 (1)作差法:一般步骤:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差. (2)作商法:一般步骤:①作商;②变形;③判断商与1的大小;④结论.(3)函数的单调性法:将要比较的两个数作为一个函数的两个函数值,根据函数的单调性得出大小关系. (4)借助第三量比较法12.D解析:D 【解析】分析:根据不等式的性质,通过举例,可判定A 、B 、C 不正确,根据指数函数的性质,即可得到D 是正确的.详解:当1,2a b ==-时,满足a b >,此时2211,,a b a b a b<,所以A 、B 、C 不正确;因为函数x y e =是单调递增函数,又由a b >,所以a b e e >,故选D.点睛:本题主要考查了不等式的性质的应用和指数函数的单调性的应用,其中熟记不等式的基本性质和指数函数的单调性是解答本题的关键,着重考查了分析问题和解答问题的能力.二、填空题13.【分析】先去绝对值转化为再转化为求的最大值与最小值得到答案【详解】由得又由则则的最大值为的最小值为则故答案为:【点睛】本题考查了绝对值不等式的解法对数函数的值域的求法还考查了将恒成立问题转化为求最值 解析:()1,7-【分析】先去绝对值,转化为22log 5log 5x a x -<<+,再转化为求2log ,[4,16]y x x =∈的最大值与最小值,得到答案. 【详解】由2log 5x a -<,得22log 5log 5x a x -<<+,又由2log ,[4,16]y x x =∈, 则[2,4]y ∈,则25log x -的最大值为1-,2log 5x +的最小值为7,则17a -<<. 故答案为:()1,7- 【点睛】本题考查了绝对值不等式的解法,对数函数的值域的求法,还考查了将恒成立问题转化为求最值问题,转化与化归思想,属于中档题.14.【分析】只有不等号左边有当为定值时相当于存在的一个方向使得不等式成立适当选取使不等号左边得到最小值且这个最大值不大于右边【详解】当为定值时当且仅当与同向时取最小值此时所以因为所以所以所以当且仅当且与解析:【分析】只有不等号左边有c ,当||c 为定值时,相当于存在c 的一个方向使得不等式成立. 适当选取c 使不等号左边得到最小值,且这个最大值不大于右边. 【详解】当||c 为定值时,|()|c a b -+当且仅当c 与a b +同向时取最小值, 此时|()|||||||c a b c a b a b -+=-+-,所以||||||c a b a b ++-.因为||||1a b ==,所以2222()()2()4a b a b a b ++-=+=,所以22222(||||)()()2||||2[()()]8a b a b a b a b a b a b a b a b ++-=++-++-++-= 所以||||||22c a b a b ++-,当且仅当a b ⊥且c 与a b +同向时取等号.故答案为 【点睛】本题考察平面向量的最值问题,需要用到转化思想、基本不等式等,综合性很强,属于中档题.15.【分析】构造函数得出函数表示为分段函数的形式并求出函数的最小值可得出实数的取值范围【详解】构造函数由题意得当时当且仅当时等号成立;当时此时函数单调递增则所以函数的最小值为因此故答案为【点睛】本题考查 解析:3m ≤【分析】构造函数()224f x x x =+-,得出()min m f x ≤,函数()y f x =表示为分段函数的形式,并求出函数()y f x =的最小值,可得出实数m 的取值范围. 【详解】构造函数()224f x x x =+-,由题意得()min m f x ≤.当2x ≤时,()()2224133f x x x x =-+=-+≥,当且仅当1x =时,等号成立; 当2x >时,()()222415f x x x x =+-=+-,此时,函数()y f x =单调递增,则()()24f x f >=.所以,函数()y f x =的最小值为()min 3f x =,因此,3m ≤,故答案为3m ≤. 【点睛】本题考查不等式恒成立问题,考查参变量分离与分类讨论思想,对于这类问题,一般转化为最值来求解,考查化归与转化思想,考查运算求解能力,属于中等题.16.【解析】试题分析:由题意得对任意总成立即对任意总成立而当且仅当时取=则实数的取值范围是考点:基本不等式求最值 解析:()2,π-+∞【解析】试题分析:由题意得()=()f x x a x π-<对任意0x <总成立,即a x xπ>+对任意0x <总成立,而2x xππ+≤-,当且仅当x π=-时取“=”,则实数的取值范围是()2,π-+∞考点:基本不等式求最值17.①③【分析】由条件可知利用作差或是不等式的性质或是代特殊值判断不等式是否正确【详解】则正确故①正确;但不确定和的大小关系所以的正负不确定故②不正确;即故③正确;当时当时故④不正确;故答案为:①③【点解析:①③ 【分析】由条件可知0b a >>,利用作差,或是不等式的性质,或是代特殊值,判断不等式是否正确. 【详解】1100a b a b>>⇒<<,则33a b <正确,故①正确;()()()()()()33213333log 1log 211log 3log 3log 2log 1log 2log 1a b b a a b a b +++-+-=-=++++,()()33log 20,log 10a b +>+>,但不确定1b +和2a +的大小关系,所以()()33log 1log 2b a +-+的正负不确定,故②不正确;0b a >>,0>,(()22b a b a -=+---,20a =-=<<③正确; 当1,2a b ==时,33220a b ab +-> 当2,3a b ==时,33220a b ab +-<,故④不正确;故答案为:①③【点睛】方法点睛:1.利用不等式的性质判断,把要判断的结论和不等式的性质联系起来考虑,先找到与结论相近的性质,再判断.2.作差(或作商)比较法,先作差(商),变形整理,判断符号(或与1比较),最后判断大小;3.特殊值验证的方法,运用赋值法排除选项.18.【分析】由题意得由绝对值三角不等式求出函数的最小值从而可求出实数的取值范围【详解】由题意得由绝对值三角不等式得因此实数的取值范围是故答案为【点睛】本题考查不等式恒成立问题同时也考查了利用绝对值三角不 解析:(],3-∞-【分析】 由题意得()min 12m x x ≤+--,由绝对值三角不等式求出函数12y x x =+--的最小值,从而可求出实数m 的取值范围.【详解】 由题意得()min 12m x x ≤+--, 由绝对值三角不等式得()()12123x x x x +--≥-+--=-,3m ∴≤-, 因此,实数m 的取值范围是(],3-∞-,故答案为(],3-∞-.【点睛】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.19.【分析】由等式x+4y ﹣xy =0变形得将代数式x+y 与代数式相乘并展开利用基本不等式可求出x+y 的最小值从而可求出m 的取值范围【详解】由于x+4y ﹣xy =0即x+4y =xy 等式两边同时除以xy 得由基解析:9m ≤【分析】由等式x +4y ﹣xy =0,变形得411x y +=,将代数式x +y 与代数式41x y+相乘并展开,利用基本不等式可求出x +y 的最小值,从而可求出m 的取值范围.【详解】由于x +4y ﹣xy =0,即x +4y =xy ,等式两边同时除以xy 得,411x y+=,由基本不等式可得()414559y x x y x y x y x y ⎛⎫+=++=++≥=⎪⎝⎭, 当且仅当4y x x y=,即当x =2y=6时,等号成立, 所以,x +y 的最小值为9.因此,m ≤9.故答案为m ≤9.【点睛】本题考查基本不等式及其应用,解决本题的关键在于对代数式进行合理配凑,考查计算能力与变形能力,属于中等题.20.②③【分析】欲判断函数是不是保三角形函数只需要任给三角形设它的三边长分别为则不妨设判断是否满足任意两数之和大于第三个数即任意两边之和大于第三边即可【详解】任给三角形设它的三边长分别为则不妨设①可作为 解析:②③【分析】欲判断函数()f x 是不是保三角形函数,只需要任给三角形,设它的三边长分别为a b c ,,,则a b c +>,不妨设a c ≤,b c ≤,判断()()()f a f b f c ,,是否满足任意两数之和大于第三个数,即任意两边之和大于第三边即可【详解】任给三角形,设它的三边长分别为a b c ,,,则a b c +>,不妨设a c ≤,b c ≤,①()()20f x x x =>,335,,可作为一个三角形的三边长,但222335+<,则不存在三角形以222335,,为三边长,故此函数不是保三角形函数②())0f x x =>,b c a +>>>())0f x x =>是保三角形函数 ③()02f x sinx x π⎛⎫=<< ⎪⎝⎭,02a b c π>+>>,()()()sin sin sin f a f b a b c f c +=+>=()02f x sinx x π⎛⎫∴=<< ⎪⎝⎭是保三角形函数 ④()02f x cosx x π⎛⎫=<< ⎪⎝⎭,当512a b π==,12c π=时,55 121212cos cos cos πππ+<,故此函数不是保三角形函数综上所述,为保三角形函数的是②③【点睛】要想判断()f x 是保三角形函数,要经过严密的论证说明()f x 满足保三角形函数的概念,但要判断()f x 不是保三角形函数,仅需要举出一个反例即可三、解答题21.(Ⅰ)93,,24⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭;(Ⅱ)15. 【分析】(1)两边平方,再利用一元二次不等式的解法即可求出不等式的解集;(2)转化为min (3633)x x a ++-≥对于任意x ∈R 恒成立,利用绝对值三角不等式求出min (3633)15x x ++-=,进而可得答案.【详解】(Ⅰ)由()()f x g x >,得363x x +>-,平方得()()22363x x +>-, 得2842270x x ++>,即()()29430x x ++>,解得92x <-或34x >-. 故不等式()()f x g x >的解集是93,,24⎛⎫⎛⎫-∞-⋃-+∞ ⎪ ⎪⎝⎭⎝⎭. (Ⅱ)若()()3f x g x a +≥恒成立,即3639x x a ++-≥恒成立. 只需min (3633)x x a ++-≥即可. 而()3639363915x x x x ++-≥+--=,所以15a ≤故实数a 的最大值为15.【点睛】不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在y g x 上方即可);③ ()min 0f x ≥或()max 0f x ≤恒成立22.(1)52;(2)证明见解析. 【分析】 (1)采用零点分段的方法将定义域分为三段:(],2-∞-、12,2⎛⎫- ⎪⎝⎭、1,2⎡⎫+∞⎪⎢⎣⎭,由此求解出每一段定义域对应的()f x 的值域,由此确定出()f x 的最小值;(2)由(1)确定出M 的值,采用常数代换的方法将14213a b +++变形并利用基本不等式完成证明.【详解】解:(1)()31,212123,22131,2x x f x x x x x x x ⎧⎪--≤-⎪⎪=-++=-+-<<⎨⎪⎪+≥⎪⎩, 当2x -≤时,()5f x ≥; 当122x -<<时,()552f x <<; 当12x ≥时,()52f x ≥. 所以()f x 的最小值为52. (2)由(1)知52M =,即25a b +=, 又因为0a >,0b >, 所以()()141142132139213a b a b a b ⎛⎫+=++++⎡⎤ ⎪⎣⎦++++⎝⎭ ()4211359213a b a b +⎛⎫+=++ ⎪++⎝⎭1519⎛ ≥+= ⎝ 当且仅当()253221a b b a +=⎧⎨+=+⎩,即1a =,3b =时,等号成立, 所以141231a b +≥++. 【点睛】本题考查绝对值函数的最值以及运用基本不等式证明不等式,难度一般.(1)求解双绝对值函数的最值常用的方法:零点分段法、图象法、几何意义法;(2)利用基本不等式完成证明或者求解最值时,要注意说明取等号的条件.23.(1)证明见详解;(2)证明见详解.【分析】(1)根据题意,首先对原不等式进行变形,()()21xy x y x y xy ++≤++,再做差,通过变形、整理化简,利用已知条件判断可得结论,从而不等式得到证明;(2)首先换元,设log ,log a b b x c y ==,利用换底公式转化为关于,x y 的式子,即为111x y xy xy x y++≤++,借助(1)的结论,可得证明. 【详解】证明:(1)由于1≥x ,1y ≥, 则111x y xy xy x y++≤++()()21xy x y x y xy ⇔++≤++, 将上式中的右边式子减左边式子得:()()21x y xy xy x y ⎡⎤++-++⎡⎤⎣⎦⎣⎦ ()()()()111xy xy x y xy =+--+-()()11xy xy x y =---+()()()111xy x y =---,又由1≥x ,1y ≥,则1xy ≥;即()()()1110xy x y ---≥,从而不等式得到证明.(2)设log ,log a b b x c y ==,则1,1x y ≥≥, 由换底公式可得:111log ,log ,log ,log b c a c a b c xy a x y xy====, 于是要证明的不等式可转化为111x y xy xy x y ++≤++, 其中log 1,log 1a b b x c y =≥=≥,由(1)的结论可得,要证明的不等式成立.【点睛】本题主要考查了不等式的证明,要掌握不等式证明常见的方法,如做差法、放缩法;其次注意(2)证明在变形后用到(1)的结论.属于中档题.24.(1)24;(2)4433a -≤≤. 【分析】(1)利用零点分段法将()f x 表示为分段函数的形式,由此画出直线8y =与函数()y f x =的图象.根据等腰梯形面积公式求得所围图形的面积.(2)先求得()f x 的最小值,由此得到4211a a ≥++-,由零点分段法进行分类讨论,由此求得a 的取值范围.【详解】(1)因为()22,14,1322,3x x f x x x x -+≤-⎧⎪=-<≤⎨⎪->⎩,如图所示:直线8y =与函数()y f x =的图象所围图形是一个等腰梯形,令228x -+=,得3x =-;令228x -=,得5x =, 所以等腰梯形的面积()1484242S =⨯+⨯=. (2)要使()211f x a a ≥++-对一切实数x 成立,只须()min 211f x a a ≥++-,而()13134f x x x x x =++-≥+-+=,所以()min 4f x =,故4211a a ≥++-.①由122114a a a ⎧<-⎪⎨⎪---+≤⎩,得4132a -≤<-; ②由1122114a a a ⎧-≤≤⎪⎨⎪+-+≤⎩,得112a -≤≤; ③由12114a a a >⎧⎨++-≤⎩,得413a <≤, 故4433a -≤≤.【点睛】本小题主要考查含有绝对值的不等式的解法,考查不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于中档题.25.(1)(0,2);(2)[2,)+∞【分析】(1)把()|1||21|f x x x =+--分段表示,后解不等式(2)不等式()23f x x a ≤+-恒成立等价于()23f x x a -≤-恒成立,则max 23[()]a f x x -≥-,2,11()()2,12122,2x g x f x x x x x x ⎧⎪-<-⎪⎪=-=-≤≤⎨⎪⎪->⎪⎩,求其最大值即可. 【详解】解:(1)2,11()1213,1212,2x x f x x x x x x x ⎧⎪-<-⎪⎪=+--=-≤≤⎨⎪⎪->⎪⎩当1x <-时,由20x ->得2x >,即解集为∅, 当112x ≤≤-时,由30x >得0x >,解集为1(0]2,, 当12x >时,由20x ->得2x <,解集为1,22⎛⎫ ⎪⎝⎭, 综上所述,()0f x >的解集为(0,2)(2)不等式()23f x x a ≤+-恒成立等价于()23f x x a -≤-恒成立,则max 23[()]a f x x -≥-, 令2,11()()2,12122,2x g x f x x x x x x ⎧⎪-<-⎪⎪=-=-≤≤⎨⎪⎪->⎪⎩, 则max 1()12g x g ⎛⎫==⎪⎝⎭,即2312a a -≥⇒≥ 所以实数a 的取值范围是[2,)+∞ 【点睛】考查含两个绝对值号的不等式解法以及不等式恒成立求参数的范围,中档题. 26.(1)22a b +=(2)92t ≤【分析】(1)用分段函数表示()f x ,分析单调性,得到min ()122b b f x f a ⎛⎫==+= ⎪⎝⎭,即得解(2)原式转化为2a b t ab+≤,结合22a b +=,252a b a b ab b a +=++利用均值不等式即得解【详解】 (1)令0x a +=得x a =-,令20x b -=得2b x =, ∵0a >0b >,∴2b a -<, 则3,(),23,2x a b x a b f x x a b a x b x a b x ⎧⎪--+≤-⎪⎪=-++-<<⎨⎪⎪+-≥⎪⎩, ∴()f x 在,2b ⎛⎤-∞ ⎥⎝⎦上单调递减,在,2b ⎛⎫+∞ ⎪⎝⎭上单调递增, ∴min ()122b b f x f a ⎛⎫==+= ⎪⎝⎭,22a b +=; (2)∵2a b tab +≥恒成立,∴2a b t ab +≤恒成立, ∵22a b +=,∴112a b +=, ∴1212255922222a b a b a b a b ab b a b a b a +++=+=+=++≥+=,(当且仅当a b =时取等号) ∴2a b ab +的最小值为92, ∴92t ≤. 【点睛】 本题考查了绝对值函数的最值问题和均值不等式的应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题。
一、选择题1.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b ++<<<++ C .b b m a a n a a m b b n++<<<++ D .b a a n b m a b b n a m++<<<++ 2.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞ B .(0,)+∞ C .[0,)+∞ D .(1,)+∞3.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+4.已知x ,y ∈R ,且0x y >>,则( ) A .11x y> B .11()()22xy<C .1122x y <D .sin sin x y >5.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( ) A .若a >b ,c >b ,则a >c B .若a >-b ,则c -a <c +b C .若a >b ,则ac 2>bc 2 D .若a >b ,c >d ,则ac >bd 6.下列命题中错误..的是( ) A .若,a b b c >>,则a c > B .若0a b >>,则ln ln b a < C .若a b >,则22a b > D .若a b >, 则22ac bc > 7.若a >b ,c 为实数,下列不等式成立是()A .ac >bcB .ac <bcC . 22ac bc >D . 22ac bc8.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y->D .ln x +ln y >09.不等式536x x -++≥的解集是 ( ) A .[]5,7- B .(),-∞+∞C .()(),57,-∞-+∞ D .[]4,6-10.已知a ,b R ∈,且a b >,则下列不等式恒成立的是( )A .22a b >B .lg()0a b ->C .11()()22ab<D .1a b> 11.若,则下列结论不正确的是A .B .C .D .12.实数,a b 满足0a b >>,则下列不等式成立的是( ) A .1a b< B .1133a b<C a b a b <-.2a ab <二、填空题13.已知实数a ,b ,c 满足a >c ﹣2且1333abc++<,则333a bc-的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接) 17.已知ln ln x y <,则21x y y x-++的最小值为___________________. 18.设5x >,45P x x --23Q x x --,则P 与Q 的大小关系是P ______Q .19.设()f x x a x =-+,且|()|2f x ≤在[1,1]x ∈-上恒成立,则实数a 的取值范围为_________.20.定义运算x ·y ,,1,,x x y m y x y ≤⎧=-⎨>⎩若·m=|m-1|,则m 的取值范围是_____. 三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围. 22.(1)解不等式:1|1||2|2x x --->; (2)设集合P 表示不等式121x x a -+->对任意x ∈R 恒成立的a 的集合,求集合P ; (3)设关于x 的不等式22||200ax x a +--<的解集为A ,试探究是否存在a ∈N ,使得不等式.220x x +-<与|212x x -<+的解都属于A ,若不存在,说明理由.若存在,请求出满足条件的a 的所有值.23.(1)已知a <b <c ,且a +b +c =0,证明:a a a cb c--<. (224.已知数列{}n a 满足:12a =,1122n n n a a ++=+,*n N ∈.(1)求证2n n a ⎧⎫⎨⎬⎩⎭是等差数列并求n a ; (2)求数列{}n a 的前n 项和n S ; (3)求证:2132431111112n n a a a a a a a a ++++⋅⋅⋅+<----. 25.比较log (1) n n +与()*(1)log (2),2n n n N n ++∈≥大小,并证明.26.(1)若0a >,0b >,求证:11()4a b a b ⎛⎫++≥ ⎪⎝⎭; (2【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a m b b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>,所以()()0-<+b a m a a m ,所以b b m a a m+<+, ()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()0+-+-+<++b a b a b a n m a m b n ,所以++<++b m a na mb n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n ,所以()()0-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。
一、选择题1.已知函数()()1,f x ax b a b R x =++∈,当1,22x ⎡∈⎤⎢⎥⎣⎦时,设()f x 的最大值为(),M a b ,则(),M a b 的最小值为( )A .18B .14C .12D .12.下列命题中,正确的是( ) A .若a b >,c d >,则a c > B .若ac bc >,则a b > C .若22a b c c<,则a b < D .若a b >,c d >,则ac bd >3.已知0.3log 6a =,2log 6b =,则( ) A .22b a b a ab ->+> B .22b a ab b a ->>+ C .22b a b a ab +>->D .22ab b a b a >->+4.设不等式3412x x a +->-对所有的[1,2]x ∈均成立,则实数a 的取值范围是( )A .15a <-或47a >B .15a <-C .47a >或01a <<D .15a <-或1064a <<5.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( ) A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤6.已知1a >,实数,x y 满足x y a a >,则下列不等式一定成立的是( ) A .11x y x y+>+ B .()()22ln 1ln 1x y +>+C .sin sin x y >D .33x y >7.若正实数x ,y 满足x y >,则有下列结论:①2xy y <;②22x y >;③1x y>;④11x x y<-.其中正确结论的个数为( ) A .1 B .2C .3D .48.已知x ,y ∈R ,且x >y >0,则( ) A .11x y x y->- B .cos cos 0x y -< C .110x y-> D .ln x +ln y >09.若()0,2x π∈,则不等式sin sin x x x x +<+的解集为( )A .()0,πB .5,44ππ⎛⎫⎪⎝⎭C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ10.设实数0,0a b c >>>,则下列不等式一定正确....的是( ) A .01ab<< B .a b c c > C .0ac bc -<D .ln0ab> 11.已知实数,a b ,且a b >,则以下不等式恒成立的是( ) A .33a b >B .22a b >C .1133ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .11a b< 12.若0a b >>,则( )A .11a b>B .22log log a b <C .22a b <D .1122ab⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭二、填空题13.若不等式2240x x m +--≥的解集为R ,则实数m 的取值范围是_______.14.已知不等式116a x y x y+≥+对任意正实数,x y 恒成立,则正实数a 的最小值为_______. 15.已知R a ∈,若关于x 的方程2210x x a a -+++=有实根,则a 的取值范围是__________.16.已知,,a b c R +∈,设a b c S b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接)17.对任意实数x ,不等式|1|||1x x a a ++-≥-+恒成立,则实数a 的取值范围是___________. 18.若函数()()01af x ax a x =+>-在()1,+∞上的最小值为15,则函数()1g x x a x =++-的最小值为___.19.若关于x 的不等式||(,)x a b a b R +<∈的解集为{|35}x x <<,则a b -=________. 20.关于x 的不等式12x x m +--≥恒成立,则m 的取值范围为________三、解答题21.解不等式:122x x -+-≤. 22.已知函数()|1|2|3|f x x x =--+. (1)求不等式()1f x <的解集;(2)若存在实数x ,使得不等式23()0m m f x --<成立,求实数m 的取值范围.23.已知1a ≠且a R ∈,试比较11a-与1a +的大小. 24.求下列关于x 的不等式的解集 (1)|21|3x x +>-; (2)2|5|5x x -.25.已知()13f x x x =++-.(1)求直线8y =与函数()y f x =的图象所围图形的面积; (2)若()211f x a a ≥++-对一切实数x 成立,求a 的取值范围. 26.(1)解不等式239x x -++≥; (2)若1a <,1b <,求证:1ab a b +>+.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】 考虑12x =,1,2的函数值的范围,运用绝对值不等式的性质,即可得到所求最小值. 【详解】 函数()()1,f x ax b a b R x=++∈,当1[2x ∈,2]时,()f x 的最大值为(,)M a b ,可得1(,)(2)|2|2M a b f a b ≥=++,11(,)()|2|22M a b f a b ≥=++,(,)(1)|1|M a b f a b ≥=++,可得1(3M a ,2)(3b M a +,)(b M a +,211124)1336333b a b a b a b ≥++++++++211124113363332a b a b a b ≥+++++---=, 即()12,2M a b ≥,即有()1,4M a b ≥,则(,)M a b 的最小值为14, 故选:B 【点睛】关键点睛:解答本题的关键是理解到最大值的含义,熟练掌握绝对值的三角不等式.2.C解析:C 【分析】利用不等式的基本性质进行逐项判断即可,不成立的举反例. 【详解】对于选项A:若2,3,1,2a b c d =-=-==-,满足a b >,c d >,但是a c >不成立,故选项A 错误;对于选项B :若1,3,2c a b =-=-=-,满足ac bc >,但a b >不成立,故选项B 错误; 对于选项C :因为22a b c c<,整理化简可得20a bc -<,因为20c >,所以0a b -<,即a b <成立,故选项C 正确;对于选项D:若1, 1.1,2a b c d ==-=-=-,满足a b >,c d >,但是ac bd >不成立,故选项D 错误; 【点睛】本题考查不等式与不等关系;不等式的基本性质的灵活运用是求解本题的关键;属于中档题、常考题型.3.A解析:A 【分析】容易判断出0a <,0b >,从而得出0ab <,并可得出 1221b a b aba++=<,从而得出2b a ab +>,并容易得出22b a b a ->+,从而得出结论. 【详解】因为0.3log 60a =<,2log 60b =>,所以0ab <,因为666612log 0.32log 2log 1.2log 61a b+=+⨯=<=,即21b aab +<, 又0ab <,所以2b a ab +>,又(2)(2)40b a b a a --+=->,所以22b a b a ->+,所以22b a b a ab ->+>, 故选:A. 【点睛】本题主要考查对数的换底公式,对数函数的单调性,增函数和减函数的定义,以及不等式的性质,属于中档题.4.A解析:A 【分析】根据不等式3412x x a +->-对所有的[1,2]x ∈均成立,取2x =时,可得2431a ->,解得15a <-或47a >,利用换元法把不等式换为281t a t ->-,分47a >和15a <-两种情况讨论2()81h t t t =+-的最大值即可求得实数a 的取值范围. 【详解】解:因为不等式3412x x a +->-对所有的[1,2]x ∈均成立,当2x =时,312x +-有最大值31,不等式显然要成立,即2431a ->,解得15a <-或47a >,当[1,2]x ∈时,令2[2,4]x t =∈, 则24[4,16]x t =∈,328[16,32]x t +=∈,所以3412x x a +->-等价于281t a t ->-,①当47a >时,即281a t t ->-在[2,4]t ∈恒成立, 即281()a t t h t >+-=,即求2()81h t t t =+-的最大值,max ()(4)47h t h ==,所以47a >; ②当15a <-时,281t a t ->-在[2,4]t ∈恒成立, 即281()a t t f t <-+=,即求2()81f t t t =-+的最小值,min ()(4)15f t f ==-; 综上:15a <-或47a >. 故选:A 【点睛】本题考查利用二次函数的最值求绝对值不等式中的参数问题,利用换元法是关键,属于中档题.5.A解析:A 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.6.D【分析】根据指数函数的单调性,得到x y >,再利用不等式的性质,以及特殊值法,即可求解. 【详解】根据指数函数的单调性,由1a >且x y a a >,可得x y >, 对于A 中,由111()()(1)x y x y x y x y x y xy xy-+--=--=--,此时不能确定符号,所以不正确;对于B 中,当x 1,y 2==-时,2211x y +<+,此时()()22ln 1ln 1x y +<+,所以不正确;对于C 中,例如:当2,32x y ππ==时,此时sin sin x y <,所以不正确; 对于D 中,由33222213()()()[()]024x y x y x xy y x y x y y -=-++=--+>,所以33x y >,所以是正确的.故选D . 【点睛】本题主要考查了指数函数的单调性,以及不等式的性质的应用,其中解答中合理利用特殊值法判定是解答的关键,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】根据不等式的基本性质,逐项推理判断,即可求解,得到答案. 【详解】由题意,正实数,x y 是正数,且x y >, ①中,可得2xy y >,所以2xy y <是错误的; ②中,由x y >,可得22x y >是正确的; ③中,根据实数的性质,可得1xy>是正确的; ④中,因为0x x y >->,所以11x x y<-是正确的, 故选C. 【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.8.A解析:A结合选项逐个分析,可选出答案. 【详解】结合x ,y ∈R ,且x >y >0,对选项逐个分析:对于选项A ,0x y ->,110y xx y xy--=<,故A 正确; 对于选项B ,取2πx =,3π2y =,则3cos cos cos 2cos 1002x y -=π-π=->,故B 不正确; 对于选项C ,110y xx y xy--=<,故C 错误; 对于选项D ,ln ln ln x y xy +=,当1xy <时,ln 0xy <,故D 不正确. 故选A. 【点睛】本题考查了不等式的性质,属于基础题.9.D解析:D 【分析】由绝对值三角不等式的性质得出sin 0x x <,由02x π<<,得出sin 0x <,借助正弦函数图象可得出答案. 【详解】因为sin sin x x x x +<+成立,所以sin 0x x <, 又(0,2)x π∈,所以sin 0x <,(,2)x ππ∈,故选D . 【点睛】本题考查绝对值三角不等式的应用,再利用绝对值不等式时,需要注意等号成立的条件,属于基础题.10.D解析:D 【分析】对4个选项分别进行判断,即可得出结论. 【详解】 解:由于a >b >0,1ab>,A 错; 当0<c <1时,c a <c b ;当c =1时,c a =c b ;当c >1时,c a >c b ,故c a >c b 不一定正确,B 错;a >b >0,c >0,故ac ﹣bc >0,C 错.lnln10ab>= ,D 对;【点睛】本题考查不等式的性质,考查学生分析解决问题的能力,属于中档题.11.A解析:A 【解析】 【分析】根据幂函数的单调性判断A ;令1a =,1b =-判断,B D ,根据指数函数的单调性判断C .【详解】因为()3f x x =是增函数,所以由b a >可得33b a >,选项A 正确;当1a =,1b =-时,22a b >不成立,选项B 错误;因为1y ()3x =是减函数,由a b >可得11()()33a b<,选项C 错误,1a =,1b =-时,11a b<不成立,选项D 错误,故选A . 【点睛】本题主要考查不等关系与不等式的性质,属于中档题.利用条件判断不等式是否成立主要从以下几个方面着手:(1)利用不等式的性质直接判断;(2)利用函数式的单调性判断;(3)利用特殊值判断.12.D解析:D 【解析】分析:对每一个选项逐一判断得解. 详解:对于选项A,11110,b a a b ab a b--=<∴<,所以选项A 错误. 对于选项B,因为0a b >>,对数函数2log y x =是增函数,所以22log log a b >,所以选项B 错误.对于选项C,2222()()0,a b a b a b a b -=+->∴>,所以选项C 错误.对于选项D, 因为0a b >>,指数函数1()2x y =是减函数,所以 1122a b⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,所以选项D 正确. 故答案为D.点睛:(1)本题主要考查不等式的性质和函数的性质,意在考查学生对这些知识的掌握水平.(2)比较实数的大小,一般利用作差法和作商法,本题利用的是作差法,注意函数的图像和性质的灵活运用.二、填空题13.【分析】构造函数得出函数表示为分段函数的形式并求出函数的最小值可得出实数的取值范围【详解】构造函数由题意得当时当且仅当时等号成立;当时此时函数单调递增则所以函数的最小值为因此故答案为【点睛】本题考查 解析:3m ≤【分析】构造函数()224f x x x =+-,得出()min m f x ≤,函数()y f x =表示为分段函数的形式,并求出函数()y f x =的最小值,可得出实数m 的取值范围. 【详解】构造函数()224f x x x =+-,由题意得()min m f x ≤.当2x ≤时,()()2224133f x x x x =-+=-+≥,当且仅当1x =时,等号成立; 当2x >时,()()222415f x x x x =+-=+-,此时,函数()y f x =单调递增,则()()24f x f >=.所以,函数()y f x =的最小值为()min 3f x =,因此,3m ≤,故答案为3m ≤. 【点睛】本题考查不等式恒成立问题,考查参变量分离与分类讨论思想,对于这类问题,一般转化为最值来求解,考查化归与转化思想,考查运算求解能力,属于中等题.14.【解析】试题分析:由题设知对于任意正实数xy 恒成立所以1+a+≥16由此能求出正实数a 的最小值【解答】解:∵不等式对任意正实数xy 恒成立∴对于任意正实数xy 恒成立∵∴1+a+≥16即又a >0从而故答解析:【解析】试题分析:由题设知()min 116a x y x y ⎛⎫++≥⎪⎝⎭对于任意正实数x ,y 恒成立,所以,由此能求出正实数a 的最小值.【解答】解:∵不等式116a x y x y+≥+对任意正实数x ,y 恒成立, ∴()min116a x y x y ⎛⎫++≥⎪⎝⎭ 对于任意正实数x ,y 恒成立 ∵()111a y ax x y a a x y x y ⎛⎫++=+++≥++ ⎪⎝⎭∴即)530≥ ,又a >0,min 3,9.a ≥=故答案为9点睛::本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于中档题.解决二元的范围或者最值问题,常用的方法有:不等式的应用,二元化一元的应用,线性规划的应用,等.15.【解析】试题分析:由已知得即所以故答案为考点:不等式选讲 解析:【解析】试题分析:由已知得,2(2)4(1)0a a ∆=--++≥,即11a a ++≤,所以2111,10a a a a +≤++≤-≤≤,故答案为[1,0]-.考点:不等式选讲.16.【解析】因为所以与1的大小关系是故答案为 解析:1S >【解析】因为,,a b c R +∈,所以1a b c a b c S b c a c a b a b c a b c a b c=++>++=+++++++++,S 与1的大小关系是1S > ,故答案为1S >.17.【分析】结合绝对值三角不等式得即求即可【详解】由绝对值三角不等式得即恒成立当时去绝对值得解得故;当时此时无解综上所述故答案为:【点睛】关键点睛:本题考查由绝对值不等式恒成立求参数取值范围绝对值三角不 解析:0a ≥【分析】结合绝对值三角不等式得|1|||1x x a a ++-≥+,即求11a a +≥-+即可 【详解】由绝对值三角不等式得()()|1|||11x x a x x a a ++-≥+--=+,即11a a +≥-+恒成立,当1a ≥-时,去绝对值得11a a +≥-+,解得0a ≥,故0a ≥;当1a <-时,11a a --≥-+,此时无解,综上所述,0a ≥ 故答案为:0a ≥ 【点睛】关键点睛:本题考查由绝对值不等式恒成立求参数取值范围,绝对值三角不等式的使用,应掌握以下公式:a b a b a b +≥±≥-,使用绝对值三角不等式的目的在于,消去无关变量,如本题中的x .18.6【分析】首先利用基本不等式求函数的最小值解得的值再根据含绝对值三角不等式求函数的最小值【详解】当且仅当时即时取等号此时满足所以函数的最小值是6故答案为:6【点睛】方法点睛:本题考查基本不等式求最值解析:6【分析】首先利用基本不等式求函数的最小值,解得a 的值,再根据含绝对值三角不等式求函数()g x 的最小值.【详解】()11131f x a x a a x ⎛⎛⎫=-++≥= ⎪ -⎝⎭⎝, 当且仅当111x x -=-时,即2x =时取等号, 此时满足3155a a =⇒=,()()()51516g x x x x x =++-≥+--=,所以函数()g x 的最小值是6.故答案为:6【点睛】方法点睛:本题考查基本不等式求最值以及含绝对值不等式求最值,其中基本不等式求最值需注意一下几点:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方19.【分析】利用绝对值的性质解不等式后与已知比较可求得【详解】由得即所以解得所以故答案为:【点睛】本题考查解绝对值不等式掌握绝对值的性质是解题关键 解析:5-【分析】利用绝对值的性质x a a x a <⇔-<<解不等式后与已知比较可求得,a b .【详解】由||x a b +<得b x a b -<+<,即a b x a b --<<-+,所以35a b a b --=⎧⎨-+=⎩,解得41a b =-⎧⎨=⎩,所以5a b -=-. 故答案为:5-.【点睛】本题考查解绝对值不等式,掌握绝对值的性质是解题关键.20.【分析】由题意得由绝对值三角不等式求出函数的最小值从而可求出实数的取值范围【详解】由题意得由绝对值三角不等式得因此实数的取值范围是故答案为【点睛】本题考查不等式恒成立问题同时也考查了利用绝对值三角不解析:(],3-∞-【分析】 由题意得()min 12m x x ≤+--,由绝对值三角不等式求出函数12y x x =+--的最小值,从而可求出实数m 的取值范围.【详解】 由题意得()min 12m x x ≤+--, 由绝对值三角不等式得()()12123x x x x +--≥-+--=-,3m ∴≤-, 因此,实数m 的取值范围是(],3-∞-,故答案为(],3-∞-.【点睛】本题考查不等式恒成立问题,同时也考查了利用绝对值三角不等式求最值,解题时要结合题中条件转化为函数的最值来求解,考查化归与转化数学思想,属于中等题.三、解答题21.15,22⎛⎫ ⎪⎝⎭【分析】按1,2x x --的零点分区间,分类讨论转化为解一元一次不等式即可.【详解】当1x ≤时,122x x -+-<,解得1>2x ,所以112x <≤; 当12x <<时,122x x -+-<,即10-<,所以12x <<; 当2x ≥时,1+22x x --< ,解得52x <,所以522x ≤<; 综上,原不等式的解集是15,22⎛⎫⎪⎝⎭. 【点睛】本题考查绝对值不等式的求解,分类讨论去绝对值是解题的关键,考查计算求解能力,属于中档题.22.(1)(,6)(2,)-∞--+∞;(2)(1,4)-.【分析】(1)将函数()y f x =的解析式表示为分段函数,然后分3x ≤-、31x -<<、1≥x 三段求解不等式()1f x <,综合可得出不等式()1f x <的解集;(2)求出函数()y f x =的最大值max ()f x ,由题意得出2max 3()m m f x -<,解此不等式即可得出实数m 的取值范围.【详解】7,3()12335,317,1x x f x x x x x x x +≤-⎧⎪=--+=---<<⎨⎪--≥⎩. (1)当3x ≤-时,由()71f x x =+<,解得6x <-,此时6x <-;当31x -<<时,由()351f x x =--<,解得2x >-,此时21x -<<;当1≥x 时,由()71f x x =--<,解得8x >-,此时1≥x .综上所述,不等式()1f x <的解集(,6)(2,)-∞--+∞.(2)当3x ≤-时,函数()7f x x =+单调递增,则()(3)4f x f ≤-=;当31x -<<时,函数()35f x x =--单调递减,则(1)()(3)f f x f <<-,即8()4f x -<<;当1≥x 时,函数()7f x x =--单调递减,则()(1)8f x f ≤-=-.综上所述,函数()y f x =的最大值为max ()(3)4f x f =-=,由题知,2max 3()4m m f x -<=,解得14-<<m .因此,实数m 的取值范围是(1,4)-.【点睛】本题主要考查含有两个绝对值的不等式的求解,以及和绝对值不等式有关的存在性问题的求解,意在考查学生分类讨论思想的应用,转化能力和运算求解能力,属于中等题. 23.答案见解析【分析】利用“作差法”,通过对a 分类讨论即可得出. 【详解】 21(1)11a a a a-+=--. ①当0a =时,201a a=-,∴111a a =+-. ②当1a <且0a ≠时,201a a>-,∴111a a >+-. ③当1a >时,201a a<-,∴111a a <+-. 综上所述,当0a =时,111a a =+-; 当1a <且0a ≠时,111a a >+-; 当1a >时,111a a<+-. 【点睛】本题考查“作差法”比较两个数的大小、分类讨论等基础知识与基本技能方法,属于中档题.24.(1)()2,4,3⎛⎫-∞-⋃+∞ ⎪⎝⎭;(2)55,2⎡+⎢⎣⎦⎣⎦【分析】 (1)分30x -<和30x -,把绝对值的不等式转化为关于x 的不等式组求解; (2)把2|5|5x x -转化为关于x 的不等式组求解.【详解】解:(1)由|21|3x x +>-,得30x -<①,或30213x x x-⎧⎨+>-⎩②,或30213x x x -⎧⎨+<-+⎩③. 解①得3x >,解得②得233x <,解③得4x <-. |21|3x x ∴+>-的解集为()2,4,3⎛⎫-∞-⋃+∞⎪⎝⎭; (2)由2|5|5x x -,得225555x x x x ⎧--⎨-⎩①②, 解①5352x +②得552x -或552x +. 取交集,得2|5|5x x -的解集为,55,2⎡+⎢⎣⎦⎣⎦【点睛】 本题考查绝对值不等式的解法,考查分类讨论的数学思想方法与数学转化思想方法,属于中档题.25.(1)24;(2)4433a -≤≤. 【分析】(1)利用零点分段法将()f x 表示为分段函数的形式,由此画出直线8y =与函数()y f x =的图象.根据等腰梯形面积公式求得所围图形的面积.(2)先求得()f x 的最小值,由此得到4211a a ≥++-,由零点分段法进行分类讨论,由此求得a 的取值范围.【详解】(1)因为()22,14,1322,3x x f x x x x -+≤-⎧⎪=-<≤⎨⎪->⎩,如图所示:直线8y =与函数()y f x =的图象所围图形是一个等腰梯形,令228x -+=,得3x =-;令228x -=,得5x =, 所以等腰梯形的面积()1484242S =⨯+⨯=. (2)要使()211f x a a ≥++-对一切实数x 成立,只须()min 211f x a a ≥++-,而()13134f x x x x x =++-≥+-+=,所以()min 4f x =,故4211a a ≥++-.①由122114a a a ⎧<-⎪⎨⎪---+≤⎩,得4132a -≤<-; ②由1122114a a a ⎧-≤≤⎪⎨⎪+-+≤⎩,得112a -≤≤; ③由12114a a a >⎧⎨++-≤⎩,得413a <≤, 故4433a -≤≤.【点睛】本小题主要考查含有绝对值的不等式的解法,考查不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于中档题.26.(1){5x x ≤-或}4x ≥;(2)见解析.【分析】(1)按照3x ≤-、32x -<<、2x ≥分类讨论,分别解不等式即可得解;(2)两边同时平方后作差可得()()22221110ab a b a b +-+=-->,即可得证.【详解】(1)当3x ≤-时,原不等式可转化为239x x ---≥解得5x ≤-;当32x -<<时,原不等式可转化为239x x -++≥,不等式不成立;当2x ≥时,原不等式可转化为239x x -++≥,解得4x ≥; 所以原不等式的解集为{5x x ≤-或}4x ≥;(2)证明:由题意()()2222111ab a b a b +-+=--, 因为1a <,1b <,所以210a -<,210b -<,所以()()22110a b -->,所以2210ab a b +-+>即221ab a b +>+, 所以1ab a b +>+.【点睛】本题考查了含绝对值不等式的求解与证明,考查了分类讨论思想和转化化归思想,属于中档题.。
第十三章⎪⎪⎪不等式选讲(选修4-5)第一节 绝对值不等式1.绝对值三角不等式定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立. 定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集(2)|ax +b |①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c ,|x -a |+|x -b |≤c (c >0)型不等式的解法: ①利用绝对值不等式的几何意义求解. ②利用零点分段法求解.③构造函数,利用函数的图象求解. [小题体验]1.(教材习题改编)设ab >0,下面四个不等式中,正确的是( ) ①|a +b |>|a |;②|a +b |<|b |;③|a +b |<|a -b |;④|a +b |>|a |-|b |. A .①和② B .①和③ C .①和④D .②和④解析:选C ∵ab >0,即a ,b 同号, 则|a +b |=|a |+|b |, ∴①④正确,②③错误.2.若不等式|kx -4|≤2的解集为{}x |1≤x ≤3,则实数k =________.解析:由|kx -4|≤2⇔2≤kx ≤6. ∵不等式的解集为{}x |1≤x ≤3, ∴k =2. 答案:23.不等式|x +1|-|x -2|≥1的解集是________. 解析:f (x )=|x +1|-|x -2|=⎩⎪⎨⎪⎧-3, x ≤-1,2x -1, -1<x <2,3, x ≥2.当-1<x <2时,由2x -1≥1,解得1≤x <2. 又当x ≥2时,f (x )=3>1恒成立. 所以不等式的解集为{}x |x ≥1. 答案:{}x |x ≥11.对形如|f (x )|>a 或|f (x )|<a 型的不等式求其解集时,易忽视a 的符号直接等价转化造成失误.2.绝对值不等式||a |-|b ||≤|a ±b |≤|a |+|b |中易忽视等号成立的条件.如|a -b |≤|a |+|b |,当且仅当ab ≤0时等号成立,其他类似推导.[小题纠偏]1.设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<|||a |-|b |D .|a -b |<|a |+|b |解析:选B ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3, ∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]考点一 绝对值不等式的解法(基础送分型考点——自主练透)[题组练透]1.(易错题)若不等式|x -a |+3x ≤0(其中a >0)的解集为{}x |x ≤-1,求实数a 的值.解:不等式|x -a |+3x ≤0等价于⎩⎪⎨⎪⎧ x ≥a ,x -a +3x ≤0或⎩⎪⎨⎪⎧x <a ,a -x +3x ≤0,即⎩⎪⎨⎪⎧x ≥a ,x ≤a4或⎩⎪⎨⎪⎧x <a ,x ≤-a 2. 因为a >0,所以不等式组的解集为⎩⎨⎧⎭⎬⎫x |x ≤-a 2 .由题设可得-a2=-1,故a =2.2.在实数范围内,解不等式|2x -1|+|2x +1|≤6. 解:法一:当x >12时,原不等式转化为4x ≤6⇒12<x ≤32;当-12≤x ≤12时,原不等式转化为2≤6,恒成立;当x <-12时,原不等式转化为-4x ≤6⇒-32≤x <-12.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32. 法二:原不等式可化为⎪⎪⎪⎪x -12 +⎪⎪⎪⎪x +12 ≤3, 其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x=32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32 .3.(2015·山东高考改编)解不等式|x -1|-|x -5|<2.解:当x <1时,不等式可化为-(x -1)-(5-x )<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x -1-(5-x )<2,即2x -6<2,解得x <4,所以此时不等式的解集为[1,4);当x >5时,不等式可化为(x -1)-(x -5)<2,即4<2,显然不成立.所以此时不等式无解.综上,不等式的解集为(-∞,4).[谨记通法]1.求解绝对值不等式要注意两点:(1)要求的不等式的解集是各类情形的并集,利用零点分段法的操作程序是:找零点,分区间,分段讨论.(2)对于解较复杂绝对值不等式,要恰当运用条件,简化分类讨论,优化解题过程.如“题组练透”第1题要注意分类讨论.2.求解该类问题的关键是去绝对值符号,可以运用零点分段法去绝对值,此外还常利用绝对值的几何意义求解.考点二 绝对值不等式的证明 (重点保分型考点——师生共研)[典例引领](2015·唐山三模)设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14;(2)比较|1-4ab |与2|a -b |的大小,并说明理由. 解:(1)证明:记f (x )=|x -1|-|x +2| =⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x <1,-3,x ≥1.由-2<-2x -1<0,解得-12<x <12,则M =⎝⎛⎭⎫-12,12 . 所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14.因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0, 所以|1-4ab |2>4|a -b |2, 故|1-4ab |>2|a -b |.[由题悟法]证明绝对值不等式主要的3种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明.(2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,数形结合进行证明.[即时应用]已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.证明:∵|x +5y |=|3(x +y )-2(x -y )|. ∴由绝对值不等式的性质,得|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )| =3|x +y |+2|x -y |≤3×16+2×14=1.即|x +5y |≤1.考点三 绝对值不等式的综合应用 (重点保分型考点——师生共研)[典例引领](2016·大同调研)已知函数f (x )=|2x -1|+|x -2a |. (1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围. 解:(1)当a =1时,由f (x )≤3,可得|2x -1|+|x -2|≤3, ∴⎩⎪⎨⎪⎧x <12,1-2x +2-x ≤3①或⎩⎪⎨⎪⎧12≤x <2,2x -1+2-x ≤3② 或⎩⎪⎨⎪⎧x ≥2,2x -1+x -2≤3.③ 解①求得0≤x <12;解②求得12≤x <2;解③求得x =2.综上可得,0≤x ≤2,即不等式的解集为[0,2]. (2)∵当x ∈[1,2]时,f (x )≤3恒成立, 即|x -2a |≤3-|2x -1|=4-2x ,故2x -4≤2a -x ≤4-2x ,即3x -4≤2a ≤4-x . 再根据3x -4的最大值为6-4=2, 4-x 的最小值为4-2=2, ∴2a =2,∴a =1, 即a 的取值范围为{1}.[由题悟法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,将原函数转化为分段函数,然后利用数形结合解决问题,这是常用的思想方法.2.f (x )<a 恒成立⇔f (x )max <a . f (x )>a 恒成立⇔f (x )min >a .[即时应用](2015·重庆高考改编)若函数f (x )=|x +1|+2|x -a |的最小值为5,求实数a 的值. 解:当a =-1时,f (x )=3|x +1|≥0,不满足题意; 当a <-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤a ,x -1-2a , a <x ≤-1,3x +1-2a , x >-1,f (x )min =f (a )=-3a -1+2a =5, 解得a =-6;当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x -1+2a , x ≤-1,-x +1+2a , -1<x ≤a ,3x +1-2a , x >a ,f (x )min =f (a )=-a +1+2a =5, 解得a =4.综上所述,实数a 的值为-6或4.1.(2016·福建四地六校联考)已知函数f (x )=|x -1|+|x +1|. (1)求不等式f (x )≥3的解集;(2)若关于x 的不等式f (x )≥a 2-a 在R 上恒成立,求实数a 的取值范围.解:(1)原不等式等价于⎩⎪⎨⎪⎧ x ≤-1,-2x ≥3或⎩⎪⎨⎪⎧ -1<x ≤1,2≥3或⎩⎪⎨⎪⎧x >1,2x ≥3,解得x ≤-32或x ∈∅或x ≥32.∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-32或x ≥32. (2)由题意得,关于x 的不等式|x -1|+|x +1|≥a 2-a 在R 上恒成立. ∵|x -1|+|x +1|≥|(x -1)-(x +1)|=2, ∴a 2-a ≤2,即a 2-a -2≤0,解得-1≤a ≤2.∴实数a 的取值范围是[-1,2].2.(2016·忻州模拟)已知|2x -3|≤1的解集为[m ,n ]. (1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)由不等式|2x -3|≤1可化为-1≤2x -3≤1, 得1≤x ≤2,∴m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1. 3.设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,当且仅当a =0时等号成立, ∴要使f (x )=a 2+2a 2+1成立,只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2, 解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12 ∪⎣⎡⎭⎫52,+∞. 4.(2016·唐山一模)已知函数f (x )=|2x -a |+|x +1|. (1)当a =1时,解不等式f (x )<3; (2)若f (x )的最小值为1,求a 的值.解:(1)当a =1时,f (x )=|2x -1|+|x +1|=⎩⎪⎨⎪⎧-3x ,x ≤-1,-x +2,-1<x <12,3x ,x ≥12,且f (1)=f (-1)=3,所以f (x )<3的解集为{}x |-1<x <1.(2)|2x -a |+|x +1|=⎪⎪⎪⎪x -a 2 +|x +1|+⎪⎪⎪⎪x -a 2 ≥⎪⎪⎪⎪1+a 2 +0=⎪⎪⎪⎪1+a2 , 当且仅当(x +1)⎝⎛⎭⎫x -a 2 ≤0且x -a2=0时,取等号. 所以⎪⎪⎪⎪1+a2 =1,解得a =-4或0.5.(2015·南宁二模)已知函数f (x )=|x -a |.(1)若f (x )≤m 的解集为{}x |-1≤x ≤5,求实数a ,m 的值; (2)当a =2且0≤t ≤2时,解关于x 的不等式f (x )+t ≥f (x +2). 解:(1)∵|x -a |≤m ,∴-m +a ≤x ≤m +a . ∵-m +a =-1,m +a =5, ∴a =2,m =3.(2)f (x )+t ≥f (x +2)可化为|x -2|+t ≥|x |. 当x ∈(-∞,0)时,2-x +t ≥-x,2+t ≥0, ∵0≤t ≤2,∴x ∈(-∞,0);当x ∈[0,2)时,2-x +t ≥x ,x ≤1+t 2,0≤x ≤1+t 2,∵1≤1+t 2≤2,∴0≤x ≤1+t2;当x ∈[2,+∞)时,x -2+t ≥x ,t ≥2,当0≤t <2时,无解,当t =2时,x ∈[2,+∞). ∴当0≤t <2时原不等式的解集为⎝⎛⎦⎤-∞,t2+1; 当t =2时原不等式的解集为[2,+∞).6.(2015·全国卷Ⅰ)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0, 解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x 23<x <2.(2)由题设可得f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A ⎝⎛⎭⎫2a -13,0,B (2a +1,0),C (a ,a +1),则△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞).7.(2015·郑州二检)已知函数f (x )=|3x +2|. (1)解不等式f (x )<4-|x -1|;(2)已知m +n =1(m ,n >0),若|x -a |-f (x )≤1m +1n (a >0)恒成立,求实数a 的取值范围.解:(1)不等式f (x )<4-|x -1|,即|3x +2|+|x -1|<4. 当x <-23时,即-3x -2-x +1<4,解得-54<x <-23;当-23≤x ≤1时,即3x +2-x +1<4,解得-23≤x <12;当x >1时,即3x +2+x -1<4,无解. 综上所述,x ∈⎝⎛⎭⎫-54,12 . (2)1m +1n =⎝⎛⎭⎫1m +1n (m +n )=1+1+n m +m n ≥4, 当且仅当m =n =12时等号成立.令g (x )=|x -a |-f (x )=|x -a |-|3x +2|= ⎩⎪⎨⎪⎧2x +2+a ,x <-23,-4x -2+a ,-23≤x ≤a ,-2x -2-a ,x >a .∴x =-23时,g (x )max =23+a ,要使不等式恒成立,只需g (x )max =23+a ≤4,即0<a ≤103.所以实数a 的取值范围是⎝⎛⎦⎤0,103 . 8.(2016·大庆模拟)设函数f (x )=|2x -1|-|x +4|. (1)解不等式:f (x )>0;(2)若f (x )+3|x +4|≥|a -1|对一切实数x 均成立,求a 的取值范围.解:(1)原不等式即为|2x -1|-|x +4|>0,当x ≤-4时,不等式化为1-2x +x +4>0,解得x <5,即不等式组⎩⎪⎨⎪⎧x ≤-4,|2x -1|-|x +4|>0的解集是{}x |x ≤-4.当-4<x <12时,不等式化为1-2x -x -4>0,解得x <-1,即不等式组⎩⎪⎨⎪⎧-4<x <12,|2x -1|-|x +4|>0的解集是{}x |-4<x <-1.当x ≥12时,不等式化为2x -1-x -4>0,解得x >5,即不等式组⎩⎪⎨⎪⎧x ≥12,|2x -1|-|x +4|>0的解集是{}x |x >5.综上,原不等式的解集为{}x |x <-1或x >5.(2)∵f (x )+3|x +4|=|2x -1|+2|x +4|=|1-2x |+|2x +8|≥|(1-2x )+(2x +8)|=9. ∴由题意可知|a -1|≤9,解得-8≤a ≤10, 故所求a 的取值范围是[]-8,10.第二节 不等式的证明1.基本不等式定理1:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.定理2:如果a ,b >0,那么a +b2≥ab ,当且仅当a =b 时,等号成立,即两个正数的算术平均不小于(即大于或等于)它们的几何平均.定理3:如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.2.比较法(1)比差法的依据是:a -b >0⇔a >b .步骤是:“作差→变形→判断差的符号”.变形是手段,变形的目的是判断差的符号.(2)比商法:若B >0,欲证A ≥B ,只需证AB ≥1.3.综合法与分析法(1)综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立.(2)分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义,公理或已证明的定理,性质等),从而得出要证的命题成立.[小题体验]1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( ) A .s ≥t B .s >t C .s ≤tD .s <t解析:选A ∵s -t =b 2-2b +1=(b -1)2≥0,∴s ≥t .2.若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的是________(写出所有正确命题的序号).①ab ≤1;② a +b ≤2;③a 2+b 2≥2; ④a 3+b 3≥3;⑤1a +1b ≥2. 解析:令a =b =1,排除②④;由2=a +b ≥2ab ⇒ab ≤1,命题①正确; a 2+b 2=(a +b )2-2ab =4-2ab ≥2,命题③正确; 1a +1b =a +b ab =2ab ≥2,命题⑤正确. 答案:①③⑤1.在使用作商比较法时易忽视说明分母的符号.2.在用综合法证明不等式时,不等式的性质和基本不等式是最常用的.在运用这些性质时,易忽视性质成立的前提条件.[小题纠偏]1.已知a >0,b >0,则a a b b________(ab )+2a b (填大小关系).解析:∵a ab b(ab )+2a b =⎝⎛⎭⎫a b -2a b,∴当a =b 时,⎝⎛⎭⎫a b -2a b=1,当a >b >0时,ab >1,a -b 2>0,∴⎝⎛⎭⎫a b -2a b>1,当b >a >0时,0<ab <1,a -b 2<0,则⎝⎛⎭⎫a b -2a b>1,∴a a b b≥(ab ) +2a b .答案:≥2.已知a ,b ,c 是正实数,且a +b +c =1,则1a +1b +1c 的最小值为________. 解析:把a +b +c =1代入1a +1b +1c 得a +b +c a +a +b +c b +a +b +c c =3+⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫c a +a c +⎝⎛⎭⎫c b +b c ≥3+2+2+2=9,当且仅当a =b =c =13时,等号成立.答案:9考点一 比较法证明不等式(基础送分型考点——自主练透)[题组练透]1.(2016·莆田模拟)设a ,b 是非负实数, 求证:a 2+b 2≥ab (a +b ). 证明:因为a 2+b 2-ab (a +b ) =(a 2-a ab )+(b 2-b ab ) =a a (a -b )+b b (b -a ) =(a -b )(a a -b b )=(a 12-b 12)(a 32-b 32),因为a ≥0,b ≥0,所以不论a ≥b ≥0,还是0≤a ≤b ,都有a 12-b 12与a 32-b 32同号,所以(a 12-b 12)(a 32-b 32)≥0,所以a 2+b 2≥ab (a +b ). 2. 已知a =ln 22,b =ln 33,试比较a ,b 大小. 解:∵ln 22>0,ln 33>0, ∴b a =2ln 33ln 2=log 89>1.∴b >a .[谨记通法]作差比较法证明不等式的步骤(1)作差;(2)变形;(3)判断差的符号;(4)下结论.其中“变形”是关键,通常将差变形成因式连乘积的形式或平方和的形式,再结合不等式的性质判断出差的正负.考点二 综合法证明不等式 (重点保分型考点——师生共研)[典例引领]设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.[由题悟法]1.综合法证明不等式的方法综合法证明不等式,要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键.2.综合法证明时常用的不等式 (1)a 2≥0. (2)|a |≥0.(3)a 2+b 2≥2ab ,它的变形形式有:a 2+b 2≥2|ab |;a 2+b 2≥-2ab ;(a +b )2≥4ab ; a 2+b 2≥12(a +b )2;a 2+b 22≥⎝⎛⎭⎫a +b 22.(4)a +b2≥ab ,它的变形形式有:a +1a ≥2(a >0);ab +b a ≥2(ab >0); a b +ba ≤-2(ab <0).[即时应用]已知a ,b ,c >0且互不相等,abc =1.试证明:a +b +c <1a +1b +1c .证明:因为a ,b ,c >0,且互不相等,abc =1, 所以a +b +c =1bc +1ac +1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c .考点三 分析法证明不等式 (重点保分型考点——师生共研)[典例引领](2016·沈阳模拟)设a ,b ,c >0,且ab +bc +ca =1.求证: (1)a +b +c ≥ 3. (2)abc +b ac +cab ≥ 3(a +b +c ).证明:(1)要证a+b+c≥3,由于a,b,c>0,因此只需证明(a+b+c)2≥3.即证:a2+b2+c2+2(ab+bc+ca)≥3,而ab+bc+ca=1,故只需证明:a2+b2+c2+2(ab+bc+ca)≥3(ab+bc+ca).即证:a2+b2+c2≥ab+bc+ca.而这可以由ab+bc+ca≤a2+b22+b2+c22+c2+a22=a2+b2+c2(当且仅当a=b=c时等号成立)证得.所以原不等式成立.(2) abc+bac+cab=a+b+cabc.在(1)中已证a+b+c≥ 3. 因此要证原不等式成立,只需证明1abc≥a+b+c,即证a bc+b ac+c ab≤1,即证a bc+b ac+c ab≤ab+bc+ca.而a bc=ab·ac≤ab+ac2,b ac≤ab+bc2,c ab≤bc+ac2.所以a bc+b ac+c ab≤ab+bc+ca(当且仅当a=b=c=33时等号成立).所以原不等式成立.[由题悟法]1.用分析法证“若A则B”这个命题的模式为了证明命题B为真,只需证明命题B1为真,从而有…只需证明命题B2为真,从而有………只需证明命题A为真,而已知A为真,故B必真.2.分析法的应用当所证明的不等式不能使用比较法,且和重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.[即时应用]已知a>b>c,且a+b+c=0,求证:b2-ac<3a.证明:要证b2-ac<3a,只需证b2-ac<3a2.∵a+b+c=0,只需证b2+a(a+b)<3a2,只需证2a2-ab-b2>0,只需证(a-b)(2a+b)>0,只需证(a-b)(a-c)>0.∵a>b>c,∴a-b>0,a-c>0.∴(a-b)(a-c)>0显然成立,故原不等式成立.1.设不等式|2x-1|<1的解集为M.(1)求集合M.(2)若a,b∈M,试比较ab+1与a+b的大小.解:(1)由|2x-1|<1得-1<2x-1<1,解得0<x<1.所以M={x|0<x<1}.(2)由(1)和a,b∈M可知0<a<1,0<b<1,所以(ab+1)-(a+b)=(a-1)(b-1)>0.故ab+1>a+b.2.已知a>0,b>0,2c>a+b,求证:c-c2-ab<a<c+c2-ab.证明:要证:c-c2-ab<a<c+c2-ab,只需证:-c2-ab<a-c<c2-ab,只需证:|a-c|<c2-ab,只需证:(a-c)2<c2-ab,只需证:a2+c2-2ac<c2-ab,即证:2ac>a2+ab.因为a>0,所以只需证2c>a+b,由题设,上式显然成立.故c-c2-ab<a<c+c2-ab.3.(2015·湖南高考)设a >0,b >0,且a +b =1a +1b .证明:(1)a +b ≥2;(2)a 2+a <2与b 2+b <2不可能同时成立. 证明:由a +b =1a +1b =a +bab ,a >0,b >0, 得ab =1.(1)由基本不等式及ab =1, 有a +b ≥2ab =2, 即a +b ≥2.(2)假设a 2+a <2与b 2+b <2同时成立, 则由a 2+a <2及a >0,得0<a <1; 同理,0<b <1,从而ab <1, 这与ab =1矛盾.故a 2+a <2与b 2+b <2不可能同时成立.4.(2015·长春三模)(1)已知a ,b 都是正数,且a ≠b ,求证:a 3+b 3>a 2b +ab 2; (2)已知a ,b ,c 都是正数,求证:a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .证明:(1)(a 3+b 3)-(a 2b +ab 2)=(a +b )(a -b )2. 因为a ,b 都是正数,所以a +b >0. 又因为a ≠b ,所以(a -b )2>0.于是(a +b )(a -b )2>0,即(a 3+b 3)-(a 2b +ab 2)>0, 所以a 3+b 3>a 2b +ab 2. (2)因为b 2+c 2≥2bc ,a 2>0, 所以a 2(b 2+c 2)≥2a 2bc .① 同理b 2(a 2+c 2)≥2ab 2c . ② c 2(a 2+b 2)≥2abc 2. ③①②③相加得2(a 2b 2+b 2c 2+c 2a 2)≥2a 2bc +2ab 2c +2abc 2, 从而a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ). 由a ,b ,c 都是正数,得a +b +c >0, 因此a 2b 2+b 2c 2+c 2a 2a +b +c ≥abc .5.若a >0,b >0,且1a +1b =ab . (1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.解:(1)由ab =1a +1b ≥2ab,得ab ≥2,且当a =b =2时等号成立.故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6. 6.(2016·吉林实验中学模拟)设函数f (x )=|x -a |. (1)当a =2时,解不等式f (x )≥4-|x -1|;(2)若f (x )≤1的解集为[0,2],1m +12n =a (m >0,n >0),求证:m +2n ≥4.解:(1)当a =2时,不等式为|x -2|+|x -1|≥4,①当x ≥2时,不等式可化为x -2+x -1≥4,解得x ≥72;②当12<x <72时,不等式可化为2-x +x -1≥4,不等式的解集为∅;③当x ≤12时,不等式可化为2-x +1-x ≥4,解得x ≤-12.综上可得,不等式的解集为⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫72,+∞. (2)证明:∵f (x )≤1,即|x -a |≤1,解得a -1≤x ≤a +1,而f (x )≤1的解集是[0,2],∴⎩⎪⎨⎪⎧a -1=0,a +1=2,解得a =1, 所以1m +12n =1(m >0,n >0),所以m +2n =(m +2n )⎝⎛⎭⎫1m +12n =2+m 2n +2nm≥2+2m 2n ·2nm=4, 当且仅当m =2,n =1时取等号.7.(2015·全国卷Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件. 证明:(1)因为(a +b )2=a +b +2ab ,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd,得(a+b)2>(c+d)2.因此a+b>c+d.(2)①必要性:若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1),得a+b>c+d.②充分性:若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.8.已知x,y∈R,且|x|<1,|y|<1.求证:11-x2+11-y2≥21-xy.证明:法一:(分析法)∵|x|<1,|y|<1,∴11-x2>0,11-y2>0,∴11-x2+11-y2≥2(1-x2)(1-y2).故要证明结论成立,只要证明2(1-x2)(1-y2)≥21-xy成立.即证1-xy≥(1-x2)(1-y2)成立即可.∵(y-x)2≥0,有-2xy≥-x2-y2,∴(1-xy)2≥(1-x2)(1-y2),∴1-xy≥(1-x2)(1-y2)>0.∴不等式成立.法二:(综合法)∵211-x2+11-y2≤1-x2+1-y22=2-(x2+y2)2≤2-2|xy|2=1-|xy|,∴11-x2+11-y2≥21-|xy|≥21-xy,∴原不等式成立.提升考能、阶段验收专练卷(一)集合与常用逻辑用语、函数、导数及其应用(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0∉∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30∉QC .∀x ∉∁R Q ,x 3∈QD .∀x ∈∁R Q ,x 3∉Q解析:选D 根据特称命题的否定为全称命题知D 正确. 2.(2015·安徽高考)下列函数中,既是偶函数又存在零点的是( ) A .y =ln x B .y =x 2+1 C .y =sin xD .y =cos x解析:选D A 是非奇非偶函数,故排除;B 是偶函数,但没有零点,故排除;C 是奇函数,故排除;y =cos x 是偶函数,且有无数个零点.3.(2015·南昌一模)若集合A ={}x |1≤3x ≤81,B ={}x |log 2x 2-x,则A ∩B =()A .(2,4]B .[2,4]C .(-∞,0)∪(0,4]D .(-∞,-1)∪[0,4]解析:选A 因为A ={}x |1≤3x≤81 ={}x |30≤3x ≤34={}x |0≤x ≤4, B ={}x |log 2x 2-x={}x |x 2-x >2={}x |x <-1或x >2,所以A ∩B ={}x |0≤x ≤4∩{}x |x <-1或x >2={}x |2<x ≤4=(2,4].4.(2016·陕西质检)已知直线y =-x +m 是曲线y =x 2-3ln x 的一条切线,则m 的值为( )A .0B .2C .1D .3解析:选B 因为直线y =-x +m 是曲线y =x 2-3ln x 的切线,所以令y ′=2x -3x =-1,得x =1或x =-32(舍),即切点为(1,1),又切点(1,1)在直线y =-x +m 上,所以m =2.5.(2016·南昌二中模拟)下列说法正确的是( )A .命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B .已知y =f (x )是R 上的可导函数,则“f ′(x 0)=0”中“x 0是函数y =f (x )的极值点”的必要不充分条件C .命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1<0”D .命题“角α的终边在第一象限,则α是锐角”的逆否命题为真命题解析:选B 选项A 不正确,∵不符合否命题的定义;选项B 显然正确;选项C 不正确,命题“存在x 0∈R ,使得x 20+x 0+1<0”的否定是:“对任意x ∈R ,均有x 2+x +1≥0”;对于选项D ,原命题是假命题,故逆否命题也为假命题,故选B.6.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥1,x +c ,x <1,则“c =-1”是“函数f (x )在R 上递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 若函数f (x )在R 上递增,则需log 21≥c +1,即c ≤-1.由于c =-1⇒c ≤-1,但c ≤-1⇒/ c =-1,所以“c =-1”是“f (x )在R 上递增”的充分不必要条件.7.已知函数f (x )=⎩⎪⎨⎪⎧3x, x ≤1,log 13x , x >1,则函数y =f (1-x )的大致图象是()解析:选D 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当x =-13时,y =f ⎝⎛⎭⎫43 =log 1343<0,即y =f (1-x )的图象过点⎝ ⎛⎭⎪⎫-13,log 1343 ,排除C. 8.(2016·宁夏中宁一中月考)设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,f (x )=log 12(1-x ),则函数f (x )在(1,2)上( )A .是增函数且f (x )<0B .是增函数且f (x )>0C .是减函数且f (x )<0D .是减函数且f (x )>0解析:选D 设-1<x <0,则0<-x <1,f (-x )=log 12(1+x )=f (x )>0,故函数f (x )在(-1,0)上单调递减.又因为f (x )以2为周期,所以函数f (x )在(1,2)上也单调递减且有f (x )>0.9.(2016·湖南调研)已知函数f (x )=ln x -⎝⎛⎭⎫12x -2的零点为x 0,则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选C ∵f (x )=ln x -⎝⎛⎭⎫12 x -2在(0,+∞)上是增函数, 又f (1)=ln 1-⎝⎛⎭⎫12 -1=ln 1-2<0, f (2)=ln 2-⎝⎛⎭⎫12 0<0, f (3)=ln 3-⎝⎛⎭⎫12 1>0, ∴x 0∈(2,3).10.(2016·洛阳统考)设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a 的取值范围是( )A .(-∞,-3]B .[-3,0)C .(-∞,3]D .(0,3]解析:选C 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又∵f (x )=x |x -a |,∴当a ≤0时,结论显然成立,当a >0时,f (x )=⎩⎪⎨⎪⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,∴f (x )在⎝⎛⎭⎫-∞,a 2上单调递增,在⎝⎛⎭⎫a 2,a 上单调递减,在(a ,+∞)上单调递增,∴0<a ≤3.综上,实数a 的取值范围是(-∞,3].11.(2015·全国卷Ⅰ)设函数y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( )A .-1B .1C .2D .4解析:选C 设(x ,y )为函数y =f (x )的图象上任意一点,则(-y ,-x )在y =2x +a的图象上,所以有-x =2-y +a,从而有-y +a =log 2(-x )(指数式与对数式的互化), 所以y =a -log 2(-x ), 即f (x )=a -log 2(-x ),所以f (-2)+f (-4)=(a -log 22)+(a -log 24)=(a -1)+(a -2)=1,解得a =2.故选C. 12.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1 B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1解析:选D ∵f (0)=-1+a <0,∴x 0=0. 又∵x 0=0是唯一使f (x )<0的整数,∴⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0, 即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a ≥32e .又∵a <1,∴32e≤a <1.(二)填空题(本大题共4小题,每小题5分)13.(2016·江门调研)若f (x )=⎩⎪⎨⎪⎧-x ,x ≤0,x 2-2x ,x >0,则f (x )的最小值是________.解析:当x ≤0时,f (x )=-x ,此时f (x )min =0; 当x >0时,f (x )=x 2-2x =(x -1)2-1, 此时f (x )min =-1.综上,当x ∈R 时,f (x )min =-1. 答案:-114.已知函数f (x )=x -2m 2+m +3(m ∈Z)为偶函数,且f (3)<f (5),则m =________. 解析:因为f (x )是偶函数, 所以-2m 2+m +3应为偶数.又f (3)<f (5),即3-2m 2+m +3<5-2m 2+m +3, 整理得⎝⎛⎭⎫35 -2m 2+m +3<1, 所以-2m 2+m +3>0,解得-1<m <32.又m ∈Z ,所以m =0或1.当m =0时,-2m 2+m +3=3为奇数(舍去); 当m =1时,-2m 2+m +3=2为偶数. 故m 的值为1. 答案:115.里氏震级M的计算公式为M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震的最大振幅的________倍.解析:根据题意,由lg 1 000-lg 0.001=6得此次地震的震级为6级.因为标准地震的振幅为0.001,设9级地震的最大振幅为A9,则lg A9-lg 0.001=9,解得A9=106,同理5级地震的最大振幅A5=102,所以9级地震的最大振幅是5级地震的最大振幅的10 000倍.答案:610 00016.已知函数f(x)的定义域为[-1,5],部分对应值如下表:f(x)的导函数y=f′(x)的图象如图所示.下列关于函数f(x)的命题:①函数f(x)的值域为[1,2];②函数f(x)在[0,2]上是减函数;③如果当x∈[-1,t]时,f(x)的最大值是2,那么t的最大值为4;④当1<a<2时,函数y=f(x)-a最多有4个零点.其中真命题的序号是________.解析:由导数图象可知,当-1<x<0或2<x<4时,f′(x)>0,函数单调递增,当0<x<2或4<x<5时,f′(x)<0,函数单调递减,当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,当x=2时,函数取得极小值f(2)=1.5.又f(-1)=f(5)=1,所以函数的最大值为2,最小值为1,值域为[1,2],①正确.②正确.因为当x=0和x=4时,函数取得极大值f(0)=2,f(4)=2,要使当x∈[-1,t]时函数f(x)的最大值是2,则t 的最大值为5,所以③不正确. 由f (x )=a ,因为极小值f (2)=1.5,极大值为f (0)=f (4)=2, 所以当1<a <2时,y =f (x )-a 最多有4个零点, 所以④正确.故真命题的序号为①②④. 答案:①②④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)设f (x ) =a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值. 解:(1)因为f (x )=a (x -5)2+6ln x (x >0), 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a , 所以曲线y =f (x )在点(1,f (1))处的切线方程为 y -16a =(6-8a )·(x -1),由点(0,6)在切线上可得6-16a =8a -6, 故a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x =(x -2)(x -3)x .令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0, 故f (x )在(0,2),(3,+∞)上为增函数; 当2<x <3时,f ′(x )<0, 故f (x )在(2,3)上为减函数.由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.18.(本小题满分12分)已知函数f (x )=k ·a -x (k ,a 为常数,a >0且a ≠1)的图象过点A (0,1),B (3,8).(1)求实数k ,a 的值;(2)若函数g (x )=f (x )-1f (x )+1,试判断函数g (x )的奇偶性,并说明理由. 解:(1)把A (0,1),B (3,8)的坐标代入f (x )=k ·a -x,得⎩⎪⎨⎪⎧k ·a 0=1,k ·a -3=8. 解得k =1,a =12.(2)g (x )是奇函数.理由如下: 由(1)知f (x )=2x , 所以g (x )=f (x )-1f (x )+1=2x -12x +1.函数g (x )的定义域为R , 又g (-x )=2-x -12-x +1=2x ·2-x -2x2x ·2-x +2x=-2x -12x +1=-g (x ),所以函数g (x )为奇函数.附加卷:集合与常用逻辑用语、函数、导数及其应用(教师备选)(时间:70分钟 满分:104分)Ⅰ.小题提速练(限时45分钟)(一)选择题(本大题共12小题,每小题5分)1.已知集合A ={}a ,0,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪y =lg x 5-2x ,x ∈Z ,如果A ∩B ≠∅,则a =( )A.52 B .1 C .2D .1或2解析:选D 由题意得B =⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <52,x ∈Z ={}1,2,则由A ∩B ≠∅,得a =1 或2.2.(2016·长沙一模)已知函数f (x )=⎩⎨⎧x 12,x >0,⎝⎛⎭⎫12 x,x ≤0,则f [f (-4)]=( )A .-4B .4C .-14D.14解析:选B 因为f (-4)=⎝⎛⎭⎫12 -4=16,所以f [f (-4)]=f (16)=(16)12=4.3.已知函数f (x )=(m 2-m -1)x -5m -3是幂函数且是(0,+∞)上的增函数,则m 的值为( )A .2B .-1C .-1或2D .0解析:选B 因为函数f (x )为幂函数,所以m 2-m -1=1,即m 2-m -2=0,解得m =2或m =-1.因为该幂函数在(0,+∞)上是增函数,所以-5m -3>0,即m <-35.所以m=-1.4.已知命题p :∃x 0∈(-∞,0),3x 0<4x 0,命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x .则下列命题中为真命题的是( )A .p ∧qB .p ∨(綈q )C .p ∧(綈q )D .(綈p )∧q解析:选D 由指数函数的单调性可知命题p :∃x 0∈(-∞,0),3x 0<4x 0为假,则命题綈p 为真;易知命题q :∀x ∈⎝⎛⎭⎫0,π2 ,tan x >x 为真,则命题綈q 为假.根据复合命题的真值表可知命题p ∧q 为假,命题p ∨(綈q )为假,命题p ∧(綈q )为假 ,命题(綈p )∧q 为真.5.(2016·沧州质检)如果函数f (x )=x 2+bx +c 对任意的x 都有f (x +1)=f (-x ),那么( )A .f (-2)<f (0)<f (2)B .f (0)<f (-2)<f (2)C .f (2)<f (0)<f (-2)D .f (0)<f (2)<f (-2)解析:选D 由f (1+x )=f (-x )知f (x )的图象关于直线x =12对称,又抛物线f (x )开口向上,∴f (0)<f (2)<f (-2).6.(2015·云南二检)设a =3log 132,b =log 1213,c =23,则下列结论正确的是( )A .a <b <cB .a <c <bC .b <a <cD .b <c <a解析:选B a =3log 132<0,1<b =log 1213=log 23<2,0<c =23<1,故a <c <b . 7.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (0)=2,则f (2 016)的值为( )A .2B .0C .-2D .±2解析:选A ∵g (-x )=f (-x -1),∴-g (x )=f (x +1). 又g (x )=f (x -1),∴f (x +1)=-f (x -1), ∴f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ), 则f (x )是以4为周期的周期函数, 所以f (2 016)=f (0)=2.8.已知定义在R 上的奇函数f (x )和偶函数g (x )满足f (x )+g (x )=a x -a -x +2(a >0,且a ≠1).若g (2)=a ,则f (2)等于( )A .2 B.154 C.174D .a 2解析:选B ∵f (x )为奇函数,g (x )为偶函数, ∴f (-2)=-f (2),g (-2)=g (2)=a , ∵f (2)+g (2)=a 2-a -2+2,①∴f (-2)+g (-2)=g (2)-f (2)=a -2-a 2+2,②由①,②联立得g (2)=a =2,f (2)=a 2-a -2=154. 9.已知函数f (x )=x 2-bx +a 的图象如图所示,则函数g (x )=ln x +f ′(x )的零点所在的区间是( )A.⎝⎛⎭⎫14,12B.⎝⎛⎭⎫12,1 C .(1,2) D .(2,3)解析:选B 由题图可知f (x )的对称轴x =b 2∈⎝⎛⎭⎫12,1,则1<b <2,易知g (x )=ln x +2x -b ,则g ⎝⎛⎭⎫14 =-2ln 2+12-b <0,g ⎝⎛⎭⎫12 =-ln 2+1-b <0,g (1)=2-b >0,故g (x )的零点所在的区间是⎝⎛⎭⎫12,1.10.某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓能全租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设租出的每套房子每月需要公司花费100元的日常维修等费用(设租不出的房子不需要花这些费用).要使公司获得最大利润,每套房月租金应定为( )A .3 000元B .3 300元C .3 500元D .4 000元解析:选B 由题意,设利润为y 元,租金定为3 000+50x 元(0≤x ≤70,x ∈N). 则y =(3 000+50x )(70-x )-100(70-x ) =(2 900+50x )(70-x ) =50(58+x )(70-x ) ≤50⎝⎛⎭⎫58+x +70-x 22≤204 800,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润.11.设函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),函数g (x )是二次函数,若函数f (g (x ))的值域是[0,+∞),则函数g (x )的值域是( )A .(-∞,-1]∩[1,+∞)B .(-∞,-1]∪[0,+∞)C .[0,+∞)D .[1,+∞)解析:选C 因为函数f (x )=⎩⎪⎨⎪⎧m +x 2,|x |≥1,x ,|x |<1的图象过点(1,1),所以m +1=1,解得m =0,所以f (x )=⎩⎪⎨⎪⎧x 2,|x |≥1,x ,|x |<1,因为函数g (x )是二次函数,值域不会是选项A ,B ,画出函数y =f (x )的图象(如图所示),易知,当g (x )的值域是[0,+ ∞)时,f (g (x ))的值域是[0,+∞).12.已知定义在R 上的函数f (x )满足:①对任意x ∈R ,有f (x +2)=2f (x );②当x ∈[-1,1]时,f (x )=1-x 2.若函数g (x )=⎩⎪⎨⎪⎧e x (x ≤0),ln x (x >0),则函数y =f (x )-g (x )在区间(-4,5)上的零点个数是( )A .7B .8C .9D .10解析:选C 函数f (x )与g (x )在区间[-5,5]上的图象如图所示,由图可知,函数f (x )与g (x )的图象在区间(-4,5)上的交点个数为9,即函数y =f (x )-g (x )在区间(-4,5)上零点的个数是9.(二)填空题(本大题共4小题,每小题5分)13.函数y =log 13(2x +1)(1≤x ≤3)的值域为________.解析:当1≤x ≤3时,3≤2x +1≤9, 所以-2≤y ≤-1,所求的值域为[-2,-1]. 答案:[-2,-1] 14.若函数y =xx -m在区间(1,+∞)内是减函数,则实数m 的取值范围是________. 解析:y =x x -m =1+mx -m ,由函数的图象及性质可得0<m ≤1.答案:(0,1]15.(2016·台州调考)若函数f (x )=1ax 2+bx +c(a ,b ,c ∈R)的部分图象如图所示,则b=________.解析:令g (x )=ax 2+bx +c ,由图象可知,1,3是ax 2+bx +c =0的两个根,因此a +b +c =0,9a +3b +c =0,又函数f (x )的图象过点(2,-1),则f (2)=-1,即4a +2b +c =-1,因此可得a =1,c =3,b =-4.答案:-416.关于函数f (x )=lg x 2+1|x |(x ≠0,x ∈R)有下列命题:①函数y =f (x )的图象关于y 轴对称;②在区间(-∞,0)上,函数y =f (x )是减函数; ③函数f (x )的最小值为lg 2;④在区间(1,+∞)上,函数f (x )是增函数. 其中是真命题的序号为________.解析:∵函数f (x )=lg x 2+1|x |(x ≠0,x ∈R),显然f (-x )=f (x ),即函数f (x )为偶函数,图象关于y 轴对称,故①正确;当x >0时,f (x )=lg x 2+1x =lg ⎝⎛⎭⎫x +1x ,令t (x )=x +1x ,x >0,则t ′(x )=1-1x 2,可知当x ∈(0,1)时,t ′(x )<0,t (x )单调递减,当x ∈(1,+∞)时,t ′(x )>0,t (x )单调递增,即在x =1处取到最小值为2.由偶函数的图象关于y 轴对称及复合函数的单调性可知②错误,③正确,④正确,故答案为①③④.答案:①③④Ⅱ.大题规范练(限时25分钟)17.(本小题满分12分)已知集合A ={}x |x 2-2x -3≤0,B ={x |x 2-2mx +m 2-9≤0},m ∈R.(1)若m =3,求A ∩B ;(2)已知命题p :x ∈A ,命题q :x ∈B ,若q 是p 的必要条件,求实数m 的取值范围. 解:(1)由题意知,A ={}x |-1≤x ≤3, B ={}x |m -3≤x ≤m +3. 当m =3时,B ={}x |0≤x ≤6, ∴A ∩B =[0,3].(2)由q 是p 的必要条件知,A ⊆B ,结合(1)知⎩⎪⎨⎪⎧m -3≤-1,m +3≥3解得0≤m ≤2.故实数m 的取值范围是[0,2].18.(本小题满分12分)(2016·辽宁五校联考)已知函数f (x )=ln x +1x +ax (a 是实数),g (x )=2xx 2+1+1. (1)当a =2时,求函数f (x )在定义域上的最值;(2)若函数f (x )在[1,+∞)上是单调函数,求a 的取值范围;(3)是否存在正实数a 满足:对于任意x 1∈[1,2],总存在x 2∈[1,2],使得f (x 1)=g (x 2)成立?若存在,求出a 的取值范围,若不存在,说明理由.解:(1)当a =2时,f (x )=ln x +1x +2x ,x ∈(0,+∞), f ′(x )=1x -1x 2+2=2x 2+x -1x 2=(2x -1)(x +1)x 2,令f ′(x )=0,得x =-1或x =12.。
一、选择题1.已知0h >,则||2a b h -<是1a h -<且1b h -<的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件D .既非充分又非必要条件2.若对于任意的x >0,不等式231xa x x ≤++恒成立,则实数a 的取值范围是( ) A .a ≥15B .a >15 C .a <15D .a ≤153.已知0.3log 6a =,2log 6b =,则( ) A .22b a b a ab ->+> B .22b a ab b a ->>+ C .22b a b a ab +>-> D .22ab b a b a >->+ 4.若a 、b 、c ,d ∈R ,则下面四个命题中,正确的命题是( )A .若a >b ,c >b ,则a >cB .若a >-b ,则c -a <c +bC .若a >b ,则ac 2>bc 2D .若a >b ,c >d ,则ac >bd5.不等式21x x a <-+的解集是区间()3,3-的子集,则实数a 的取值范围是( ) A .5a ≤B .554a -≤≤C .574a -≤≤D .7a ≤6.不等式230x x -<的解集为( )A .{}03x x << B .{}3003x x x -<<<<或C .{}30x x -<<D .{}33x x -<<7.若正实数x ,y 满足x y >,则有下列结论:①2xy y <;②22x y >;③1xy>;④11x x y<-.其中正确结论的个数为( ) A .1 B .2C .3D .48.已知,则的大小关系是A .B .C .D .9.若0a <b <,则下列不等式中成立的是( ) A .|a |>b -B .1a b < C a b -<-D .11a b< 10.若a b >,则下列不等式成立的是( ) A .22a b >B .11a b< C .a b >D .a b e e >11.2x ≤是11x +≤成立的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分又非必要条件12.设1311ln ,log 22a b ==,则 ( ) A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题13.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 14.给出下列语句: ①若,a b 为正实数,ab ,则3322a b a b ab +>+;②若,a m 为正实数,a b <,则a m ab m b+<+; ③若22a bc c>,则a b >; ④当(0,)2x π∈时,2sin sin x x+的最小值为___________. 15.设函数()1f x x x a =-+-,如果x R ∀∈,()2f x ≥,则a 的取值范围是__________.16.若不等式|3|4x b -<的解集中的整数有且仅有1,2,3,则b 的取值范围是_____ 17.若关于x 的不等式13x x m -+-<在[]0,4x ∈上有解,则m 的取值范围是_________ 18.设5x >,PQ ,则P 与Q 的大小关系是P ______Q .19.设函数2()||(,)f x x a x b a b R =+++∈,当[2,2]x ∈-时,记()f x 的最大值为(,)M a b ,则(,)M a b 的最小值为______.20.设函数1()||||f x x x a a=++-(0)a >,若(3)5f <,则a 的取值范围是_____. 三、解答题21.正项数列{}n a 满足()223*1112,442N n n n n a a a a n +++=-=-∈. (1)求23,a a ;(2)猜想数列{}n a 的通项公式,并给予证明; (3)若lg nn a c n=,求证:n c 是无理数. 22.已知函数()22f x x x a =-++,a R ∈. (1)当1a =时,解不等式()5f x ≥;(2)若存在0x 满足()0023f x x +-<,求实数a 的取值范围.23.已知()|2||3|f x x x =-+-. (1)解关于x 的不等式()5f x ≤;(2)若2()1f x m m >+-恒成立,求实数m 的取值范围. 24.求下列关于x 的不等式的解集 (1)|21|3x x +>-; (2)2|5|5x x -.25.已知函数()212f x x x =-++. (1)求()f x 的最小值;(2)已知0a ≠,若不等式()2211b a b a a x x -++>-++恒成立,求实数x 的取值范围.26.已知函数()|21|||2g x x x =-+++. (1)解不等式()0g x ≤;(2)若存在实数x ,使得()||g x x a ≥--,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用判断充分,必要条件的方向判断,结合绝对值的几何意义,以及绝对值三角不等式证明. 【详解】当2a b h -<,说明a 与b 的距离小于2h ,但a 与b 与1的距离可以大于或等于h ,所以2a b h -<,不能推出1a h -<且1b h -<,反过来,当1a h -<且1b h -<时,()()11112a b a b a b h -=---≤-+-<,即2a b h -<,所以1a h -<且1b h -<,能推出2a b h -<,所以||2a b h -<是|1|?a h -<且|1|b h -<的必要非充分条件. 故选:B 【点睛】关键点点睛:本题的关键是理解绝对值的几何意义,a b -表示数轴上两点间距离,以及绝对值三角不等式a b a b a b -≤±≤+.2.A解析:A 【分析】由于x >0,对不等式左侧分子分母同时除以x ,再求出左侧最大值即可求解. 【详解】由题:对于任意的x >0,不等式231xa x x ≤++恒成立,即对于任意的x >0,不等式113ax x≤++恒成立,根据基本不等式:10,335x x x >++≥+=,当且仅当1x =时,取得等号, 所以113x x ++的最大值为15, 所以15a ≥.故选:A 【点睛】此题考查不等式恒成立求参数范围,通过转化成求解函数的最值问题,结合已学过的函数模型进行求解,平常学习中积累常见函数处理办法可以事半功倍.3.A解析:A 【分析】容易判断出0a <,0b >,从而得出0ab <,并可得出 1221b a b aba++=<,从而得出2b a ab +>,并容易得出22b a b a ->+,从而得出结论. 【详解】因为0.3log 60a =<,2log 60b =>,所以0ab <, 因为666612log 0.32log 2log 1.2log 61a b+=+⨯=<=,即21b aab +<, 又0ab <,所以2b a ab +>,又(2)(2)40b a b a a --+=->,所以22b a b a ->+,所以22b a b a ab ->+>, 故选:A. 【点睛】本题主要考查对数的换底公式,对数函数的单调性,增函数和减函数的定义,以及不等式的性质,属于中档题.4.B解析:B 【分析】对于A ,C ,D 举反例即可判断,对于B ,根据不等式的性质即可判断. 【详解】解:对于A ,例如1a =,0b =,2c =,则不满足,故A 错误, 对于B ,若a b >-,则a b -<,则c a c b -<+,成立,故B 正确, 对于C ,若0c ,则不成立,故C 错误,对于D ,例如1a =,0b =,2c =-,3D =-,则不满足,故D 错误,故选:B . 【点睛】本题主要考查了不等式的性质的简单应用,要注意不等式应用条件的判断,属于基础题.5.A解析:A 【分析】原不等式等价于210x x a ---<,设()21f x x x a =---,则由题意得()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之即可求得实数a 的取值范围. 【详解】不等式等价于210x x a ---<,设()21f x x x a =---,因为不等式21x x a <-+的解集是区间()3,3-的子集,所以()()350370f a f a ⎧-=-≥⎪⎨=-≥⎪⎩,解之得5a ≤.故选:A. 【点睛】本题主要考查绝对值不等式的解法、二次函数的性质,体现化归与等价转化思想,属中等难度题.6.B解析:B 【分析】将不等式表示为230x x -<,得出03x <<,再解该不等式可得出解集. 【详解】将原不等式表示为230x x -<,解得03x <<,解该不等式可得30x -<<或03x <<.因此,不等式230x x -<的解集为{}3003x x x -<<<<或,故选:B.【点睛】本题考查二次不等式的解法与绝对值不等式的解法,考查运算求解能力,属于中等题.7.C解析:C【分析】根据不等式的基本性质,逐项推理判断,即可求解,得到答案. 【详解】由题意,正实数,x y 是正数,且x y >, ①中,可得2xy y >,所以2xy y <是错误的; ②中,由x y >,可得22x y >是正确的; ③中,根据实数的性质,可得1xy>是正确的;④中,因为0x x y >->,所以11x x y<-是正确的, 故选C. 【点睛】本题主要考查了不等式的性质的应用,其中解答中熟记不等式的基本性质,合理推理是解答的关键,着重考查了推理与运算能力,属于基础题.8.A解析:A 【解析】 【分析】将、进行分子有理化,分子均化为,然后利用分式的基本性质可得出三个数的大小关系。
高中数学选修4-5不等式选讲一.解答题(共30小题)1.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.2.(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.3.(2014•阜阳一模)已知α,β是方程4x2﹣4tx﹣1=0(t∈R)的两个不等实根,函数的定义域为[α,β].(Ⅰ)求g(t)=maxf(x)﹣minf(x);(Ⅱ)证明:对于,若sinu1+sinu2+sinu3=1,则++<.4.(2014•苏州一模)已知x,y,z均为正数.求证:.5.(2014•长春一模)(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.6.(2014•长安区三模)设函数f(x)=x﹣a(x+1)ln(x+1),(x>﹣1,a≥0)(Ⅰ)求f(x)的单调区间;(Ⅱ)当a=1时,若方程f(x)=t在上有两个实数解,求实数t的取值范围;(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m.7.(2014•赤峰模拟)已知函数f(x)=m﹣|x﹣1|﹣|x﹣2|,m∈R,且f(x+1)≥0的解集为[0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.8.(2014•濮阳二模)已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x﹣1)+f(x+3)≥6;(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:.9.(2014•宁城县模拟)已知a,b,c均为正实数,且ab+bc+ca=1.求证:(Ⅰ)a+b+c≥;(Ⅱ)++≥(++).10.(2014•沈阳一模)已知函数f(x)=lnx,.(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;(Ⅱ)若在[1,+∞)上是减函数,求实数m的取值范围;(Ⅲ)证明不等式:.11.(2014•梅州一模)已知函数f(x)=ax2+ln(x+1).(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在所表示的平面区域内,求实数a的取值范围.(Ⅲ)求证:(其中n∈N*,e是自然对数的底数).12.(2014•遵义二模)(1)已知x、y都是正实数,求证:x3+y3≥x2y+xy2;(2)若不等式|a﹣1|≥++对满足x+y+z=1的一切正实数x,y,z恒成立,求实数a的取值范围.13.(2014•红河州模拟)函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设B={x|﹣1<x<2},当实数a,b∈B∩(∁R A)时,求证:<|1+|.14.(2014•河北模拟)设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.15.(2014•河北模拟)已知a,b>0,且a+b=1,求证:(Ⅰ)+≥8;(Ⅱ)++≥8.16.(2014•海南模拟)已知a,b均为正数,且a+b=1,证明:(1)(ax+by)2≤ax2+by2(2)(a+)2+(b+)2≥.17.(2013•临汾模拟)已知a2+b2=1,c2+d2=1.(Ⅰ)求证:ab+cd≤1.(Ⅱ)求a+b的取值范围.18.(2014•乌鲁木齐三模)已知a,b,c∈R*,证明:(1)(a+b+c)(a2+b2+c2)≤3(a3+b3+c3);(2)++≥.19.(2014•淮安模拟)已知a,b,c均为正数,证明:.20.(2014•南通一模)已知实数x,y满足:,求证:.21.(2014•南通三模)已知x>0,y>0,a∈R,b∈R.求证()2≤.22.(2014•南通模拟)设a,b,c,d∈R,求证:+≥,等号当且仅当ad=bc 时成立.23.(2014•昆明一模)已知a,b,c均为正数.(Ⅰ)求证:a2+b2+()2≥4;(Ⅱ)若a+4b+9c=1,求证:≥100.24.(2014•贵州二模)设不等式|x﹣2|<m(m∈N+)的解集为A,且∈A,∉A.(Ⅰ)求m的值;(Ⅱ)若a,b,c∈R+,且a+b+c=,求证:++≥9.25.(2014•盐城二模)已知x,y∈R,且|x+y|≤,|x﹣y|≤,求证:|x+5y|≤1.26.(2014•盐城一模)已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.27.(2014•福建模拟)已知f(x)=aln(x+1)++3x﹣1.(1)若x≥0时,f(x)≥0恒成立,求实数a的取值范围;(2)求证:ln(2n+1)对一切正整数n均成立.28.(2014•静安区一模)(理)(1)设x、y是不全为零的实数,试比较2x2+y2与x2+xy的大小;(2)设a,b,c为正数,且a2+b2+c2=1,求证:++﹣≥3.29.(2013•泰州三模)选修4﹣5:不等式选讲已知a>0,b>0,n∈N*.求证:.30.(2013•盐城二模)(选修4﹣5:不等式选讲)若,证明.参考答案与试题解析一.解答题(共30小题)1.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.2.(2014•安徽)设实数c>0,整数p>1,n∈N*.(Ⅰ)证明:当x>﹣1且x≠0时,(1+x)p>1+px;(Ⅱ)数列{a n}满足a1>,a n+1=a n+a n1﹣p.证明:a n>a n+1>.考点:不等式的证明;数列与不等式的综合;分析法和综合法.专题:函数思想;点列、递归数列与数学归纳法.分析:第(Ⅰ)问中,可构造函数f(x)=(1+x)p﹣(1+px),求导数后利用函数的单调性求解;对第(Ⅱ)问,从a n+1着手,由a n+1=a n+a n1﹣p,将求证式进行等价转化后即可解决,用相同的方式将a n>a n+1进行转换,设法利用已证结论证明.解答:证明:(Ⅰ)令f(x)=(1+x)p﹣(1+px),则f′(x)=p(1+x)p﹣1﹣p=p[(1+x)p﹣1﹣1].①当﹣1<x<0时,0<1+x<1,由p>1知p﹣1>0,∴(1+x)p﹣1<(1+x)0=1,∴(1+x)p﹣1﹣1<0,即f′(x)<0,∴f(x)在(﹣1,0]上为减函数,∴f(x)>f(0)=(1+0)p﹣(1+p×0)=0,即(1+x)p﹣(1+px)>0,∴(1+x)p>1+px.②当x>0时,有1+x>1,得(1+x)p﹣1>(1+x)0=1,∴f′(x)>0,∴f(x)在[0,+∞)上为增函数,∴f(x)>f(0)=0,∴(1+x)p>1+px.综合①、②知,当x>﹣1且x≠0时,都有(1+x)p>1+px,得证.(Ⅱ)先证a n+1>.∵a n+1=a n+a n1﹣p,∴只需证a n+a n1﹣p>,将写成p﹣1个相加,上式左边=,当且仅当,即时,上式取“=”号,当n=1时,由题设知,∴上式“=”号不成立,∴a n +a n 1﹣p >,即a n+1>.再证a n >a n+1. 只需证a n >a n +a n 1﹣p ,化简、整理得a n p >c ,只需证a n >c.由前知a n+1>成立,即从数列{a n }的第2项开始成立,又n=1时,由题设知成立,∴对n ∈N *成立,∴a n >a n+1.综上知,a n >a n+1>,原不等式得证.点评: 本题是一道压轴题,考查的知识众多,涉及到函数、数列、不等式,利用的方法有分析法与综合法等,综合性很强,难度较大.3.(2014•阜阳一模)已知α,β是方程4x 2﹣4tx ﹣1=0(t ∈R )的两个不等实根,函数的定义域为[α,β].(Ⅰ)求g (t )=maxf (x )﹣minf (x ); (Ⅱ)证明:对于,若sinu 1+sinu 2+sinu 3=1,则++<.考点:不等式的证明;函数的最值及其几何意义. 专题:计算题;证明题. 分析: (Ⅰ)先设α≤x 1<x 2≤β,则4x 12﹣4tx 1﹣1≤0,4x 22﹣4tx 2﹣1≤0,利用单调函数的定义证明f (x )在区间[α,β]上是增函数.从而求得函数f (x )的最大值与最小值,最后写出g (t ) (Ⅱ)先证:从而利用均值不等式与柯西不等式即得:++<.解答: 解:(Ⅰ)设α≤x 1<x 2≤β,则4x 12﹣4tx 1﹣1≤0,4x 22﹣4tx 2﹣1≤0,∴则又故f (x )在区间[α,β]上是增函数.(3分) ∵,∴=(6分)(Ⅱ)证:(9分)∴(15分)∵,而均值不等式与柯西不等式中,等号不能同时成立,∴++<.(14分)点评: 本题主要考查了不等式的证明、函数的最值及其几何意义,解答关键是利用函数单调性求最值及均值不等式与柯西不等式的灵活运用.4.(2014•苏州一模)已知x ,y ,z 均为正数.求证:.考点: 不等式的证明.专题:常规题型;压轴题;综合法.分析:分别对,,进行化简分析,得出与的关系,然后三个式子左右分别相加除以2即可得到结论.解答:证明:因为x,y,z都是为正数,所以①同理可得②③当且仅当x=y=z时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得:点评:本题考查不等式的证明,涉及基本不等式的应用,属于中档题.5.(2014•长春一模)(选做题)已知f(x)=|x+1|+|x﹣1|,不等式f(x)<4的解集为M.(1)求M;(2)当a,b∈M时,证明:2|a+b|<|4+ab|.考点:不等式的证明;带绝对值的函数.专题:综合题;压轴题.分析:(Ⅰ)将函数写成分段函数,再利用f(x)<4,即可求得M;(Ⅱ)利用作差法,证明4(a+b)2﹣(4+ab)2<0,即可得到结论.解答:(Ⅰ)解:f(x)=|x+1|+|x﹣1|=当x<﹣1时,由﹣2x<4,得﹣2<x<﹣1;当﹣1≤x≤1时,f(x)=2<4;当x>1时,由2x<4,得1<x<2.所以M=(﹣2,2).…(5分)(Ⅱ)证明:当a,b∈M,即﹣2<a,b<2,∵4(a+b)2﹣(4+ab)2=4(a2+2ab+b2)﹣(16+8ab+a2b2)=(a2﹣4)(4﹣b2)<0,∴4(a+b)2<(4+ab)2,∴2|a+b|<|4+ab|.…(10分)点评:本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式.6.(2014•长安区三模)设函数f(x)=x﹣a(x+1)ln(x+1),(x>﹣1,a≥0)(Ⅰ)求f(x)的单调区间;(Ⅱ)当a=1时,若方程f(x)=t在上有两个实数解,求实数t的取值范围;(Ⅲ)证明:当m>n>0时,(1+m)n<(1+n)m.考点:不等式的证明;利用导数研究函数的单调性.专题:综合题;压轴题.分析:(Ⅰ)求导数,再利用导数大于0,求函数的单调区间;(Ⅱ)由(Ⅰ)知,f(x)在上单调递增,在[0,1]上单调递减可得解(Ⅲ)根据要证明的结论,利用分析法来证明本题,从结论入手,要证结论只要证明后面这个式子成立,两边取对数,构造函数,问题转化为只要证明函数在一个范围上成立,利用导数证明函数的性质.解答:解:(Ⅰ)f′(x)=1﹣aln(x+1)﹣a①a=0时,f′(x)>0∴f(x)在(﹣1,+∞)上是增函数…(1分)②当a>0时,f(x)在上递增,在单调递减.…(4分)(Ⅱ)由(Ⅰ)知,f(x)在上单调递增,在[0,1]上单调递减又∴∴当时,方程f(x)=t有两解…(8分)(Ⅲ)要证:(1+m)n<(1+n)m只需证nln(1+m)<mln(1+n),只需证:设,则…(10分)由(Ⅰ)知x﹣(1+x)ln(1+x),在(0,+∞)单调递减…(12分)∴x﹣(1+x)ln(1+x)<0,即g(x)是减函数,而m>n∴g(m)<g(n),故原不等式成立.…(14分)点评:考查不等式的证明,考查化归思想,考查构造函数,是一个综合题,题目难度中等,在证明不等式时,注意采用什么形式,选择一种合适的写法7.(2014•赤峰模拟)已知函数f(x)=m﹣|x﹣1|﹣|x﹣2|,m∈R,且f(x+1)≥0的解集为[0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.考点:不等式的证明.专题:高考数学专题.分析:第(1)问中,分离m,由|x|+|x﹣1|≥1确定将m分“m<1”与“m≥1”进行讨论;(2)中,可利用重要不等式将x2+a2与ax联系,y2+b2与by联系,z2+c2与cz联系.解答:解:(1)由f(x+1)≥0得|x|+|x﹣1|≤m.若m<1,∵|x|+|x﹣1|≥1恒成立,∴不等式|x|+|x﹣1|≤m的解集为∅,不合题意.若m≥1,①当x<0时,得,∴;②当0≤x≤1时,得x+1﹣x≤m,即m≥1恒成立;③当x>1时,得,∴1,综上可知,不等式|x|+|x﹣1|≤m的解集为[,].由题意知,原不等式的解集为[0,1],∴解得m=1.(2)证明:∵x2+a2≥2xa,y2+b2≥2yb,z2+c2≥2zc,以上三式相加,得x2+y2+z2+a2+b2+c2≥2xa+2yb+2zc.由题设及(1),知x2+y2+z2=a2+b2+c2=m=1,∴2≥2(xa+yb+zc),即ax+by+cz≤1,得证.点评:本题难度与高考相当,第(1)问考查了分段讨论法解绝对值不等式,对参数的讨论是前提;第(2)问要求学生掌握不等式的基本性质,关键是联系第一问求解.8.(2014•濮阳二模)已知函数f(x)=|x﹣1|.(Ⅰ)解不等式f(x﹣1)+f(x+3)≥6;(Ⅱ)若|a|<1,|b|<1,且a≠0,求证:.考点:不等式的证明;绝对值不等式;绝对值不等式的解法.专题:不等式选讲.分析:(Ⅰ)根据绝对值不等式的解法解不等式f(x﹣1)+f(x+3)≥6即可;(Ⅱ)利用分析法进行证明不等式.解答:解:(I)∵f(x)=|x﹣1|.∴不等式f(x﹣1)+f(x+3)≥6等价|x﹣2|+|x+2|≥6,若当x≥2时,不等式等价为x﹣2+x+2≥6,即2x≥6,解得x≥3.当﹣2<x<2时,不等式等价为2﹣x+x+2≥6,即4≥6,此时不成立.当x≤﹣2时,不等式等价为2﹣x﹣x﹣2≥6,即2x≤﹣6,即x≤﹣3.综上不等式的解集为(﹣∞,﹣3]∪[3,+∞).(II)要证,只需证|ab﹣1|>|b﹣a|,只需证(ab﹣1)2>(b﹣a)2而(ab﹣1)2﹣(b﹣a)2=a2b2﹣a2﹣b2+1=(a2﹣1)(b2﹣1)>0,∵|a|<1,|b|<1,∴a2<1,b2<1,即a2﹣1<0,b2﹣1<0,即(a2﹣1)(b2﹣1)>0,成立,从而原不等式成立.点评:本题主要考查绝对值不等式的解法,要注意进行分段讨论.9.(2014•宁城县模拟)已知a,b,c均为正实数,且ab+bc+ca=1.求证:(Ⅰ)a+b+c≥;(Ⅱ)++≥(++).考点:不等式的证明.专题:选作题;不等式选讲.分析:(Ⅰ)由题意可得,只需证(a+b+c)2≥3,只需证a2+b2+c2≥1,只需证a2+b2+c2﹣(ab+bc+ca)≥0,只需证(a﹣b)2+(b﹣c)2+(c﹣a)2≥0;(Ⅱ)由(Ⅰ)知,a+b+c≥,证明++≥(++),只需证明≥++,结合基本不等式,即可得证.解答:证明:(Ⅰ)要证原不等式成立,只需证(a+b+c)2≥3,即证a2+b2+c2+2(ab+bc+ca)≥3,又ab+bc+ca=1.所以,只需证:a2+b2+c2≥1,即a2+b2+c2﹣1≥0,因为ab+bc+ca=1.所以,只需证:a2+b2+c2﹣(ab+bc+ca)≥0,只需证:2a2+2b2+2c2﹣2(ab+bc+ca)≥0,即(a﹣b)2+(b﹣c)2+(c﹣a)2≥0,而(a﹣b)2+(b﹣c)2+(c﹣a)2≥0显然成立,故原不等式成立;(Ⅱ)∵++=,由(Ⅰ)知,a+b+c≥,∴证明++≥(++),只需证明≥++,即证明:+b+c≤ab+bc+ca,∵≤,b≤,c≤,∴+b+c≤ab+bc+ca,∴++≥(++).点评:本题考查用分析法证明不等式,寻找使不等式成立的充分条件,是解题的关键.10.(2014•沈阳一模)已知函数f(x)=lnx,.(Ⅰ)若f(x)与g(x)在x=1处相切,试求g(x)的表达式;(Ⅱ)若在[1,+∞)上是减函数,求实数m的取值范围;(Ⅲ)证明不等式:.考点:不等式的证明;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:不等式的解法及应用.分析:(Ⅰ)求导数,利用f(x)与g(x)在x=1处相切,可求g(x)的表达式;(Ⅱ)在[1,+∞)上是减函数,可得导函数小于等于0在[1,+∞)上恒成立,分离参数,利用基本不等式,可求实数m的取值范围;(Ⅲ)当x≥2时,证明,当x>1时,证明,利用叠加法,即可得到结论.解答:(Ⅰ)解:∵f(x)=lnx,∴,∴,得:a=2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2分)又∵,∴b=﹣1,∴g(x)=x﹣1;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(3分)(Ⅱ)解:∵=在[1,+∞)上是减函数,∴在[1,+∞)上恒成立.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)即x2﹣(2m﹣2)x+1≥0在[1,+∞)上恒成立,由,x∈[1,+∞),∵,∴2m﹣2≤2得m≤2;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(Ⅲ)证明:由(Ⅰ)可得:当x≥2时,,∴得:,∴,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(8分)∴当x=2时,;当x=3时,;当x=4时,,…,当x=n+1时,,n∈N+,n≥2上述不等式相加得:即:①﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(9分)由(Ⅱ)可得:当m=2时,ϕ(x)=在[1,+∞)上是减函数,∴当x>1时,ϕ(x)<ϕ(1)=0,即<0,所以,从而得到.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(11分)当x=2时,;当x=3时,;当x=4时,,…,当x=n+1时,,n∈N+,n≥2上述不等式相加得:==即②综上:(n∈N+,n≥2)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)点评:本题考查不等式的证明,考查导数知识的运用,考查基本不等式的运用,考查叠加法,考查学生分析解决问题的能力,难度较大.11.(2014•梅州一模)已知函数f(x)=ax2+ln(x+1).(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)当x∈[0,+∞)时,函数y=f(x)图象上的点都在所表示的平面区域内,求实数a的取值范围.(Ⅲ)求证:(其中n∈N*,e是自然对数的底数).不等式的证明;利用导数研究函数的单调性.考点:专综合题.题:分(Ⅰ)把a=﹣代入函数f(x),再对其进行求导利用导数研究函数f(x)的单调区间;析:(Ⅱ)已知当x∈[0,+∞)时,函数y=f(x)图象上的点都在所表示的平面区域内,将问题转化为当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)﹣x≤0恒成立,只要求出ax2+ln(x+1)﹣x的最小值即可,令新的函数,利用导数研究其最值问题;(Ⅲ)由题设(Ⅱ)可知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用此不等式对所要证明的不等式进行放缩,从而进行证明;解解:(Ⅰ)当时,(x>﹣1),答:(x>﹣1),由f'(x)>0解得﹣1<x<1,由f'(x)<0,解得x>1.故函数f(x)的单调递增区间为(﹣1,1),单调递减区间为(1,+∞).(4分)(Ⅱ)因函数f(x)图象上的点都在所表示的平面区域内,则当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)﹣x≤0恒成立,设g(x)=ax2+ln(x+1)﹣x(x≥0),只需g(x)max≤0即可.(5分)由=,(ⅰ)当a=0时,,当x>0时,g'(x)<0,函数g(x)在(0,+∞)上单调递减,故g(x)≤g(0)=0成立.(6分)(ⅱ)当a>0时,由,因x∈[0,+∞),所以,①若,即时,在区间(0,+∞)上,g'(x)>0,则函数g(x)在(0,+∞)上单调递增,g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;②若,即时,函数g(x)在上单调递减,在区间上单调递增,同样g(x)在[0,+∞)上无最大值,不满足条件.(8分)(ⅲ)当a<0时,由,∵x∈[0,+∞),∴2ax+(2a ﹣1)<0,∴g'(x )<0,故函数g (x )在[0,+∞)上单调递减, 故g (x )≤g (0)=0成立.综上所述,实数a 的取值范围是(﹣∞,0].(10分)(Ⅲ)据(Ⅱ)知当a=0时,ln (x+1)≤x 在[0,+∞)上恒成立 (或另证ln (x+1)≤x 在区间(﹣1,+∞)上恒成立),(11分) 又,∵===,∴.(14分)点评: 此题主要考查利用导数研究函数的单调区间和最值问题,解题过程中多次用到了转化的思想,第二题实质还是函数的恒成立问题,第三问不等式的证明仍然离不开前面两问所证明的不等式,利用它们进行放缩证明,本题难度比较大,是一道综合题; 12.(2014•遵义二模)(1)已知x 、y 都是正实数,求证:x 3+y 3≥x 2y+xy 2; (2)若不等式|a ﹣1|≥++对满足x+y+z=1的一切正实数x ,y ,z 恒成立,求实数a 的取值范围.考点: 不等式的证明.专题: 不等式的解法及应用.分析: (1)利用作差法,因式分解,即可得到结论;(2)根据柯西不等式证明++≤3,利用|a ﹣1|≥++对满足x+y+z=1的一切正实数x ,y ,z 恒成立,可得|a ﹣1|,从而可求实数a 的取值范围.解答: (1)证明:由x 3+y 3﹣x 2y ﹣xy 2=x 2(x ﹣y )+y 2(y ﹣x )=(x ﹣y )(x 2﹣y 2)=(x ﹣y )2(x+y )…(3分)又x 、y 都是正实数,∴(x ﹣y )2≥0,x+y >0, ∴x 3+y 3﹣x 2y ﹣xy 2>0, ∴x 3+y 3≥x 2y+xy 2;…(5分)(2)解:由题意,根据柯西不等式有(++)2≤(12+12+12)[()2+()2+()2]=3[3(x+y+z )+3]=3×6=18, ∴++≤3…(3分)又|a ﹣1|≥++对满足x+y+z=1的一切正实数x ,y ,z 恒成立, ∴|a ﹣1|,∴a +1或a ,∴a 的取值范围是(﹣]∪[1+3,+∞).…(5分)点评:本题考查不等式的证明,考查柯西不等式的运用,考查恒成立问题,考查学生分析解决问题的能力,正确运用柯西不等式是关键.13.(2014•红河州模拟)函数f(x)=.(Ⅰ)若a=5,求函数f(x)的定义域A;(Ⅱ)设B={x|﹣1<x<2},当实数a,b∈B∩(∁R A)时,求证:<|1+|.考点:不等式的证明;集合的包含关系判断及应用;函数的定义域及其求法.专题:函数的性质及应用;不等式的解法及应用;集合.分析:(Ⅰ)根据题意,得|x+1|+|x+2|﹣5≥0;求出x的取值范围,即是f(x)的定义域A;(Ⅱ)由A、B求出B∩C R A,即得a、b的取值范围,由此证明成立即可.解答:解:(Ⅰ)a=5时,函数f(x)=,∴|x+1|+|x+2|﹣5≥0;即|x+1|+|x+2|≥5,当x≥﹣1时,x+1+x+2≥5,∴x≥1;当﹣1>x>﹣2时,﹣x﹣1+x+2≥5,∴x∈∅;当x≤﹣2时,﹣x﹣1﹣x﹣2≥5,∴x≤﹣4;综上,f(x)的定义域是A={x|x≤﹣4或x≥1}.(Ⅱ)∵A={x|x≤﹣4或x≥1},B={x|﹣1<x<2},∴∁R A=(﹣4,1),∴B∩C R A=(﹣1,1);又∵,而;当a,b∈(﹣1,1)时,(b2﹣4)(4﹣a2)<0;∴4(a+b)2<(4+ab)2,即.点评:本题考查了求函数的定义域以及集合的运算和不等式的解法与证明问题,是综合题,解题时应把含绝对值的不等式分类讨论,不等式证明时常用作差法,是中档题.14.(2014•河北模拟)设不等式﹣2<|x﹣1|﹣|x+2|<0的解集为M,a、b∈M,(1)证明:|a+b|<;(2)比较|1﹣4ab|与2|a﹣b|的大小,并说明理由.考点:不等式的证明;绝对值不等式的解法.专题:不等式的解法及应用.分析:(1)利用绝对值不等式的解法求出集合M,利用绝对值三角不等式直接证明:|a+b|<;(2)利用(1)的结果,说明ab的范围,比较|1﹣4ab|与2|a﹣b|两个数的平方差的大小,即可得到结果.解答:解:(1)记f(x)=|x﹣1|﹣|x+2|=由﹣2<﹣2x﹣1<0解得﹣<x<,则M=(﹣,).…(3分)∵a、b∈M,∴,所以|a+b|≤|a|+|b|<×+×=.…(6分)(2)由(1)得a2<,b2<.因为|1﹣4ab|2﹣4|a﹣b|2=(1﹣8ab+16a2b2)﹣4(a2﹣2ab+b2)=(4a2﹣1)(4b2﹣1)>0,…(9分)所以|1﹣4ab|2>4|a﹣b|2,故|1﹣4ab|>2|a﹣b|.…(10分)点评:本题考查不等式的证明,绝对值不等式的解法,考查计算能力.15.(2014•河北模拟)已知a,b>0,且a+b=1,求证:(Ⅰ)+≥8;(Ⅱ)++≥8.考点:不等式的证明.专题:证明题;不等式选讲.分析:(Ⅰ)利用a+b=1,通过重要不等式以及基本不等式,推出,然后证明+≥8;(Ⅱ)利用a+b=1,利用1的代换,转化++为+,利用基本不等式即可求证结果.解答:证明:(Ⅰ)∵ab≤()2=,当且仅当a=b时等号成立,∵a+b=1,a=b=,∴.∵+≥≥8,当且仅当a=b=时等号成立,∴+≥8.(5分)(Ⅱ)∵++=++=+++=2(a+b)(+)=4+2()≥4+4=8,当且仅当a=b=时等号成立,∴++≥8.(10分)点评:利用基本不等式以及重要不等式以及“1”的代换,注意“正、定、等”的应用.16.(2014•海南模拟)已知a,b均为正数,且a+b=1,证明:(1)(ax+by)2≤ax2+by2(2)(a+)2+(b+)2≥.考点:不等式的证明.专题:证明题.分析:(1)将所证的关系式作差(ax+by)2﹣(ax2+by2)=a(a﹣1)x2+b(b﹣1)y2+2abxy利用a+b=1,整理,可得a(a﹣1)x2+b(b﹣1)y2+2abxy=﹣ab(x﹣y)2≤0,当且仅当x=y时等号成立;(2)将所证的不等式左端展开,转化为,进一步整理后,利用基本不等式即可证得结论成立.解答:证明:(1))(ax+by)2﹣(ax2+by2)=a(a﹣1)x2+b(b﹣1)y2+2abxy,因为a+b=1,所以a﹣1=﹣b,b﹣1=﹣a,又a,b均为正数,所以a(a﹣1)x2+b(b﹣1)y2+2abxy=﹣ab(x2+y2﹣2xy)=﹣ab(x﹣y)2≤0,当且仅当x=y时等号成立;(2)==.当且仅当a=b时等号成立.点评:本题考查不等式的证明,着重考查作差法的应用,突出考查等价转化思想与逻辑推理能力,属于难题.17.(2013•临汾模拟)已知a2+b2=1,c2+d2=1.(Ⅰ)求证:ab+cd≤1.(Ⅱ)求a+b的取值范围.考点:不等式的证明.专题:综合题;不等式的解法及应用.分析:(Ⅰ)利用综合法,结合基本不等式,即可得出结论;(Ⅱ)设=(a,b),=(1,),利用|⋅|≤||⋅||,可求a+b的取值范围.解答:(I)证明:∵a2+b2≥2ab,c2+d2≥2cd,∴a2+b2+c2+d2≥2(ab+cd),当且仅当a=b=c=d=时取“=”…(2分)又∵a2+b2=1,c2+d2=1∴2(ab+cd)≤2 …(4分)∴ab+cd≤1 …(5分)(Ⅱ)解:设=(a,b),=(1,),∵|⋅|≤||⋅||,…(8分)∴|a+b|≤2=2,∴﹣2≤a+b≤2∴a+b的取值范围为[﹣2,2].…(10分)点评:本题考查不等式的证明,考查求a+b的取值范围,正确运用基本不等式,合理构造向量是关键.18.(2014•乌鲁木齐三模)已知a,b,c∈R*,证明:(1)(a+b+c)(a2+b2+c2)≤3(a3+b3+c3);(2)++≥.考点:不等式的证明.专题:高考数学专题.分析:第(1)问考虑左边展开与右边可抵消一个a2+b2+c2,想到作差比较,项较多,可重新分组进行因式分解;第(2)可通过构造柯西不等式放缩,获取定值.解答:证明:(Ⅰ)右边﹣左边,得3(a3+b3+c3)﹣(a+b+c)(a2+b2+c2)=2(a3+b3+c3)﹣a(b2+c2)﹣b(a2+c2)﹣c(a2+b2).∵a,b∈R*,∴a3+b3﹣a2b﹣ab2=a2(a﹣b)+b2(b﹣a)=(a﹣b)2(a+b)≥0.∴a3+b3≥a2b+ab2,同理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2,以上三式相加得=2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac,∴2(a3+b3+c3)﹣a(b2+c2)﹣b(a2+c2)﹣c(a2+b2)≥0,∴(a+b+c)(a2+b2+c2)≤3(a3+b3+c3).(Ⅱ)∵a,b,c∈R*,∴a+b>0,b+c>0,c+a>0,由柯西不等式得)[(a+b)+(b+c)+(c+a)]≥2=9,即2(a+b+c)(++)≥9,∴2(++)≥3,故++≥,当且仅当a=b=c时,不等式取等号.点评:本题的两小问设置合理,主要考查了不等式的基本性质及变形技巧,作差比较法,柯西不等式等.19.(2014•淮安模拟)已知a,b,c均为正数,证明:.考点:不等式的证明.专题:不等式的解法及应用.分析:两次运用基本不等式即可证明结论.解答:证明:∵a,b,c均为正数,∴左边≥≥2=2=6,当且仅当a=b=c时取等号,∴.点评:本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.20.(2014•南通一模)已知实数x,y满足:,求证:.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:首先由3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,再结合已知的不等式,即可证得结论.解答:证明:∵3|y|=|3y|=|2(x+y)﹣(2x﹣y)|≤2|x+y|+|2x﹣y|,由题设,∴.∴.点评:本题考查不等式的证明,考查学生分析转化问题的能力,属于中档题.21.(2014•南通三模)已知x>0,y>0,a∈R,b∈R.求证()2≤.考点:不等式的证明.专题:不等式的解法及应用.分析:利用“分析法”和不等式的性质即可证明.解答:证明:∵x>0,y>0,∴x+y>0,∴要证,即证(ax+by)2≤(x+y)(a2x+b2y).即证xy(a2﹣2ab+b2)≥0,即证(a﹣b)2≥0,而(a﹣b)2≥0显然成立,故.点评:本题考查了“分析法”和不等式的性质证明不等式,属于基础题.22.(2014•南通模拟)设a,b,c,d∈R,求证:+≥,等号当且仅当ad=bc 时成立.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:运用分析法证明,要证原不等式成立,可考虑两边平方,化简整理,再由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,即可得证.解答:证明:要证+≥,即证(+)2≥()2,即为a2+b2+c2+d2+2≥(a+c)2+(b+d)2,化简后,即证≥ac+bd,由柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,得|ac+bd|≥ac+bd.则原不等式得证.且有原不等式中等号当且仅当ad=bc时成立.点评:本题考查不等式的证明,考查柯西不等式的运用,以及不等式的性质的运用,考查推理能力,属于中档题.23.(2014•昆明一模)已知a,b,c均为正数.(Ⅰ)求证:a2+b2+()2≥4;(Ⅱ)若a+4b+9c=1,求证:≥100.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:利用基本不等式,即可证明结论.解答:证明:(Ⅰ)∵a,b均为正数,∴a2+b2≥2ab,≥,∴a2+b2+≥2ab+,∴a2+b2+()2≥2ab+≥4,当且仅当a=b=时,等号成立.(Ⅱ)∵a+4b+9c=1,∴=(a+4b+9c)()=9+16+9+++≥34+24+18+24=100,当且仅当a=3b=9c时等号成立.点评:本题考查不等式的证明,考查基本不等式的运用,掌握基本不等式的使用条件是关键.24.(2014•贵州二模)设不等式|x﹣2|<m(m∈N+)的解集为A,且∈A,∉A.(Ⅰ)求m的值;(Ⅱ)若a,b,c∈R+,且a+b+c=,求证:++≥9.考点:不等式的证明.专题:选作题;不等式的解法及应用.分析:(Ⅰ)根据∈A,∉A,求出m的范围,结合m∈N+,即可求m的值;(Ⅱ)利用“1”的代换,结合基本不等式,即可得出结论.解答:(Ⅰ)解:由.﹣﹣(4分)∵m∈N+,∴m=1.﹣﹣(5分)(Ⅱ)证明:由(Ⅰ)有:(a,b,c∈R+)又===≥9,∴++≥9﹣﹣(10分)点评:本题考查绝对值不等式的解法,考查不等式的证明,正确运用“1”的代换,基本不等式,是解题的关键.25.(2014•盐城二模)已知x,y∈R,且|x+y|≤,|x﹣y|≤,求证:|x+5y|≤1.考点:不等式的证明;绝对值不等式.专题:证明题.分析:利用x+5y=3(x+y)﹣2(x﹣y),利用绝对值不等式的性质即可证得结论.解答:证明:∵|x+y|≤,|x﹣y|≤,∴|x+5y|=|3(x+y)﹣2(x﹣y)|≤|3(x+y)|+|2(x﹣y)|=3|x+y|+2|x﹣y|≤3×+2×=1.即|x+5y|≤1.点评:本题考查绝对值不等式的性质,分析得到x+5y=3(x+y)﹣2(x﹣y)是应用绝对值不等式性质的关键,考查转化思想与推理论证能力,属于中档题.26.(2014•盐城一模)已知x1,x2,x3为正实数,若x1+x2+x3=1,求证:.考点:不等式的证明.专题:不等式的解法及应用.分析:由基本不等式,可得,,,三式相加,利用x1+x2+x3=1,可得结论.解答:证明:∵x1,x2,x3为正实数,∴,,,∴三式相加,可得+x 3≥2(x 1+x 2+x 3),∵若x 1+x 2+x 3=1,∴.点评: 本题考查基本不等式的运用,考查学生分析解决问题的能力,正确运用基本不等式是关键.27.(2014•福建模拟)已知f (x )=aln (x+1)++3x ﹣1.(1)若x ≥0时,f (x )≥0恒成立,求实数a 的取值范围; (2)求证:ln (2n+1)对一切正整数n 均成立.考点:不等式的证明. 专题:选作题;不等式选讲. 分析:(1)求导数,分类讨论,确定函数的单调性,即可求实数a 的取值范围; (2)由(1)知,x >0时,不等式恒成立,则x >0时,恒成立.令(k ∈N *),.令k=1,2,3,…,n ,叠加,即可证明结论.解答:(1)解:.若a ≥﹣2,则a+6>0,x >0时,f'(x )>0.此时,f (x )在区间[0,+∞)上为增函数. ∴x ≥0时,f (x )≥f (0)=0.a ≥﹣2符合要求.若a <﹣2,则方程3x 2+(a+6)x+a+2=0有两个异号的实根,设这两个实根为x 1,x 2,且x 1<0<x 2. ∴0<x <x 2时,f'(x )<0.f (x )在区间[0,x 2]上为减函数,f (x 2)<f (0)=0. ∴a <﹣2不符合要求.∴a 的取值范围为[﹣2,+∞). (2)证明:由(1)知,x >0时,不等式恒成立.∴x >0时,恒成立.令(k ∈N *),得, 整理得 .∴.令k=1,2,3,…,n ,得,,,…,.将上述n 个不等式的左右两边分别相加,得. ∴对一切正整数n 均成立.点评: 本题考查导数知识的运用,考查函数的单调性,考查不等式的证明,巧妙利用两小题之间的关系,是解题的关键. 28.(2014•静安区一模)(理)(1)设x 、y 是不全为零的实数,试比较2x 2+y 2与x 2+xy 的大小; (2)设a ,b ,c 为正数,且a 2+b 2+c 2=1,求证:++﹣≥3.考点: 不等式的证明;比较法.专题: 证明题;不等式的解法及应用.分析: (1)解法1:利用作差法;解法2:利用分类讨论思想,分xy <0与xy >0讨论即可证得结论;(2)利用作差法,通过通分、分组、配方等一系列转化,即可证得结论.解答: 证明:(1)证法1:∵x 、y 是不全为零的实数,∴2x 2+y 2﹣(x 2+xy ) =x 2+y 2﹣xy=+y 2>0,∴2x 2+y 2>x 2+xy .证法2:当xy <0时,x 2+xy <2x 2+y 2;当xy >0时,作差:x 2+y 2﹣xy ≥2xy ﹣xy=xy >0; 又因为x 、y 是不全为零的实数, ∴当xy=0时,2x 2+y 2>x 2+xy . 综上,2x 2+y 2>x 2+xy . (2)证明:∵++﹣﹣3=++﹣﹣3=a 2(+)+b 2(+)+c 2(+)﹣2(++)=a 2+b 2+c 2≥0(当且仅当a=b=c 时,取得等号),∴++﹣≥3.点评: 本题考查不等式的证明,着重考查作差法,考查通分、配方、分类讨论等方法,运用转化思想,推理证明,属于难题.29.(2013•泰州三模)选修4﹣5:不等式选讲已知a>0,b>0,n∈N*.求证:.考点:综合法与分析法(选修).专题:不等式的解法及应用.分析:先用分析法证明,再利用基本不等式,即可证得成立.解答:证明:先证,只要证2(a n+1+b n+1)≥(a+b)(a n+b n),即要证a n+1+b n+1﹣a n b﹣ab n≥0,即要证(a﹣b)(a n﹣b n)≥0,…(5分)若a≥b,则a﹣b≥0,a n﹣b n≥0,所以,(a﹣b)(a n﹣b n)≥0.若a<b,则a﹣b<0,a n﹣b n<0,所以(a﹣b)(a n﹣b n)>0,综上,可得(a﹣b)(a n﹣b n)≥0,从而.…(8分)因为,所以.…(10分)点评:本题主要考查用分析法证明不等式,基本不等式的应用,属于中档题.30.(2013•盐城二模)(选修4﹣5:不等式选讲)若,证明.考点:不等式的证明;柯西不等式的几何意义.专题:证明题.分析:直接构造18=6×3=[(1+2x)+(3+x)+(2﹣3x)](1+1+1),利用柯西不等式证明即可.解答:证明:因为18=6×3=[(1+2x)+(3+x)+(2﹣3x)](1+1+1),由柯西不等式可得:…(7分)又,所以.…(10分)点评:本题考查柯西不等式的证明方法的应用,构造柯西不等式是解题的关键.。
一、选择题1.若实数231x y z ++=,则222x y z ++的最小值为( )A .14B .114C .29D .1292.若函数()f x 在其图象上存在不同的两点()11A x ,y ,()22B x ,y ,其坐标满足条件:1212x x y y +0,则称()f x 为“柯西函数”, 则下列函数:()1f x x (x 0)x①=+>; ()f x lnx(0x 3)=<<②; ()f x cosx =③; ()2f x x 1=-④.其中为“柯西函数”的个数为( ) A .1B .2C .3D .43.y=x 的最大值是 ( )A .1B .2C D .44.若5x 1+6x 2-7x 3+4x 4=1,则222212343x 2x 5x x +++的最小值是( ) A .78215B .15782C .3D .2535.已知x >0,y >0,z >0,且x +y +z =3,则x 2+y 2+z 2的最小值是( )A .3B .1C .12D .136.若实数x +y +z =1,则2x 2+y 2+3z 2 的最小值为( )A .1B .23 C .611D .117.设a , b , c >0,且a +b +c =1的最大值是( )A .1B C .3D .98.若,,a b c R +∈,且1a b c ++= )A .2B .32C D .539.已知函数1212)(+=x x -x f ,则不等式12log (1)(2)f x f x ⎛⎫-+- ⎪⎝⎭>0的解集为( ) A .(2,3) B .(1,3) C .(0,2) D .(1,2)10.84.不等式的解集为( )A .[-4,2]B .C .D .11.若23529x y z ++=,则函数213456u x y z =+++++的最大值为( ) A .5B .215C .230D .3012.用反证法证明:“”,应假设( )A .B .C .D .二、填空题13.设x ,y ,z 均为实数,则22222x y z x y z+-++的最大值是________.14.若,,x y z R ∈,且226x y z ++=,则222x y z ++的最小值为________. 15.实数x ,y ,z 满足2224270x y z x z ++++-=,则x y z ++的最大值为__________.16.已知实数,,,x y a b 满足:221a b +≤,2224x x y x y ≤⎧⎪+≥⎨⎪+≤⎩,则ax by +的最大值为__________ .17.设向量(,)a b α=,(,)c d β=,其中a ,b ,c ,d R ∈,由不等式||||||⋅≤αβαβ恒成立,可以证明柯西不等式22222()()()a b c d ac bd ≥+++(当且仅当k αβ=,即ad bc =时等号成立).已知x ,y R +∈,若3x y k x y +<+恒成立,利用柯西不等式可求得实数k 的取值范围为________________. 18.若23411x y z ++=,则222x y z ++的最小值为_________.19.已知正实数,,a b c ,且1a b c ++=,则()222149a b c +++的最小值为______. 20.设、、,,试求的最大值_________.三、解答题21.已知,a b 为实数,且满足223412a b +≤.证明: (1)3ab ≤ (2)24a b +≤.22.若实数x ,y ,z 满足231x y z ++=,求222x y z ++的最小值.23.设x ,y ,z 均为正实数,且1x y z ++=,求222111x y z x y z+++++的最小值.24.已知x ,y ,z 均为正实数,且222111149x y z ++=. 证明:(1)1111263xy yz xz++≤; (2)222499x y z ++≥.25.已知()()2f x x m m m R =-+∈.(1)若不等式()2f x ≤的解集为13,22⎡⎤⎢⎥⎣⎦,求m 的值;(2)在(1)的条件下,若a ,b ,c +∈R ,且4a b c m ++=,求证:4436ac bc ab abc ++≥.26.已知a ,b ,c 为正实数,且a+b+c=1. (Ⅰ)证明:1111118a b c ⎛⎫⎛⎫⎛⎫---≥ ⎪⎪⎪⎝⎭⎝⎭⎝⎭; (Ⅱ)证明:32++≥+++a b c b c a c a b .【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】直接利用柯西不等式得到答案. 【详解】根据柯西不等式:()()2221492231x y zy z ++++≥++=,即222114xy z ++≥, 当且仅当114x =,17y =,314z =时等号成立. 故选:B. 【点睛】本题考查了柯西不等式,意在考查学生对于柯西不等式的应用能力.2.C解析:C 【分析】问题转化为存在过原点的直线y kx =与()y f x =的图象有两个不同的交点,利用方程思想与数形结合思想,逐一判断即可. 【详解】由柯西不等式得:对任意实数2222112212121122,,,,0x y x y x x y y x y x y +-+⋅+≤恒成立(当且仅当1221x y x y =取等号),若函数()f x 在其图象上存在不同的两点()()1122,,,A x y B x y ,其坐标满足条件:222212121122x x y y x y x y +-+⋅+的最大值为0,则函数()f x 在其图象上存在不同的两点()()1122,,,A x y B x y ,使得,OA OB 共线,即存在过原点的直线y kx =与()y f x =的图象有两个不同的交点: 对于① ,方程()10kx x x x=+>,即()211k x -=,不可能有两个正根,故不存在; 对于②,,过原点的直线与函数()ln 03y x x =<<的图象在点(),1e 处相切,由图可知这样的直线存在;对于③,由图可知存在;对于④,由图可知存在,所以“柯西函数”的个数为2,故选C. 【点睛】本题考查了新定义,以及转化思想与数形结合思想的应用,属于难题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,函数图象是函数的一种表达形式,它形象地揭示了函数的性质,为研究函数的数量关系提供了“形”的直观性.归纳起来,图象的应用常见的命题探究角度有:1、确定方程根的个数;2、求参数的取值范围;3、求不等式的解集;4、研究函数性质.3.C解析:C【解析】 【分析】首先求得平方的最大值,然后确定y 的最大值即可. 【详解】函数有意义,则210x -≥,即11x -≤≤,且2112y =+≤+=,则y =x当且仅当221x x =-,即x =时等号成立. 本题选择C 选项. 【点睛】本题主要考查函数最值的求解,均值不等式的应用等知识,意在考查学生的转化能力和计算求解能力.4.B解析:B 【解析】 【分析】由题意结合柯西不等式的结论整理计算即可求得最终结果. 【详解】由题意结合柯西不等式有:()222212342549325181635x x x x ⎛⎫+++⨯+++ ⎪⎝⎭()212345674x x x x ≥+++()2123456741x x x x ≥+-+=.故2222123415325782x x x x +++≥. 本题选择B 选项. 【点睛】本题主要考查柯西不等式其最值的方法,意在考查学生的转化能力和计算求解能力.5.A解析:A 【解析】x 2+y 2+z 2=(12+12+12)(x 2+y 2+z 2)×13≥(1×x +1×y +1×z )2×13=3.当且仅当x =y =z =1时等号成立.6.C解析:C 【解析】由柯西不等式可知:(x+y+z )2≤(2x 2+y 2+3z 2)(2+12+2), 故2x 2+y 2+3z 2≥611,即:x 2+2y 2+3z 2的最小值为611. 故答案为C.7.B解析:B 【解析】由柯西不等式得()2222222111⎡⎤++++≥⎢⎥⎣⎦,2313∴≤⨯=,当且仅当13a b c ===时等号成立,B.8.C解析:C 【解析】试题分析:(()()22221111113a b c ≤++++=,因此,≤111==13a b c ===时取等号,故选C . 考点:柯西不等式.9.D解析:D 【解析】试题分析:由已知2112()()2112x xxxf x f x -----===-++,所以()f x 是奇函数,又2()121xf x =-+,2xy =是增函数,因此()f x 也是增函数,不等式12log (1)(2)0f x f x ⎛⎫-+-> ⎪⎝⎭可变为12(log (1)(2)(2)f x f x f x ->--=-,而()f x 为增函数,所以12log (1)2x x ->-,在(1,)+∞上,函数12log (1)y x =-是减函数,函数2y x =-是增函数,且2x =时两者相等,因此不等式12log (1)2x x ->-的解为12x <<.故选D .考点:函数的奇偶性、单调性,解函数不等式.【名师点睛】本题考查函数的奇偶性与单调性.解函数不等式,即使有函数解析式已知的情况下,也不一定要把函数式代入(而且一般不能代入),而是要利用奇偶性化为()()f a f b <的形式,再由单调性化为()a b a b <>或形式,最终不等式12log (1)2x x ->-是不可用代数法来解的,必须借助函数图象,利用函数的性质解题.10.A解析:A【解析】试题分析:由于|x-1|+|x+3|表示数轴上的x 对应点到-3和1对应点的距离之和,当x=2或-4时,|x-1|+|x+3|=6,由此求得不等式136x x -++≤的解集.|x-1|+|x+3|表示数轴上的x 对应点到-3和1对应点的距离之和,当x=2或-4时,|x-1|+|x+3|=6,故只有当[]4,2x ∈-时,不等式|x-1|+|x+3|≤6成立,故选A . 考点:绝对值不等式11.C解析:C 【解析】试题分析:由柯西不等式可得2222211341561213456111x y z x y z +⋅++⋅++⋅≤+++++++()()()∵2x+3y+5z=29,∴2211341561120x y z +⋅++⋅++⋅≤(),∴213456230x y z μ=+++++≤,∴213456x y z μ=+++++的最大值为230,故选C . 考点:二维形式的柯西不等式.12.B解析:B 【解析】试题分析:反证法反设时要假设所要证明的结论反面成立,因此需假设考点:反证法二、填空题13.【分析】首先利用柯西不等式可以得到从而求得两边开放得到从而求得其最大值【详解】由柯西不等式知所以所以当且仅当时等号成立故答案为:【点睛】该题考查的是有关式子的最值问题涉及到的知识点有柯西不等式在解题 解析:222【分析】首先利用柯西不等式可以得到2222222(2)[2(1)](2)x y z x y z ++++-≥+-,从而求得2222(2)1122x y z x y z +-≤++≤. 【详解】由柯西不等式知2222222(2)[2(1)](2)x y z x y z ++++-≥+-, 所以2222(2)1122x y z x y z +-≤++,≤,当且仅当202xy z ==->时等号成立,. 【点睛】该题考查的是有关式子的最值问题,涉及到的知识点有柯西不等式,在解题的过程中,注意对柯西不等式形式的配凑,属于较难题目.14.4【分析】根据条件及所求式子的特征可利用柯西不等式即可求得的最小值【详解】由柯西不等式可知即所以当且仅当时即当时等号成立即的最小值为故答案为:【点睛】本题考查了柯西不等式在求最值中的应用属于基础题解析:4 【分析】根据条件及所求式子的特征,可利用柯西不等式,即可求得222x y z ++的最小值. 【详解】由柯西不等式可知()()()222222221222x y z x y z ++++≥++,即()222936x yz ⨯++≥,所以2224x y z ++≥,当且仅当22226x z y x y z ⎧==⎪⎨⎪++=⎩时,即当4323x z y ⎧==⎪⎪⎨⎪=⎪⎩时,等号成立, 即222x y z ++的最小值为4. 故答案为:4. 【点睛】本题考查了柯西不等式在求最值中的应用,属于基础题.15.3【解析】分析:由可得换元后利用柯西不等式求解即可详解:可得设可得当且仅当时的最大值为此时由此可得的最大值为故答案为点睛:本题主要考查了一般形式的柯西不等式属于中档题解决问题的关键是利用柯西不等式求解析:3 【解析】分析:由2224270x y z x z ++++-=,可得()()2222112x y z ++++=,换元后利用柯西不等式求解即可.详解:2224270x y z x z ++++-=,可得()()2222112x y z ++++=,设2,,1x w y v z u +==+=,可得()()2222222112x y z w v u ++++=++=,3x y z w v u ∴++=++-,()()()222222211136w v u wv u ++≤++++=,66w v u ∴-≤++≤,当且仅当,2w v u ===时,w v u ++的最大值为6, 此时21x y z +==+,由此可得x y z ++的最大值为633-=,故答案为3.点睛:本题主要考查了一般形式的柯西不等式,属于中档题. 解决问题的关键是利用柯西不等式求最值时, 关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件, 配凑过程采取如下方法:一是考虑题设条件;二是对原目标函数进行配凑后利用柯西不等式解答.16.【解析】分析:根据线性规划先求出的范围再根据柯西不等式求解详解:画出不等式组表示的可行域如图阴影部分所示表示可行域内的点到原点的距离结合图形可得点A 到原点的距离最大由解得故∴由柯西不等式得当且仅当时 解析:5【解析】分析:根据线性规划先求出22x y +的范围,再根据柯西不等式求解. 详解:画出不等式组表示的可行域如图阴影部分所示.22x y +A 到原点的距离最大,由224x x y =⎧⎨+=⎩,解得21x y =⎧⎨=⎩,故()2,1A , ∴225x y +≤.由柯西不等式得2222225ax by a bx y x y +≤++≤+≤,当且仅当x ya b=时等号成立.∴ax by +的最大值为5.点睛:在应用柯西不等式求最大值时,要注意等号成立的条件,柯西不等式在排列上规律明显,具有简洁、对称的美感,运用柯西不等式求解时,可按照“一看、二构造、三判断、四运用”的步骤求解.17.【解析】因为所以所以因为恒成立所以故实数的取值范围为 解析:(10,)+∞【解析】因为()()()22222a b c d ac bd ++≥+,所以()()()222313x yx y +≤++,所以310x y x y +≤+,因为x ,y R +∈,3x y k x y +<+恒成立,所以10k >.故实数k 的取值范围为()10,+∞.18.【解析】所以当且仅当即时取等号所以所求最小值为 解析:12129【解析】2222222211(234)(234)()x y z x y z =++≤++++,所以22212129x y z ++≥,当且仅当234x y z==,即223344,,292929x y z ===时取等号,所以所求最小值为12129. 19.【解析】试题分析:因为所以得当且仅当即时有最小值考点:柯西不等式 解析:14449【解析】试题分析:因为1a b c R a b c +∈++=,,,,所以()()22221111114912344923a b c a b c ⎛⎫⎡⎤⎡⎤+++++≥++⋅+⋅= ⎪⎢⎥⎣⎦⎝⎭⎣⎦,得()22214414949a b c +++≥.当且仅当,即23187,,494949a b c ===时,()222149a b c +++有最小值14449.考点:柯西不等式.20.15【分析】利用柯西不等式对代数式进行配凑可求出x+2y+2z 的最大值【详解】由柯西不等式得9×25=1+4+4x2+y2+z2≥x+2y+2z2即x+2y+2z2≤225∴x+2y+2z≤15当且 解析:.【分析】 利用柯西不等式对代数式进行配凑,可求出的最大值.【详解】 由柯西不等式得, 即,, 当且仅当时,等号成立,因此,的最大值为,故答案为. 【点睛】本题考查利用柯西不等式求最值,解题的关键就是结合所求代数式对定值条件进行配凑,考查计算能力,属于中等题.三、解答题21.(1)证明见解析;(2)证明见解析【分析】(1)结合基本不等式2a b ab +≥222234234a b a b +≥⋅(2)由柯西不等式()()()22222ab cd a b c d +≤++拼凑得()222132134133a b a b ⎫⎛⎫+⋅≤++ ⎪⎪⎝⎭⎭,代值化简即可求证. 【详解】(1)因为2222123423443a b a b ≥+≥⋅=,故43123ab ≤⇒≤(2)由题可得()22213213411633a b a b ⎫⎛⎫⋅≤++≤ ⎪⎪⎝⎭⎭,故()2216a b +≤,24a b +≤,24a b +≤.【点睛】方法点睛:本题考查由基本不等式与柯西不等式求证不等式成立,常用以下方法:(1)基本不等式的使用要注意理解()222,a b ab a b R +≥∈和()2,,a b ab a b R ++≥∈的区别,应用时重在寻找和与积的联系;(2)柯西不等式重在拼凑法的使用,如本题中2+a b 与2234a b +的联系,一次与二次的联系,拼凑的目的在于建立条件与所求不等式的统一.22.114【分析】利用条件231x y z ++=,构造柯西不等式()()()222222223123x y z x y z ++≤++++,进行解答即可.【详解】由柯西不等式可知:()()()222222223123x y z x y z ++≤++++, 即()222141x y z ++≥, 故222114x y z ++≥,当且仅当123x y z ==, 即222x y z ++的最小值为114. 【点睛】本题主要考查了利用柯西不等式求最值,属于中档题.利用柯西不等式求最值时, 关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件, 配凑过程采取如下方法:一是考虑题设条件;二是对原目标函数进行配凑后利用柯西不等式解答.23.14【分析】利用1x y z ++=,构造符合柯西不等式条件的标准形式,根据柯西不等式即得所求最值.【详解】由柯西不等式可得,()()2222111111x y z x y z x y z x y z ⎛⎫+++++++≥++ ⎪+++⎝⎭因为1x y z ++=, 即22241111x y z x y z ⎛⎫++≥ ⎪+++⎝⎭ 22211114x y z x y z ∴++≥+++, 当13x y z ===时,等号成立, 故222111x y z x y z+++++的最小值为14. 【点睛】本题主要考查柯西不等式求最值,解题的关键是构造符合柯西不等式条件的标准形式,属于中档题.24.(1)证明见解析;(2)证明见解析.【分析】(1)运用基本不等式,可得221114x y xy +≥,22111493y z yz +≥,2211293x z xz +≥三式相加,结合题设条件,即可求解;(2)由乘“1”法,结合柯西不等式证明,即可证明.【详解】(1)由基本不等式,可得221114x y xy +≥,22111493y z yz +≥,2211293x z xz +≥, 所以22211111224933x y z xy yz xz⎛⎫++≥++ ⎪⎝⎭. 当且仅当11123x y z ==时等号成立,即22211111149263x y z xy yz xz ++≥++, 又由222111149x y z ++=,所以1111263xy yz xz++≤. (2)由题意知222111149x y z++=, 可得()22222249491x y z x y z ++=++⨯()2222221114949x y z x y z ⎛⎫=++⋅++ ⎪⎝⎭()21119≥++=. 当且仅当23x y z ==时等号成立,所以222499x y z ++≥.【点睛】本题主要考查了不等式的证明,其中解答中合理运用均值不等式和柯西不等式是解答的关键,属于中档题.25.(1)1;(2)证明见解析.【分析】(1)利用12x =和32x =是方程()2f x =的解可求得m ; (2)由(1)得41a b c ++=,用“1”代换得()44111444ac bc ab a b c abc a b c ++⎛⎫=++⋅++ ⎪⎝⎭,然后由柯西不等式得结论后可证. 【详解】解:(1)由题意12223222m m m m ⎧-+=⎪⎪⎨⎪-+=⎪⎩,解得1m =;(2)由(1)知41a b c ++=,∴()2441114944ac bc ab a b c abc a b c ++⎛⎫=++⋅++≥= ⎪⎝⎭ 4436ac bc ab abc ∴++≥.【点睛】本题考查已知绝对值不等式的解求参数,考查由柯西不等式证明不等式成立.解题关键是由已知条件凑配出柯西不等式的形式,从而完成证明.26.(Ⅰ)证明见解析;(Ⅱ)证明见解析.【分析】(Ⅰ)每个式子通分后把1用a b c ++代换后分子应用基本不等式可证结论; (Ⅱ)变形111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭,三个分式中分子a b c ++提取出来并变为()()()12b c a c a b ⎡⎤+++++⎣⎦,即原不等式左边 ()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭,再用柯西不等式可证得结论.【详解】证明:(Ⅰ)1111111118a b c b c a c a b a b c a b c a b c a b c ---+++⎛⎫⎛⎫⎛⎫---=⋅⋅=⋅⋅≥= ⎪⎪⎪⎝⎭⎝⎭⎝⎭,当且仅当“a=b=c ”时取等号;(Ⅱ)111a b c a b c a b c a b c b c a c a b b c a c a b ++++++⎛⎫⎛⎫⎛⎫++=-+-+- ⎪ ⎪ ⎪++++++⎝⎭⎝⎭⎝⎭ ()()()111132b c a c a b b c a c a b ⎛⎫⎡⎤=+++++++- ⎪⎣⎦+++⎝⎭22113333222≥-=⨯-=,当且仅当“a =b =c ”时取等号.【点睛】本题考查用基本不等式和柯西不等式证明不等式成立,解题关键是要凑出基本不等式和柯西不等式的形式,然后才可得出结论,掌握基本不等式和柯西不等式是解题.。
一、选择题1.若存在实数x 使得不等式2113x x a a +--≤-成立,则实数a 的取值范围为( )A .3172⎛⎡⎫+-∞+∞ ⎪⎢ ⎪⎝⎦⎣⎭B .(][) ,21,-∞-+∞C .[]1,2D .(][),12,-∞+∞2.若a >b ,则下列不等式一定成立的是( ). A .11a b< B .55a b > C .22ac bc >D .a b >3.若关于x 的不等式13x x m -++>的解集为R ,则实数m 的取值范围是 A .(,4)(2,)-∞-⋃+∞ B .(,4)(1,)-∞-+∞C .(4,2)-D .[4,1]-4.若0,0,0a b m n >>>>,则a b ,b a ,b m a m ++,a n b n++按由小到大的顺序排列为( ) A .b b m a n a a a m b n b ++<<<++ B .b a n b m a a b n a m b++<<<++ C .b b m a a n a a m b b n ++<<<++ D .b a a n b m a b b n a m ++<<<++ 5.若0a b <<,则下列不等式中一定成立的是( )A .11a b< B .22a b >C .ln()0b a ->D .22ac bc <6.若112a b <<<,01c <<,则下列不等式不成立...的是( ) A .log log a b c c < B .log log b a a c b c < C .c c ab ba <D .c c a b <7.已知()f x 是定义在R 上的偶函数,且在区间(],0-∞上单调递增,若实数m 满足321(log (211))(log )2f m f -+>,则m 的取值范围是( )A .13(,)(,)22-∞-+∞) B .3(,)2-∞C .1(,)2-+∞ D .13(,)22-8.已知0x y >> 0m <,则下列结论正确的是( )A .mx my >B .m m x y>C .22mx my >D .22m m x y>9.设实数0,0a b c >>>,则下列不等式一定正确....的是( ) A .01ab<< B .a b c c > C .0ac bc -<D .ln0ab> 10.已知实数,a b ,且a b >,则以下不等式恒成立的是( ) A .33a b >B .22a b >C .1133ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭D .11a b< 11.已知,a b ∈R ,且2a bP +=,Q =P ,Q 的关系是( ) A .P Q ≥B .P Q >C .P Q ≤D .P Q <12.设1311ln ,log 22a b ==,则 ( ) A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题13.已知a b c R ∈、、,c 为实常数,则不等式的性质“a b a c b c >⇐+>+”可以用一个函数在R 上的单调性来解析,这个函数的解析式是()f x =_________14.设434411e m e +=+,424311e n e +=+,比较m ,n 的大小__________(用“>”“<”“=”表示).15.已知实数,,a b c 满足3a b c ++=,222226a b c ++=,则c 的取值范围是___________. 16.已知,,a b c R +∈,设a b cS b c a c a b=+++++,则S 与1的大小关系是__________.(用不等号连接) 17.已知11()22f x x a x a x a x x =+-+--+-0x >()的最小值为32,则实数a =____. 18.设5x >,PQ ,则P 与Q 的大小关系是P ______Q .19.设()f x x a x =-+,且|()|2f x ≤在[1,1]x ∈-上恒成立,则实数a 的取值范围为_________.20.若1a 2-<<,21b -<<,则-a b 的取值范围是 .三、解答题21.已知函数()|21||23|f x x x =++-. (1)求不等式()6f x ≤的解集;(2)若关于x 的不等式22()log (3)2f x a a -->恒成立,求实数a 的取值范围.22.设不等式|1||1|2x x +--<∣∣的解集为A (1)求集合A ; (2)若,,a b c A ∈,证明:11abcab c->-. 23.设函数()22f x x x =+--. (1)解不等式()2f x ≥;(2)当x ∈R ,0<y <1时,证明:11221x x y y+--≤+-. 24.解不等式:122x x -+-≤. 25.选修4-5:不等式选讲已知函数()121f x x x =--+的最大值为k . (1)求k 的值;(2)若,,a b c ∈R , 2222a cb k ++=,求()b ac +的最大值.26.已知()15f x x x =---, (1)解不等式()2f x <;(2)若()210f x m +-<存在实数解,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意可转化为()2min311a a x x -≥+--,转化为求11x x +--的最小值,解不等式,求a 的取值范围. 【详解】若存在实数x 使得不等式2113x x a a +--≤-成立,可知()2min311a a x x -≥+--当1x ≤-时,11112x x x x +--=--+-=-,当11x -<<时,11112x x x x x +--=++-=,222x -<<, 当1≥x 时,11112x x x x +--=+-+=,所以11x x +--的最小值为-2, 所以232a a -≥-,解得:2a ≥或1a ≤. 故选:D 【点睛】本题考查不等式能成立,求参数的取值范围,重点考查转化思想,计算能力,属于基础题型,本题的关键是将不等式能成立,转化为求函数的最小值.2.B解析:B 【分析】利用函数的单调性、不等式的基本性质即可判断出结论. 【详解】 a >b ,则1a 与1b的大小关系不确定;由函数y =x 5在R 上单调递增,∴a 5>b 5; c =0时,ac 2=bc 2;取a =-1,b =-2,|a |>|b |不成立.因此只有B 成立. 故选B . 【点睛】本题考查了函数的单调性、不等式的基本性质,考查了推理能力与计算能力,属于基础题.3.A解析:A 【解析】由于13x x m -++>表示数轴上的x 对应点到1和m -的距离之和,它的最小值等于1m +,由题意可得13m +>,解得2m >,或4m <-,故实数m 的取值范围是为()(),42,-∞-⋃+∞,故选A.4.A解析:A 【分析】根据不等式的性质,利用怍差法求解. 【详解】()()()-++---==+++b a m b b m ba bm ab am a a m a a m a a m , 因为0,0a b m >>>, 所以()()-<+b a m a a m ,所以b b m a a m+<+,()()()()()()()()22b a b a b a n m b m a n b bn bm mn a am an nm a m b n a m b n a m b n +-+-++++++-----==++++++,因为0,0,0a b m n >>>>,所以()()()()()()0+-+-+<++b a b a b a n m a m b n ,所以++<++b m a na mb n, ()()()-++---==+++b a na n a ab bn ab an b n b b b n b b n , 因为0,0>>>a b n ,所以()()0-<+b a n b b n ,所以a n ab n b+<+, 所以b b m a n a a a m b n b ++<<<++。
第一节 不等式和绝对值不等式第一课时 不等式基本性质一、知识要点1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的 .在数轴上,右边的数总比左边的数 .(2)如果a -b >0,则 ;如果a -b =0,则 ;如果a -b <0,则 . (3)比较两个实数a 与b 的大小,归结为判断它们的 ;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的 2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质: (1)如果a >b ,那么b <a ;如果b <a ,那么a >b .即 . (2)如果a >b ,b >c ,那么 .即a >b ,b >c ⇒ . (3)如果a >b ,那么a +c > .(4)如果a >b ,c >0,那么ac bc ;如果a >b ,c <0,那么ac bc . (5)如果a >b ,d c >,那么d b c a +>+ (6)如果0,0>>>>d c b a ,那么bd ac > (7)如果a >b >0,那么a n b n (n ∈N ,n ≥2). (8)如果a >b >0n ∈N ,n ≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘以一个数仍为等式,但不等式两边同乘以同一个数c (或代数式)结果有三种:①c >0时得 不等式;②c =0时得 ;③c <0时得 不等式.(2)a >b ,c >d ⇒a +c >b +d ,即两个同向不等式可以相加,但不可以 ;而a >b >0,c >d >0⇒ac >bd ,即已知的两个不等式同向且两边为 时,可以相乘,但不可以 .(3)性质(5)、(6)成立的条件是已知不等式两边均为 ,并且n ∈N ,n ≥2,否则结论不成立.而当n 取正奇数时可放宽条件,a >b ⇒a n >b n (n =2k +1,k ∈N),a >b ⇒n a >nb (n =2k +1,k ∈N +).二、考点例题考点一 实数大小的比较[例1] 已知x ,y 均为正数,设m =1x +1y ,n =4x +y,试比较m 和n 的大小.方法规律小结 比较两个数(式子)的大不,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等跟踪训练 1.已知a ,b ∈R ,比较44b a +与33ab b a +的大小.2.在数轴的正半轴上,A 点对应的实数为6a 29+a 4,B 点对应的实数为1,试判别A 点在B 点的左边,还是在B 点的右边?考点二 不等式的证明[例2] 已知a >b >0,c <d <0,e <0. 求证:e a -c >eb -d.方法规律小结 进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.跟踪训练 1.判断下列命题的真假,并简述理由. (1)若a >b ,c >d ,则ac >bd ; (2)若a >b >0,c >d >0,则a c >bd ;(3)若a >b ,c <d ,则a -c >b -d ;(4)若a >b ,则a n >b n ,n a >nb (n ∈N 且n ≥2).2.已知a ,b ,x ,y 都是正数,且1a >1b ,x >y ,求证:x x +a >yy +b.考点三 利用不等式的性质求范围[例3] (1)已知:-π2≤α<β≤π2,求α-β的范围.(2)已知:-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的范围.方法规律小结 求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.跟踪训练 1.“已知-π2≤α≤π2,-π2≤β≤π2”,求α+β2,α-β2的取值范围.2.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围.三、课后作业1.设R d c b a ∈,,,,且d c b a >>,,则下列结论正确的是 ( ) A .d b c a +>+ B .d b c a ->- C .bd ac > D .cb d a > 2.下列不等式成立的是 ( )A .log 32<log 25<log 23B .log 32<log 23<log 25C .log 23<log 32<log 25D .log 23<log 25<log 32 3.设R b a ∈,,若0>-b a ,则下列不等式正确的是( )A .0>-a bB .033<+b a C .022<-b a D .0>+b a 4.若11<<<-βα,则下列各式中恒成立的是 ( )A .02<-<-βαB .12-<-<-βαC .01<-<-βαD .11<-<-βα 5.设11.->>>b a ,则下列不等式中恒成立的是 ( ) A .ba 11< B .b a 11> C .2b a > D .b a 22>6.若0,0<<<<c d a b ,则下列不等式中必成立的是( ) A .bd ac > B .dbc a > C .d b c a +>+ D .a-c>b-d 7.已知3328,8460<<<<y x ,则y x -的取值范围是 . 8.已知c b a ,,为三角形的三边长,则2a 与ac ab +的大小关系是 . 9.若b a Rc b a >∈,,,,则下列不等式成立的是 (填上正确的序号). ①b a 11< ②22b a > ③1122+>+c b c a ④c b c a > 10.已知{}正实数∈b a ,且b a ≠,比较ba ab 22+与b a +的大小. 11.已知31<+<-b a 且42<-<b a ,求b a 32+的取值范围.12.实数z y x ,,满足122-=+-z y x x 且012=++y x ,试比较z y x ,,的大小.第二课时 基本不等式一、知识要点1.基本不等式的理解重要不等式a 2+b 2≥2ab 和基本不等式a +b2≥ab ,成立的条件是不同的.前者成立的条件是 a 与b 都为实数,并且a 与b 都为实数是不等式成立的 ;而后者成立的条件是a 与b 都为正实数,并且a 与b 都为正实数是不等式成立的 ,如a =0,b ≥0仍然能使a +b2≥ab 成立.两个不等式中等号成立的充要条件都是2.由基本不等式可推出以下几种常见的变形形式(1)a 2+b 2≥2)(2b a +;(2)ab ≤a 2+b 22;(3)ab ≤(a +b 2)2;(4)(a +b 2)2≤a 2+b 22;(5)(a +b )2≥4ab .二、考点例题[例1] 已知a 、b 、c ∈R +,且a +b +c =1.求证:1a +1b +1c≥9.方法规律小结 用基本不等式证明不等式时,应首先依据不等式两边式子的结构特点进行恒等变形,使之具备基本不等式的结构和条件,然后合理地选择基本不等式进行证明.跟踪训练 1.已知a 、b 、c 是不全相等的正数,求证:abc b a c a c b c b a 6)()()(222222>+++++2.已知a ,b ,c >0,求证:a 2b +b 2c +c 2a≥a +b +c .考点二 利用基本不等式求最值 [例2] (1)求当x >0时,f (x )=2xx 2+1的值域. (2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >0,y >0,且1x +9y=1,求x +y 的最小值方法规律小结 在应用基本不等式求最值时, 分以下三步进行:(1)首先看式子能否出现和(或积)的定值,若不具备,需对式子变形,凑出需要的定值;(2)其次,看所用的两项是否同正,若不满足,通过分类解决,同负时,可提取(-1)变为同正; (3)利用已知条件对取等号的情况进行验证.若满足,则可取最值,若不满足,则可通过函数单调性或导数解决.跟踪训练 1.若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是 ( )A .245B .285C .5D .62.已知x >0,y >0且5x +7y =20,求xy 的最大值. 3.若正数a 、b 满足ab =a +b +3,(1)求ab 的取值范围;(2)求a +b 的取值范围.考点三 利用基本不等式解决实际问题[例3] 某国际化妆品生产企业为了占有更多的市场份额,拟在2012年英国伦敦奥运会期间进行一系列促销活动,经过市场调查和测算,化妆品的年销量x 万件与年促销费t 万元之间满足3-x 与t +1成反比例的关系,如果不搞促销活动,化妆品的年销量只能是1万件,已知2012年生产化妆品的设备折旧、维修等固定费用为3万元,每生产1万件化妆品需要投入32万元的生产费用,若将每件化妆品的售价定为其生产成本的150%与平均每件促销费的一半之和,则当年生产的化妆品正好能销完 (1)将2012年的利润y (万元)表示为促销费t (万元)的函数.(2)该企业2012年的促销费投入多少万元时,企业的年利润最大?方法规律小结 利用不等式解决实际应用问题时,首先要仔细阅读题目,弄清要解决的实际问题,确定是求什么量的最值;其次,分析题目中给出的条件,建立y 的函数表达式y =f (x )(x 一般为题目中最后所要求的量);最后,利用不等式的有关知识解题.求解过程中要注意实际问题对变量x 的范围制约.跟踪训练 1.一商店经销某种货物,根据销售情况,年进货量为5万件,分若干次等量进货(设每次进货x 件),每进一次货运费50元,且在销售完该货物时,立即进货,现以年平均x2件货储存在仓库里,库存费以每件20元计算,要使一年的运费和库存费最省,每次进货量x 应是多少? 2.围建一个面积为3602m 的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其他三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2 m 的进出口,如图所示,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,设利用的旧墙的长度为x (单位:元). (1)将y 表示为x 的函数;(2)试确定x ,使修建此矩形场地围墙的总费用最小,并求出最小总费用.三、课后作业1.设+∈R y x ,,且满足404=+y x ,则y x lg lg +的最大值为 ( ) A .40 B .10 C .4 D .22.设+∈R y x ,且5=+y x ,则yx33+的最小值为 ( ) A .10 B .6C .4D .183.等比数列{}n a 的各项均为正数,公比1≠q ,设7593,2a a Q a a P =+=,则P 与Q 的大小关系是 ( ) A .Q P > B .Q P < C .Q P = D .无法确定 4.已知0,0≥≥b a ,且2=+b a 则 ( ) A .21≤ab B .21≥ab C .222≥+b a D .322≤+b a 5.已知在ABC ∆中,2,1==BC B ,则C 的最大值是 ( )A .6π B .2π C .4π D .3π 6.“1=a ”是“对任意正数12,≥+xax x ”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 7.若正数b a ,满足3++=b a ab ,则ab 的取值范围是 .8.已知0,0>>b a ,且12=+b a ,则2242b a ab S --=的最大值为 . 9.已知0,0>>y x 且满足6=+y x ,则使不等式m yx ≥+91恒成立的实数m 的取值范围为 . 10.已知y x b a ,,,都是正数,且1=+b a ,求证:xy ay bx by ax ≥++))((11.已知y x R y x b a ,,,,,+∈为变量,b a ,为常数,且y x ybx a b a +=+=+,1,10的最小值为18,求b a , 12.(能力挑战题)某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形休闲区1111D C B A 和环公园人行道(阴影部分)组成.已知休闲区1111D C B A 的面积为4000平方米,人行道的宽分别为4米和10米(如图所示). (1)若设休闲区的长和宽的比x C B B A =1111,求公园ABCD 所占面积S 关于x 的函数解析式.(2)要使公园所占面积最小,休闲区1111D C B A 的长和宽应如何设计?第三课时 三个数的算术几何不等式一、知识要点1.定理3如果a ,b ,c ∈R +,那么a +b +c 3≥3abc ,当且仅当时,等号成立,用文字语言可叙述为:三个正数的 不小于它们的 .(1)不等式a +b +c 3≥3abc 成立的条件是: ,而等号成立的条件是:当且仅当 .(2)定理3可变形为:①abc ≤(a +b +c 3)3;②a 3+b 3+c 3≥3abc .(3)三个及三个以上正数的算术-几何平均值不等式的应用条件与前面基本不等式的应用条件是一样的,即“一正,二定,三相等”. 2.定理3的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即 ,当且仅当 时,等号成立.二、考点例题考点一 用平均不等式证明不等式[例1] 已知a ,b ,c ∈R +,求证:b +c -a a +c +a -b b +a +b -cc≥3.方法规律小结 (1)不等式的证明方法较多,关键是从式子的结构入手进行分析.(2)运用三个正数的平均值不等式证明不等式时,仍要注意“一正、二定、三相等”,在解题中,若两次用平均值不等式,则只有在“相等”条件相同时,才能取到等号.跟踪训练 1. 设a 、b 、c ∈R +,求证:(a +b +c )⎝⎛⎭⎫1a +1b +1c ≥9.2.已知n a a a ,,,21⋅⋅⋅都是正数,且121=⋅⋅⋅n a a a ,求证:n a a a n 3)2()2)(2(21≥+⋅⋅⋅++考点二 用平均不等式求最值[例2] (1)求函数y =(x -1)2(3-2x )(1<x <32)的最大值.(2)求函数)1()1(42>-+=x x x y 的最小值.方法规律小结 (1)利用三个正数的算术-几何平均不等式定理求最值,可简记为“积定和最小,和定积最大”.(2)应用平均不等式定理,要注意三个条件“即一正二定三相等”同时具备时,方可取得最值,其中定值条件决定着平均不等式应用的可行性,获得定值需要一定的技巧,如:配系数、拆项、分离常数、平方变形等.跟踪训练 1.设x >0,则f (x )=4-x -12x 2的最大值为 ( )A .4-22 B .4- 2 C .不存在 D .522.已知x ,y +∈R 且42=y x ,试求x +y 的最小值及达到最小值时x 、y 的值.考点三 用平均不等式解应用题 [例3] 如图所示,在一张半径是2米的圆桌的正中央上空挂一盏电灯.大家知道,灯挂得太高了,桌子边缘处的亮度就小;挂得太低,桌子的边缘处仍然是不亮的.由物理学知道,桌子边缘一点处的照亮度E 和电灯射到桌子边缘的光线与桌子的夹角θ的正弦成正比,而和这一点到光源的距离r 的平方成反比,即E =k sin θr2.这里k 是一个和灯光强度有关的常数,那么究竟应该怎样选择灯的高度h ,才能使桌子边缘处最亮?方法规律小结 本题获解的关键是在获得了k E =·sin θcos2θ4后,对E 的表达式进行变形求得E 的最大值.解应用题时必须先读懂题意,建立适当的函数关系式,若把问题转化为求函数的最值问题,常配凑成可以用平均不等式的形式,若符合条件“一正、二定、三相等”即可求解.跟踪训练 1.已知长方体的表面积为定值S ,试问这个长方体的长、宽、高各是多少时,它的体积最大,求出这个最大值.三、课后作业1.设+∈R z y x ,,且6=++z y x ,则lgx+lgy+lgz 的取值范围是 ( ) A .(∞-,lg6] B .(∞-,3lg2] C .[lg6,+∞) D .[3lg2,+∞)2.若实数y x ,满足0>xy ,且22=y x ,则2x xy +的最小值是 ( )A .1B .2C .3D .43.若c b a ,,为正数,且1=++c b a ,则cb a 111++的最小值为 ( ) A .9 B .8 C .3 D .314.已知632=++z y x ,则zyx842++的最小值为 ( ) A .3B .2C .12D .125.当510≤≤x 时,函数)51(2x x y -=的最大值为 ( ) A .251 B .31 C .6754 D .无最大值6.设+∈R c b a ,,,且1=++c b a ,若)11)(11)(11(---=cb a M ,则必有 ( )A .810<≤MB .181<≤M C .81<≤M D .8≥M7.若0,0>>y x 且42=xy ,则y x 2+的最小值为 . 8.若记号“*”表示求两个实数a 与b 的算术平均的运算,即2ba b a +=*,则两边均含有运算“*”和“+”,且对任意3个实数c b a ,,都能成立的一个等式可以是 .9.设正数c b a ,,满足1=++c b a ,则231,231,231+++c b a 的最小值为 . 10.求函数)250()25()(2<<-=x x x x f 的最大值.11.已知y x ,均为正数,且y x >求证:3221222+≥+-+y y xy x x12.如图(1)所示,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器,如图(2)所示,求这个正六棱柱容器容积的最大值.第四课时 绝对值三角不等式一、知识要点绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当 时,等号成立. 几何解释:用向量a ,b 分别替换a ,b .①当a 与b 不共线时,有|a +b|<|a |+|b |,其几何意义为: .②若a ,b 共线,当a 与b 时,|a +b |=|a |+|b |,当a 与b 时,|a +b |<|a |+|b |. 由于定理1与三角形之间的这种联系,故称此不等式为绝对值三角不等式. ③定理1的推广:如果a ,b 是实数,则||a |-|b ||≤|a ±b |≤|a |+|b |.(2)定理2:如果a ,b ,c 是实数,那么|a -c |≤|a -b |+|b -c |.当且仅当 时,等号成立. 几何解释:在数轴上,a ,b ,c 所对应的点分别为A ,B ,C , 当点B 在点A ,C 之间时,|a -c | |a -b |+|b -c |. 当点B 不在点A ,C 之间时:①点B 在A 或C 上时,|a -c | |a -b |+|b -c |; ②点B 不在A ,C 上时,|a -c | |a -b |+|b -c |. 应用:利用该定理可以确定绝对值函数的值域和最值.二、考点例题考点一 含绝对值不等式的判断与证明[例1] 已知|A -a |<s 3,|B -b |<s 3,|C -c |<s3.求证:|(A +B +C )-(a +b +c )|<s .方法规律小结 含绝对值不等式的证明题主要分两类:一类是比较简单的不等式,往往可通过平方法、换元法去掉绝对值转化为常见的不等式证明,或利用绝对值三角不等式||a |-|b |≤|a ±b |≤|a |+|b |,通过适当的添、拆项证明;另一类是综合性较强的函数型含绝对值的不等式,往往可考虑利用一般情况成立,则特殊情况也成立的思想,或利用一元二次方程的根的分布等方法来证明跟踪训练 1.设a 、b 是满足ab <0的实数,则下列不等式中正确的是 ( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b |2.设ε>0,|x -a |<ε4,|y -a |<ε6.求证:|2x +3y -2a -3b |<ε.考点二 绝对值不等式三角形的应用[例2] (1)求函数y =|x -3|-|x +1|的最大值和最小值.(2)设a ∈R ,函数)11()(2≤≤--+=x a x ax x f .若|a |≤1,求|f (x )|的最大值.方法规律小结 (1)利用绝对值不等式求函数最值,要注意利用绝对值的性质进行转化,构造绝对值不等式的形式.(2)求最值时要注意等号成立的条件,它也是解题的关键.跟踪训练 1.若a ,b ∈R ,且|a |≤3,|b |≤2则|a +b |的最大值是________,最小值是________2.求函数f (x )=|x -1|+|x +1|的最小值.3.若对任意实数,不等式|x +1|-|x -2|>a 恒成立,求a 的取值范围.三、课后作业1.已知实数b a ,满足0<ab ,下列不等式成立的是 ( )A .b a b a ->+B .b a b a -<+C .b a b a -<-D .b a b a +<- 2.设1,1<<b a ,则b a b a -++与2的大小关系是 ( )A .2>-++b a b aB .2<-++b a b aC .2=-++b a b aD .不能比较大小 3.若关于x 的不等式a x x <++-32的解集为∅,则实数a 的取值范围为( ) A .(∞-,1] B .(∞-,1) C .(∞-,5] D .(∞-,5)4.不等式a a x x 3132-≥-++对任意实数x 恒成立,则实数a 的取值范围为 ( ) A .[1-,4] B .(∞-,1-]∪[4,+∞) C .(∞-,2-]∪[5,+∞) D .[2-,5] 5.若不等式a x x ≥-+622对于一切实数x 均成立,则实数a 的最大值是 ( ) A .7 B .9 C .5 D .116.对于实数y x ,,若12,11≤-≤-y x ,则12+-y x 的最大值为 ( ) A .5 B .4 C .8 D .77.已知13)(+=x x f ,若当b x <-1时,有),0(,,4)(+∞∈<-b a a x f ,则b a ,满足的关系为 . 8.若N n x ∈<,5,则下列不等式:①1lg 51lg+<+n n n n x ②1lg 51lg +<+n nn n x ③1lg 51lg+<+n n n n x ④1lg 51lg +<+n nn n x 其中能够成立的有 .(填序号) 9.若关于x 的不等式21-++≥x x a 存在实数解,则实数a 的取值范围是 .10.已知函数41)(,23)(++-=--=x x g x x f ,若函数1)()(+≥-m x g x f 的解集为R ,求m 的取值范围.11.已知函数1,13)(2<-+-=a x x x x f .求证:)1)((2)()(+<-a f a f x f .12.两个加油站B A ,位于某城市东akm 和bkm 处(b a <),一卡车从该城市出发,由于某种原因,它需要往返B A ,两加油站,问它行驶在什么情况下到两加油站的路程之和是一样的?第五课时 绝对值不等式的解法一、知识要点1.|ax +b |≤c ,|ax +b |≥c (c >0)型不等式的解法只需将ax +b 看成一个整体,即化成|x |≤a ,|x |≥a (a >0)型不等式求解.|ax +b |≤c (c >0)型不等式的解法:先化为 ,再由不等式的性质求出原不等式的解集. 不等式|ax +b |≥c (c >0)的解法:先化为 或 ,再进一步利用不等式性质求出原不等式的解集 2.|x -a |+|x -b |≥c 和|x -a |+|x -b |≤c 型不等式的解法①利用绝对值不等式的 求解,体现数形结合思想,理解绝对值的几何意义,给绝对值不等式以准确的几何解释是解题关键.②以绝对值的 为分界点,将数轴分为几个区间,利用“零点分段法”求解,体现分类讨论的思想.确定各个绝对值符号内多项式的正、负性,进而去掉绝对值符号是解题关键.③通过构造函数,利用函数的图像求解,体现函数与方程的思想,正确求出函数的零点并画出函数图像(有时需要考查函数的增减性)是解题关键.二、考点例题考点一 c b ax ≤+和)0(>≥+c c b ax 型不等式的解法[例1] 解下列不等式: (1)|5x -2|≥8;(2)2≤|x -2|≤4.方法规律小结 |ax +b |≥c 和|ax +b |≤c 型不等式的解法:①当c >0时,|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c ,|ax +b |≤c ⇔-c ≤ax +b ≤c . ②当c =0时,|ax +b |≥c 的解集为R ,|ax +b |<c 的解集为∅. ③当c <0时,|ax +b |≥c 的解集为R ,|ax +b |≤c 的解集为∅. 跟踪训练 1.解下列不等式:(1)|3-2x |<9;(2)|x -2x -2|>2x -3x -4;(3)|2x -3x -4|>x +1(4)213+<-x x (5)x x ->-213 (6) |2||1|x x -<+ (7)4|23|7x <-≤ (8)01222<---x x x2.已知{23}A x x a =-<,{B x x =≤10},且A B ⊂≠,求实数a 的范围.考点二 c b x a x ≤-+-和c b x a x ≥-+-型不等式的解法[例2] 解不等式|x -3|-|x +1|<1.方法规律小结 |x -a |+|x -b |≥c 、|x -a |+|x -b |≤c (c >0)型不等式的三种解法:分区间(分类)讨论法、图像法和几何法.分区间讨论的方法具有普遍性,但较麻烦;几何法和图像法直观,但只适用于数据较简单的情况 跟踪训练1.解不等式|x -2|-|x +7|≤3 2.解不等式|2x -1|+|3x +2|≥8. 3.解不等式512≥-+-x x 考点三 含绝对值不等式恒成立的问题 [例3] 已知不等式|x +2|-|x +3|>m .(1)若不等式有解; (2)若不等式解集为R ;(3)若不等式解集为∅,分别求出m 的范围.方法规律小结 问题(1)是存在性问题,只要求存在满足条件的x 即可;不等式解集为R 或为空集时,不等式为绝对不等式或矛盾不等式,属于恒成立问题,恒成立问题f (x )<a 恒成立⇔a x f <max )(,f (x )>a 恒成立⇔a x f >min )(跟踪训练 1.把本例中的“>”改成“<”,即|x +2|-|x +3|<m 时,分别求出m 的范围.2.把本例中的“-”改成“+”,即|x +2|+|x +3|>m 时,分别求出m 的范围.3.不等式 31++-x x >a ,对一切实数x 都成立,则实数a 的取值范围是 4.已知关于x 的不等式|x +2|+|x -3|<a 的解集是非空集合,则实数a 的取值范围是_________.课堂练习1..1122>-x 2.01314<--x 3.423+≤-x x . 4.x x -≥+21. 5.1422<--x x 6.212+>-x x . 7.42≥-+x x8..631≥++-x x 9.21<++x x 10..24>--x x 11.已知不等式a x ≤-2)0(>a 的解集为{}c x R x <<-∈1|,求c a 2+的值12.解关于x 的不等式2||x a a -<(a R ∈)13.解关于x 的不等式:① 解关于x 的不等式31<-mx ;② a x <-+132)(R a ∈三、课后作业1.若11+>+x xx x ,则实数x 的取值范围是 ( ) A .(1-,0) B .[1-,0] C .(∞-, 1-)∪(0,∞+) D .(,∞-1-]∪[0,∞+ 2.若1>a ,则不等式1>+a x 的解集是 ( )A .{}a x a x -<<-11B .{}a x a x x ->-<11或 C .∅ D .R 3.已知集合{}{}312,0652>-=≤+-=x x B x x x A ,则B A 等于 ( ) A .[]3,2 B .[)3,2 C .(]3,2 D .)3,1(- 4.若规定bc ad dc b a -=,则不等式0111log2<x的解集为 ( )A .(0,1)B .(1,2)C .(0, 2)D .(0,1)∪(1,2)5.不等式a xax >-1的解集为M ,且M ∉2,则a 的取值范围为 ( ) A .⎪⎭⎫⎝⎛+∞,41 B .⎪⎭⎫⎢⎣⎡+∞,41 C .⎪⎭⎫ ⎝⎛21,0 D .⎥⎦⎤ ⎝⎛21,0 6.已知)2(log ax y a -=在(0,1)上是增函数,则不等式3log 1log ->+x x a a 的解集为 ( ) A .{}1-<x x B .{}1<x x C .{}11-≠<x x x 且 D .{}1>x x7.设2,,>-∈b a R b a ,则关于实数x 的不等式2>-+-b x a x 的解集是 . 8.在实数范围内,不等式112≤--x |的解集为 .9.若关于x 的不等式0212<++-a x ax 的解集为空集,则实数a 的取值范围是 . 10.已知R a ∈,设关于x 的不等式4232+≥++-x x a x 的解集为A (1)若1=a ,求A(2)若R A =,求a 的取值范围.11.已知实数b a ,满足:关于x 的不等式164222--≤++x x b ax x 对一切R x ∈均成立. (1)请验证8,2-=-=b a 满足题意.(2)求出所有满足题意的实数b a ,,并说明理由.(3)若对一切2>x ,均有不等式15)2(2--+≥++m x m b ax x 成立,求实数m 的取值范围. 12.已知关于x 的不等式1+>ax a 的解集为{}0≤x x 的子集,求a 的取值范围.第二节 证明不等式的基本方法第一课时 比较法一、知识要点1.作差比较法(1)作差比较法的理论依据a -b >0⇔ ,a -b <0⇔ ,a -b =0⇔ . (2)作差比较法解题的一般步骤:①作差;②变形整理,③判定符号,④得出结论. 其中变形整理是解题的关键,变形整理的目的是为了能够直接判定 ,常用的手段有:因式分解,配方,通分,分子或分母有理化等. 2.作商比较法(1)作商比较法的理论依据是不等式的基本性质:①b >0,若 ,则a >b ;若 则a <b ; ②b <0,若 则a <b ;若 则a >b .(2)作商比较法解题的一般步骤:①判定a ,b 符号;②作商;③变形整理;④判定 ;⑤得出结论.二、考点例题考点一 作差比较法证明不等式[例1] 设△ABC 的三边长分别是a 、b 、c ,求证:2)()(4c b a ac bc ab ++>++方法规律小结 (1)作差比较法中,变形具有承上启下的作用,变形的目的在于判断差的符号,而不用考虑差能否化简或值是多少.(2)变形所用的方法要具体情况具体分析,可以配方,可以因式分解,可以运用一切有效的恒等变形的方法.(3)因式分解是常用的变形手段,为了便于判断“差式”的符号,常将“差式”变形为一个常数,或几个因式积的形式,当所得的“差式”是某字母的二次三项式时,常用配方法判断符号.有时会遇到结果符号不能确定,这时候要对差式进行分类讨论. 跟踪训练 1.求证:)1(222--≥+b a b a2.已知a ,b ∈R +,n ∈N +,求证:)(2))((11+++≤++n n nnb ab a b a考点二 作商比较法证明不等式 [例2] 设a >0,b >0,求证:2)(b a baab b a +≥方法规律小结 当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法,用作商比较法时,如果需要在不等式两边同乘某个数,要注意该数的正负,且最后结果与1比较.跟踪训练 1.设0>>b a ,求证:b a ba ba b a +->+-2222.2.如果a ,b 都是正数,且a ≠b ,求证422466b a b a b a +>+考点三 比较法的实际应用[例3] 甲、乙二人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半以速度n 行走;乙有一半路程以速度m 行走,另一半路程以速度n 行走.如果m ≠n ,问甲、乙二人谁先到达指定地点? 方法规律小结 应用不等式解决实际问题时, 关键是如何把等量关系、不等量关系转化为不等式的问题来解决.也即建立数学模型是解应用题的关键,最后利用不等式的知识来解.在实际应用不等关系问题时,常用比较法来判断数的大小关系,若是选择题或填空题则可用特殊值加以判断.跟踪训练5.某人乘出租车从A 地到B 地,有两种方案;第一种方案:乘起步价为10元.每千米1.2元的出租车,第二种方案:乘起步价为8元,每千米1.4元的出租车.按出租车管理条例,在起步价内.不同型号的出租车行驶的路程是相等的,则此人从A 地到B 地选择哪一种方案比较合适?三、课后作业1.设m b a ,,都是正数,且b a <,则下列不等式中恒成立的是 ( )A .1<++<m b m a b a B .m b m a b a ++≥ C .1≤++≤m b m a b a D .bam b m a <++<12.“1>a ”是“11<a”的 ( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件 3.设b a B b a A R b a +=+=∈+,,,,则B A ,的大小关系是 ( )A .B A ≥ B .B A ≤C .B A >D .B A <4.已知下列不等式:①x x 232>+;②322355b a b a b a +>+;③)1(222--≥+b a b a .其中正确的个数为 ( )A .0B .1C .2D .3 5.设0,0>>b a ,下列不等式中不正确的是 ( )A .ab b a 222≥+ B .2≥+b a a b C .b a b a a b +≥+22D .ba b a +≤+111 6.在等比数列{}n a 和等差数列{}n b 中,313311,0,0a a b a b a ≠>=>=则5a 与5b 的大小关系为 ( ) A .55b a > B .55b a < C .55b a = D .不确定 7.已知xc x b x a x -=+==<<11,1,2,10,则其中最大的是 . 8.若x 是正数,且23=-x x ,则x 与45的大小关系为 .9.设)0,0(2,2121>>+=+=b a ba Bb a A 则B A ,的大小关系为 .10.已知0,0>>b a ,求证:b a ab ba +≥+11.若n m b a ,,,都为正实数,且1=+n m 求证:b n a m nb ma +≥+12.已知函数b ax x x f ++=2)(,当q p ,满足1=+q p 时,证明:)()()(qy px f y qf x pf +≥+对于任意实数y x ,都成立的充要条件是10≤≤p .第二课时 综合法与分析法一、知识要点1.综合法(1)证明的特点:综合法又叫顺推证法或 法,是由 和某些数学定义、公理、定理等,经过一系列的 ,最后推出所要证明的结论成立. (2)证明的框图表示:用P 表示已知条件或已有的不等式,用Q 表示所要证明的结论,则综合法可用框图表示为 P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→……→Q n ⇒Q2.分析法(1)证明的特点:分析法又叫逆推证法或 法,是从要证明的不等式出发,逐步寻找使它成立的 条件.直到最后把要证明的不等式转化为判定一个已知或明显成立的不等式为止. (2)证明过程的框图表示:用Q 表示要证明的不等式,则分析法可用框图表示为Q ⇐P 1→P 1⇐P 2→P 1⇐P 3→……→得到一个明显成立的条件二、考点例题[例1] 已知x >0,y >0,且x +y =1,求证:(1+1x )·(1+1y)≥9.方法规律小结 综合法证明不等式,揭示出条件和结论之间的因果联系,为此要着力分析已知与求证之间,不等式的左右两端之间的差异与联系.合理进行转换,恰当选择已知不等式,这是证明的关键跟踪训练 1.已知a ,b ,c ∈R +,证明不明式:a +b +c ≥ab +bc +ca ,当且仅当a =b =c 时取等号.2.已知a ,b ,c 都是实数,求证:a 2+b 2+c 2≥13(a +b +c )2≥ab +bc +ca .考点二 用分析法证明不等式[例2] 已知x >0,y >0,求证31332122)()(y x y x +>+方法规律小结(1)当所证不等式与重要不等式、基本不等式没有什么直接联系,或条件与结论之间的关系不明显时,可用分析法来寻找证明途径.(2)分析法证明的关键是推理的每一步都必须可逆. 跟踪训练 1.求证:3+7<2 52.a ,b ∈R +,且2c >a +b .求证:c -c 2-ab <a <c +c 2-ab .考点三 综合法和分析法的综合应用[例3] 设a >0,b >0,且a +b =1,求证:a +1+b +1≤ 6.方法规律小结(1)通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式易于证明. (2)有些不等式的证明,需要一边分析一边综合,称之为分析综合法,或称“两头挤”法,如本例,这种方法充分表明了分析法与综合法之间互为前提,互相渗透,相互转化的辩证统一关系.跟踪训练1.已知a ,b ,c 都是正数,求证:2⎝⎛⎭⎫a +b 2-ab ≤3⎝ ⎛⎭⎪⎫a +b +c 3-3abc . 三、课后作业。
2016年04月15日基本不等式
一.选择题(共14小题)
1.(2016•济南模拟)已知直线ax+by=1经过点(1,2),则2a+4b的最小值为()A.B.2C.4 D.4
2.(2016•乌鲁木齐模拟)已知x,y都是正数,且xy=1,则的最小值为()A.6 B.5 C.4 D.3
3.(2016•合肥二模)若a,b都是正数,则的最小值为()
A.7 B.8 C.9 D.10
4.(2016•山东模拟)已知不等式2x+m+>0对一切x∈(1,+∞)恒成立,则实数m
的取值范围是()
A.m>﹣10 B.m<﹣10 C.m>﹣8 D.m<﹣8
5.(2016•宜宾模拟)下列关于不等式的结论中正确的是()
A.若a>b,则ac2>bc2B.若a>b,则a2>b2
C.若a<b<0,则a2<ab<b2D.若a<b<0,则>
6.(2016•金山区一模)若m、n是任意实数,且m>n,则()
A.m2>n2B.C.lg(m﹣n)>0 D.
7.(2015•福建)若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于()
A.2 B.3 C.4 D.5
8.(2015•红河州一模)若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()
A.6 B.8 C.10 D.12
9.(2015•江西一模)已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()
A.B.8 C.9 D.12
10.(2015•浙江模拟)函数y=a x+1﹣3(a>0,a≠1)过定点A,若点A在直线mx+ny=﹣2(m>0,n>0)上,则+的最小值为()
A.3 B.2C.D.
11.(2015•南市区校级模拟)若m+n=1(mn>0),则+的最小值为()
A.1 B.2 C.3 D.4
12.(2015•湖南模拟)已知x+3y=2,则3x+27y的最小值为()
A.B.4 C. D.6
13.(2015•衡阳县校级模拟)若x<0,则x+的最大值是()
A.﹣1 B.﹣2 C.1 D.2
14.(2015春•哈尔滨校级期中)已知a,b,c,是正实数,且a+b+c=1,则的最小
值为()
A.3 B.6 C.9 D.12
二.填空题(共9小题)
15.(2016•吉林三模)已知正数x,y满足x+y=1,则的最小值为.16.(2016•青岛一模)若a>0,b>0,则的最小值是.17.(2016•抚顺一模)已知a>0,b>0,且a+b=2,则的最小值为.18.(2016•丰台区一模)已知x>1,则函数的最小值为.19.(2016•河西区模拟)函数的最小值为.20.(2016春•临沂校级月考)设2<x<5,则函数的最大值
是.
21.(2015•陕西校级二模)函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A
在直线mx+ny﹣2=0上,其中mn>0,则的最小值为.22.(2015•湖北模拟)已知x>1,则函数y=2x+的最小值为.23.(2015•浙江模拟)已知x+2y=4(x,y∈R+),则的最小值为.
三.解答题(共7小题)
24.(2015•开封模拟)已知a,b都是正实数,且a+b=1
(Ⅰ)求证:≥4;
(Ⅱ)求的最小值.
25.(2015春•长春校级期末)设a>b,b>0,且a+b=2.
(1)求a•b的最大值;
(2)求最小值.
26.(2015春•高安市校级期末)已知x>0,y>0,且=1,求:
(1)xy的最小值;
(2)x+y的最小值.
27.(2015春•天津期末)已知a>0,b>0,且a+b=2.
(1)求+的最小值及其取得最小值时a,b的值;
(2)求证:a2+b2≥2.
28.(2015秋•咸阳校级期中)设0<x<,求函数y=4x(3﹣2x)的最大值.29.(2015秋•九江校级期中)(1)已知x>2,求的最小值;(2)已知,求y=3x(1﹣2x)的最大值.
30.(2015秋•衡阳校级期中)(1)解不等式:x2﹣3x﹣4≤0
(2)当x>1时,求x+的最小值.
2016年04月15日基本不等式
参考答案
一.选择题(共14小题)
1.B;2.C;3.C;4.A;5.D;6.D;7.C;8.A;9.C;10.C;
11.D; 12.D; 13.B; 14.C;
二.填空题(共9小题)
15.9;16.2+3;17.+; 18.3;19.4;20.;21.2;22.5;
23.2;
三.解答题(共7小题)
24.;25.;26.;27.;28.;
29.;30.;。