石英晶体介绍
- 格式:doc
- 大小:41.00 KB
- 文档页数:3
石英晶体基础石英,学名二氧化硅。
是自然界分布最广的物质之一。
它有五种变体(β石英、α石英、α磷石英、方石英、溶炼石英),其中α石英和β石英具有压电效应,当施加压力在晶片表面时, 它就会产生电气电位, 相对的当一电位加在芯片表面时, 它就会产生变形或振动现象, 掌握这种振动现象, 控制其发生频率的快慢, 以及精确程度, 就是水晶振荡器的设计与应用。
石英是由硅原子和氧原子组合而成的二氧化硅(Silicon Dioxide, SiO2), 以32点群的六方晶系形成的单结晶结构﹝图一﹞.单结晶的石英晶体结构具有压电效应特性, 当施加压力在晶体某些方向时, 垂直施力的方向就会产生电气电位. 相对的当以一个电场施加在石英晶体某些轴向时, 在另一些方向就会产生变形或振动现象. 掌握单结晶石英材料的这种压电效应, 利用其发生共振频率的特性, 发挥其精确程度作为各类型频率信号的参考基准, 就是水晶震荡器的设计与应用. 因为石英晶体具有很高的材料Q值,所以绝大部份的频率控制组件,如共振子及振荡器,都以石英材料为基础. 以石英为基础的频率控制组件可以依其压电振动的属性, 可以分为体波(bulk wave)振动组件及表面声波(surface acoustic wave)振动组件. 体波振动组件如石英晶体共振子, 石英晶体滤波器及石英晶体振荡器, 表面波振动组件如表面波滤波器及表面波共振子. 当石英晶体以特定的切割方式, 以机械加工方式予以表面研磨, 完成特定的外型尺寸就是通称的石英芯片(quartz wafer 或quartz blank ). 将这个石英芯片放置在真空还境中, 于表面镀上电极后,再以导电材料固定在金属或是陶瓷基座上, 并加以封装, 就成为一般所谓的石英晶体共振子( quartz crystal resonator ). 利用石英共振子在共振时的低阻抗特性及波的重迭特性, 用邻近的双电极, 可以做出石英晶体滤波器. 将石英振荡子加上不同的电子振荡线路, 可以做成不同特性的石英振荡器. 例如: 石英频率振荡器(CXO), 电压控制石英晶体振荡器(Voltage Controlled Crystal Oscillator, VCXO), 温度补偿石英晶体振荡器(Temperature Compensated Crystal Oscillator, TCXO), 恒温槽控制石英晶体振荡器(Oven Controlled Crystal Oscillator, OCXO)…等. 相对于体波谐振的是表面声波的谐振. 将石英晶体表面镀以叉状电极(inter-digital-transducer, IDT)方式所产生的表面振荡波, 可以制造出短波长(高频率)谐振的表面声波共振子(SAW Resonator)或表面声波滤波器(SAW Filter).石英晶体的化学性质极为稳定,常温下不溶于盐酸、硝酸、硫酸等水和酸,只溶于氢氟酸。
石英晶体形状
石英晶体是一种常见的矿物,其晶体形状多种多样,下面将介绍几种常见的石英晶体形状。
1. 六方柱状晶体
六方柱状晶体是石英晶体中最常见的形状之一。
它的外形像一个六边形的柱子,顶部和底部都是六边形。
这种晶体形状在自然界中很常见,可以在石英矿物中轻易地找到。
2. 六方板状晶体
六方板状晶体是另一种常见的石英晶体形状。
它的外形像一个六边形的薄片,厚度很薄,通常只有几毫米。
这种晶体形状在石英矿物中也很常见。
3. 立方体状晶体
立方体状晶体是石英晶体中比较少见的形状之一。
它的外形像一个正方体,六个面都是正方形。
这种晶体形状在自然界中比较罕见,通常只在一些特殊的石英矿物中出现。
4. 棱柱状晶体
棱柱状晶体是石英晶体中比较特殊的形状之一。
它的外形像一个长
方形的柱子,四个面都是长方形。
这种晶体形状在自然界中比较罕见,通常只在一些特殊的石英矿物中出现。
5. 针状晶体
针状晶体是石英晶体中比较特殊的形状之一。
它的外形像一根细长的针,长度可以从几毫米到几厘米不等。
这种晶体形状在自然界中比较罕见,通常只在一些特殊的石英矿物中出现。
石英晶体形状多种多样,每一种形状都有其独特的特点和用途。
石英晶体在工业、科研和生活中都有广泛的应用,因此对其形状的研究和了解具有重要的意义。
石英结晶温度石英结晶温度是指石英晶体在一定条件下开始晶化的温度。
石英是一种常见的硅酸盐矿物,化学组成为SiO2。
石英的晶体结构稳定,具有高熔点和高硬度等特点,因此被广泛应用于玻璃、陶瓷、电子器件等领域。
石英结晶温度与石英晶体的形成过程密切相关。
在地壳深部,高温高压的条件下,石英可以形成大型晶体。
而在地壳浅部,低温低压的条件下,石英往往以微晶形式存在。
石英结晶温度的确定需要考虑多种因素,包括压力、温度、成分和结晶速率等。
石英的晶体结构属于三斜晶系,晶胞参数为a=4.913Å,b=4.913Å,c=5.405Å,α=90°,β=90°,γ=120°。
晶胞中的SiO4四面体团簇通过共享氧原子形成石英晶体的三维网络结构。
这种结构稳定性使得石英具有较高的熔点。
石英的熔点约为1670摄氏度。
在高温条件下,石英晶体会逐渐熔化成为熔融状态的硅酸盐液体。
而在低温条件下,石英晶体则保持固态结构。
石英的熔点较高,使得它具有较好的耐高温性能,适用于高温环境下的应用。
石英结晶温度的测定方法有多种,常用的方法包括差热分析法、高温显微镜观察法和X射线衍射法等。
差热分析法通过测量样品在升温过程中的热容变化来确定石英结晶温度。
高温显微镜观察法则是在显微镜下观察样品在升温过程中的形态变化,从而确定石英结晶温度。
X射线衍射法则通过测量样品在不同温度下的X射线衍射图谱来确定石英结晶温度。
除了温度,石英结晶还受到压力和成分的影响。
在高压条件下,石英的结晶温度会升高。
石英晶体中的杂质元素也会影响石英的结晶温度。
一些金属离子的掺入可以降低石英的结晶温度,而一些杂质元素的掺入则会提高石英的结晶温度。
石英的结晶温度是指石英晶体开始晶化的温度。
石英的熔点较高,具有较好的耐高温性能。
石英结晶温度的测定需要考虑多种因素,包括温度、压力、成分和结晶速率等。
石英结晶温度的确定可以通过差热分析法、高温显微镜观察法和X射线衍射法等方法进行。
石英晶体的特点
石英晶体是一种极为常见的晶体,主要由二氧化硅(SiO2)构成,具有很多特点和应用价值。
石英晶体具有高硬度和高抗磨性。
在矿物学中,石英晶体是硬度最高的矿物之一,其硬度达到7级。
此外,石英晶体具有很好的耐磨性,可以在高温高压等恶劣环境下长期保持其物理性质。
石英晶体具有很好的光学性能。
石英晶体的折射率很高,因此在光学领域得到了广泛应用。
例如,石英晶体可以用来制造光学棱镜、光学窗口等光学元件,还可以用来制造光学仪器的镜片、透镜等。
石英晶体还具有很好的电学性能。
石英晶体在电场作用下会发生压电效应,即在机械应力作用下,会产生电荷分布,从而产生电场。
这种性质使得石英晶体在电子领域得到了广泛应用,例如制造石英晶体振荡器、滤波器等电子元件,还可以用于制造电子钟表、计算机等电子产品。
石英晶体还具有很好的化学稳定性。
石英晶体不易被化学物质腐蚀,可以在强酸、强碱等腐蚀性环境中长期稳定存在。
这种性质使得石英晶体可以用于制造化学仪器、实验室设备等。
石英晶体具有很多优良的特性和应用价值,其在光学、电子、化学等多个领域都拥有广泛的应用。
随着科技的不断进步,石英晶体的
应用领域还将不断扩展,展现出更大的价值和潜力。
石英晶体quartz crystal二氧化硅(SiO)的单晶体,又称水晶,有天然和人造的两种。
石英晶体是一种重要的电子材料。
沿一定方向切割的石英晶片,当受到机械应力作用时将产生与应力成正比的电场或电荷,这种现象称为正压电效应。
反之,当石英晶片受到电场作用时将产生与电场成正比的应变,这种现象称为逆压电效应。
正、逆两种效应合称为压电效应。
石英晶体不仅具有压电效应,而且还具有优良的机械特性、电学特性和温度特性。
用它设计制作的谐振器、振荡器和滤波器等,在稳频和选频方面都有突出的优点。
1880年法国P.居里发现石英晶体的压电效应。
直到第一次世界大战期间,石英晶体的压电效应才得到应用。
由于天然石英资源短缺,人们研究用人工方法进行培育。
1905年意大利学者用水热温差法制造出合成人造石英。
1960年美国西方电气公司建立了第一个人造石英工厂,人造石英进入工业化生产阶段。
现代用水热温差法培育的人造石英,质量已可与天然石英媲美,能满足电子技术的需要。
在大气压力下,石英的熔点为1750[618-1]。
在573[618-1]以下时称石英,属于三方晶系32点群;在573~870[618-1]之间时称石英,属六方晶系622点群。
石英和石英都具有压电效应,但现代广泛使用的是石英,它的密度为2.65克/厘米,莫氏硬度为7。
理想的石英晶体外形见图。
它有一个三次旋转对称轴,三个互成120°夹角的二次旋转对称轴,三次轴与二次轴垂直。
晶轴与三次轴平行,晶轴、和[kg1]则分别与三个二次轴平行。
[kg1]轴与轴重合,轴与轴重合。
根据石英晶体的旋光性质,石英还可分为右旋石英和左旋石英(图[石英晶体的理想外形图」)沿方向施加压力时,右旋石英的轴正向带正电,左旋石英的轴正向带负电。
石英晶体的轴为光轴,光线沿轴通过晶体时不产生双折射现象。
轴称为电轴,沿轴或轴施加压力时,在轴方向产生电效应。
轴称为机械轴,沿轴或轴施加压力时,在轴方向不产生电效应。
石英晶振频率石英晶振频率是指石英晶体在电场作用下产生的机械振动频率。
它是现代电子技术中广泛应用的一种基础元器件,被广泛应用于通信、计算机、仪器仪表等领域。
本文将从以下几个方面详细介绍石英晶振频率。
一、石英晶体的基本结构和性质石英晶体是由SiO2分子通过共价键连接而成的晶体,具有高硬度、高化学稳定性、高温稳定性等特点。
其结构为三角形六方晶系,具有对称性和周期性。
二、石英晶振频率的产生原理当外加电场作用于石英晶体上时,会使其分子发生机械振动,并且在某些特定条件下,这种振动呈现出固有频率。
这个固有频率就是所谓的石英晶振频率。
三、影响石英晶振频率的因素1. 晶体尺寸:尺寸越小,固有频率越高。
2. 晶体厚度:厚度越薄,固有频率越高。
3. 晶体形状:不同形状的晶体具有不同的固有频率。
4. 晶体纯度:晶体纯度越高,固有频率越稳定。
5. 温度:温度变化会改变晶体的物理结构,从而影响固有频率。
四、石英晶振频率的应用1. 通信领域:用于无线电通信、卫星通信等领域,作为时钟源、频率合成器等元器件。
2. 计算机领域:用于计算机内部时钟源、CPU时钟等元器件。
3. 仪器仪表领域:用于精密测量仪器、医疗设备等领域,作为稳定的时钟源和频率源。
五、石英晶振频率的发展趋势随着科技的发展和需求的不断增加,对于更高精度、更高稳定性的石英晶振频率的需求也越来越大。
目前已经出现了各种新型石英晶振器件,如MEMS型石英振荡器、表面声波滤波器等。
这些新型设备在小尺寸、低功耗、高可靠性等方面都具有优势,将会在未来的应用中得到更广泛的应用。
六、总结石英晶振频率是现代电子技术中不可或缺的基础元器件,其固有频率受到多种因素的影响。
随着科技的不断发展,对于更高精度、更高稳定性的石英晶振频率需求也越来越大。
未来随着新型石英晶振器件的出现,石英晶振频率在各个领域中将会得到更广泛的应用。
石英钟的工作原理
石英钟的工作原理是利用石英晶体的压电效应和共振原理来产生准确的振荡信号,以驱动时钟的运行。
具体原理如下:
1. 石英晶体:石英晶体是由二氧化硅(SiO2)组成的晶态材料,它有一个特殊的结构,能够产生压电效应。
2. 压电效应:石英晶体会在受到外界电场的作用下发生形变,而反过来,当石英晶体受到压力时,会产生电荷。
这种将机械变形转化为电能的现象就是压电效应。
3. 振荡电路:石英钟中有一个振荡电路,其核心部分是由石英晶体和电容组成的谐振电路。
当电场作用在石英晶体上时,石英晶体会由于压电效应产生微小的形变,导致谐振电路的频率发生变化。
4. 谐振频率:石英晶体有一个特定的谐振频率,在该频率下,电荷的积累和释放会达到最大值。
石英晶体的尺寸和形状决定了其谐振频率。
5. 振荡信号:石英钟中的振荡电路会持续工作,不断变化的频率会产生一个稳定的振荡信号。
这个振荡信号的频率非常准确且稳定,通常是以赫兹(Hz)为单位。
6. 分频器:为了得到可读的时间,石英钟中还需要一个分频器。
分频器会把振荡信号的频率分成秒、分、时等不同的单位来显示在时钟的指针或数字显示器上。
综上所述,石英钟通过利用石英晶体的压电效应和谐振原理来产生准确的振荡信号,并通过分频器将信号转化为可读的时间。
这个工作原理使得石英钟具有高精度、稳定性和长寿命的特点,因此被广泛应用于各种计时设备中。
石英晶体的主要成分嘿,朋友们!咱今天来聊聊石英晶体的主要成分呀。
石英晶体,这玩意儿可不简单呢!就好像是自然界的一个小魔术,藏着好多神奇的秘密。
石英晶体的主要成分是二氧化硅,这二氧化硅啊,就像是建筑大厦的基石一样重要。
你想想看,没有坚固的基石,那大厦能稳稳地立在那儿吗?肯定不行呀!二氧化硅就是石英晶体的那个关键基石。
咱生活中很多地方都有石英晶体的身影呢。
比如说那些漂亮的水晶饰品,那可都是石英晶体的功劳呀!它们在灯光下闪烁着迷人的光芒,是不是让你觉得特别神奇?这就好像是大自然给我们的一份特别礼物,让我们能欣赏到这么美丽的东西。
再说说电子设备吧,很多里面都有石英晶体呢。
它就像是一个小魔法师,在背后默默地发挥着作用,让我们的手机、电脑啥的能正常工作。
这二氧化硅可真是厉害呀,小小的它却有着大大的能量。
你们有没有见过石英矿石呀?那一块块的矿石里,就蕴含着大量的二氧化硅。
这就好像是一个宝藏,等待着人们去挖掘、去发现。
而且呀,这二氧化硅还特别稳定,不容易被破坏,就像是一个坚强的卫士,守护着石英晶体的秘密。
咱中国有好多地方都有丰富的石英资源呢,这可真是咱的一大财富呀!我们可以利用这些资源,做出更多更好的东西来。
就好像是我们有了一把好钥匙,能打开更多未知的大门。
你说这二氧化硅是不是很神奇?它不声不响地存在着,却对我们的生活有着这么重要的影响。
我们真应该好好感谢大自然,给了我们这么好的东西。
所以啊,朋友们,要好好珍惜石英晶体,珍惜这其中的二氧化硅。
它们可是大自然的恩赐呀!让我们一起感受这份神奇,一起探索更多关于石英晶体的奥秘吧!这就是我对石英晶体主要成分的看法,你们觉得呢?。
石英晶体加工方法石英晶体是一种常见的无机材料,它具有高硬度、高透光性和热稳定性的特点,因此在电子、光学和通信领域得到了广泛的应用。
石英晶体加工方法主要包括研磨、抛光、蚀刻和生长等工艺,下面我们来详细介绍一下这些加工方法。
1. 研磨研磨是石英晶体加工的第一步,通常采用金刚砂或氧化铝等硬度较高的磨料进行研磨。
首先,在石英晶体上涂布研磨液,然后将其放在旋转磨片上进行研磨。
磨片的速度和研磨液的浓度会影响研磨的效果,通常需要进行多次研磨才能够达到所需的加工精度。
研磨过程中需要不断添加新的研磨液,并且要定期清洗磨片,以确保研磨的效果。
2. 抛光研磨之后,石英晶体还需要进行抛光,以去除研磨过程中产生的划痕和表面不平整。
抛光通常使用氧化铝或氧化铁等微粒子作为抛光剂,将其涂布在抛光布上,然后将石英晶体放在抛光布上进行抛光。
抛光的速度和压力需要进行调节,通常需要进行多次抛光才能够达到所需的加工精度。
在抛光之后,还需要进行清洗和干燥,以确保石英晶体表面的干净和光滑。
3. 蚀刻蚀刻是石英晶体加工的重要工艺之一,它可以用来加工石英晶体的形状和结构。
蚀刻通常使用氢氟酸或氢氧化钠等腐蚀剂,将其涂布在石英晶体上进行腐蚀,从而改变石英晶体的形状和结构。
蚀刻的速度和深度需要进行严格控制,通常需要进行多次蚀刻才能够达到所需的加工精度。
蚀刻之后,还需要进行清洗和干燥,以确保石英晶体的表面光滑和干净。
4. 生长在一些特殊的情况下,需要对石英晶体进行生长,以得到所需的形状和尺寸。
生长通常使用石英晶体种子和石英溶液,将石英晶体种子浸入石英溶液中,然后通过控制温度、压力和溶液成分来促进石英晶体的生长。
生长的过程需要进行严格的控制,以确保石英晶体的形状和尺寸符合要求。
总结石英晶体是一种重要的无机材料,在电子、光学和通信领域有着广泛的应用。
石英晶体加工方法主要包括研磨、抛光、蚀刻和生长等工艺,通过这些工艺可以实现石英晶体的形状和结构的精确控制。
在实际的加工过程中,需要进行严格的控制和操作,以确保石英晶体的加工精度和表面质量。
石英晶体介绍石英晶体的基本知识水晶的成份SiO2,在常压下不同温度时,石英晶体的结构不同,温度T<573℃时α石英晶体,当573℃<T<870℃时β石英晶体,熔点是1750℃,我们通常说的压电石英晶体指α石英晶体。
1、具有压电特性:压电效应:某些介质由于外界机械作用(如压缩,拉伸等等)而在其内部发生极化,产生表面电荷的现象叫压电效应。
逆压电效应:某些介质置于外电场中,由于电场的作用,会引起介质内部正负电荷中心的位移,导致介质发生形变,这种效应称为逆压电效应。
石英晶体在沿X 轴(或Y 轴)方向的力的作用时,在X 方向产生压电效应,而Y 和Z 方向不产生压电效应,X 轴称为电轴,Y 轴称为机械轴。
2、具有各向异性:石英晶体是一种良好的绝缘材料,导热系数在室温附近,沿Z轴方向是垂直于Z 轴方向的2 倍左右,沿Z 轴方向的线性膨胀系数a3 约为沿垂直于Z 轴方向线性膨胀系数a1 的1/2,其介电系数ε,压电系数d 等随方向的不同其数值也不同,在不同温度,导热系数K 与膨胀系数a 的数值也不同。
3、是外形高度对称的单晶体,其特征是原子和分子有规则的排列发育良好的石英晶体,外形最显著的特点是晶面有规则的配置,石英晶体的晶面共30 个,六个m 面(柱面),六个R 面(大棱面)六个r 面(小棱面)六个s 面(三方偏锥面),六个X 面(三方偏面),相邻M 面的夹角度为60°,相邻M 面和R面的夹角与相邻M 面和r 面的夹角都等于38°13′,相邻s 面与X 面的夹角为25°57′。
石英晶体存在一个三次对称轴C 和三个互成120°的轴a、b、d,在讨论石英晶体的物理性质时,采用下图所示的直角坐标系较为方便,选C 轴为z 轴,a 或b、d)轴为X 轴,与X 轴Z 轴垂直的Y 轴,其指向按1949 年IRE 标准规定,对左右旋晶体均采用右手直角坐标系。
4、具有双折射现象:但当光沿Z 轴方向射入时不发生双折射现象,所以又称Z 轴为光轴。
石英晶体介绍1、具有压电特性:压电效应:某些介质由于外界机械作用(如压缩,拉伸等等)而在其内部发生极化,产生表面电荷的现象叫压电效应。
逆压电效应:某些介质置于外电场中,由于电场的作用,会引起介质内部正负电荷中心的位移,导致介质发生形变,这种效应称为逆压电效应。
石英晶体在沿X 轴(或Y 轴)方向的力的作用时,在X 方向产生压电效应,而Y 和Z 方向不产生压电效应,X 轴称为电轴,Y 轴称为机械轴。
2、具有各向异性:石英晶体是一种良好的绝缘材料,导热系数在室温附近,沿Z轴方向是垂直于Z 轴方向的2 倍左右,沿Z 轴方向的线性膨胀系数a3 约为沿垂直于Z 轴方向线性膨胀系数a1 的1/2,其介电系数ε,压电系数d 等随方向的不同其数值也不同,在不同温度,导热系数K 与膨胀系数a 的数值也不同。
3、是外形高度对称的单晶体,其特征是原子和分子有规则的排列发育良好的石英晶体,外形最显著的特点是晶面有规则的配置,石英晶体的晶面共30 个,六个m 面(柱面),六个R 面(大棱面)六个r 面(小棱面)六个s 面(三方偏锥面),六个X 面(三方偏面),相邻M 面的夹角度为60,相邻M 面和R面的夹角与相邻M 面和r 面的夹角都等于3813′,相邻s 面与X 面的夹角为2557′。
石英晶体存在一个三次对称轴C 和三个互成120的轴a、b、d,在讨论石英晶体的物理性质时,采用下图所示的直角坐标系较为方便,选C 轴为z 轴,a或b、d)轴为X 轴,与X 轴Z 轴垂直的Y 轴,其指向按1949 年IRE 标准规定,对左右旋晶体均采用右手直角坐标系。
4、具有双折射现象:但当光沿Z 轴方向射入时不发生双折射现象,所以又称Z 轴为光轴。
5、石英晶体的密度ρ=2、65g/cm2,硬度为莫氏硬度7,在常温常压下不溶于三酸(HCL,H2SO4,HNO3),属于溶解度极小的物质,但是氢氟酸和氟化氢铵却是石英晶体良好的溶解液,其化学反应方程式SiO2+4HF=SiF4+2H2O(3SiF4+3H2O=H2SiO3+2H2SiF6)SiO2+4HF+2NH4F=(NH4)2SiF6+2H2O其特性用于石英片的腐蚀。
石英晶体石英简介石英晶体石英的化学成分为SiO2,晶体属三方晶系的氧化物矿物,即低温石英(a-石英),是石英族矿物中分布最广的一个矿物种。
广义的石英还包括高温石英(b-石英)。
低温石英常呈带尖顶的六方柱状晶体产出,柱面有横纹,类似于六方双锥状的尖顶实际上是由两个菱面体单形所形成的。
石英集合体通常呈粒状、块状或晶簇、晶腺等。
纯净的石英无色透明,玻璃光泽,贝壳状断口上具油脂光泽,无解理。
受压或受热能产生电效应。
变种压电材料石英因粒度、颜色、包裹体等的不同而有许多变种。
无色透明的石英称为水晶,紫色水晶俗称紫晶,烟黄色、烟褐色至近黑色的俗称茶晶、烟晶或墨晶,玫瑰红色的俗称芙蓉石;呈肾状、钟乳状的隐晶质石英称石髓,具不同颜色同心条带构造的晶腺叫玛瑙,玛瑙晶腺内部有明显可见的液态包裹体的俗称玛瑙水胆,细粒微晶组成的灰色至黑色隐晶质石英称燧石,俗称火石。
烟晶石英的用途很广。
无裂隙、无缺陷的水晶单晶用作压电材料,来制造石英谐振器和滤波器。
一般石英可以作为玻璃原料,紫色、粉色的石英和玛瑙还可作雕刻工艺美术的原料。
石英是最重要的造岩矿物之一,在火成岩、沉积岩、变质岩中均有广泛分布。
巴西是世界著名的水晶出产国,曾发现直径2.5米、高5米、重达40余吨的水晶晶体物理特性晶系:六方晶系晶体:等轴状、柱状、六方双锥面形集合体型态:块状、粗粒状、钟乳状、结核状硬度:摩氏硬度为7解理/断口:贝壳状断口光泽:玻璃光泽颜色:无、白,带有点灰、黄到橙黄、紫、深紫、粉红、灰褐、褐、黑条痕:白色比重:2.65 ~ 2.66其他:(1)具脆性(2)具有热电性(3)折射率 1.533 ~ 1.541,双折射率差0.009,色散0.013(4)石英具有强烈的压电性(Piezoelectric property),即用力敲击摩擦时会产生火花,这也就是燧石取火的方法。
(5)石英内常见的包裹体有:发晶(Hair crystal)-主要是金红石;草入水晶-主要为电气石;水胆水晶-石英中有液态包裹体;青石英-内含浅蓝色金红石针状物;乳石英-由细水孔洞引起混浊状;绿石英-由板状或碎片状的绿泥石组成,有时可能是绿色针状的阳起石;砂金石(Aventurine)-石英岩内部含有绿色或红褐色的云母细片,又名耀石英,俗称东陵石。
石英晶体的概念与应用、石英晶体是一种常见的矿物,其化学成分为二氧化硅(SiO2),晶体属于三方晶系的氧化物矿物,是石英族矿物中分布最广的一个矿物种。
石英晶体有很多不同的品种和颜色,其中一些被用作半宝石或珠宝,另一些则有着重要的工业和科学用途,如玻璃制造、半导体生产、时钟同步等。
本文将介绍石英晶体的基本概念、种类、性质和用途,以及相关的科学知识和技术。
石英晶体的种类石英晶体的种类可以根据其微观结构和颜色来区分。
根据微观结构,石英晶体可以分为大粒晶体(肉眼可见的单个晶体)和微晶或隐晶(仅在高放大率下可见的晶体聚集体)。
大粒晶体通常是透明或半透明的,而微晶或隐晶则是半透明或大部分不透明的。
根据颜色,石英晶体可以分为无色或白色的水晶、紫色的紫水晶、黄色或棕色的黄水晶、粉红色的粉晶、灰色或黑色的烟水晶等。
不同颜色的石英晶体通常是由于含有不同的杂质或受到不同程度的辐射而形成的。
下表列出了一些常见的石英晶体品种及其特征:品种颜色透明度微观结构来源水晶无色或白色透明或半透明大粒晶体纯净的二氧化硅紫水晶紫色透明或半透明大粒晶体含有铁等杂质或受到辐射黄水晶黄色或棕色透明或半透明大粒晶体含有铁等杂质或受到辐射粉晶粉红色透明或半透明大粒晶体或微晶含有铝和磷等杂质烟水晶灰色或黑色透明或不透明大粒晶体受到较强的辐射玉髓多种颜色,常呈带状半透明或不透明微晶或隐晶石英和摩根石的混合物瑪瑙多种颜色,呈带状或斑点半透明或不透明微晶或隐晶含有不同颜色层次的玉髓虎眼石金黄色到红褐色半透明或不透明微晶或隐晶纤维状的石英晶体钛晶无色或多彩透明或半透明大粒晶体含有针状的金红石等内含物石英晶体的性质石英晶体的物理和化学性质主要取决于其晶体结构和化学成分。
石英晶体的晶体结构是由硅和氧组成的四面体连续框架,其中每个氧原子在两个四面体之间共享。
这种结构使得石英晶体具有很高的硬度(莫氏硬度为7)、密度(2.65克/立方厘米)和熔点(1650摄氏度)。
石英石是什么成分组成
石英石又被称为人造石英石或者合成石英石,是一种人工制造的人造石材。
石
英石的主要成分是含有高纯度的天然石英晶体,其制作过程中还会添加一定比例的树脂、颜料以及其他添加剂。
下面将详细介绍石英石的成分组成:
1.石英晶体:石英石的主要成分是天然石英晶体,石英是一种常见的
矿物,其化学成分为SiO2。
石英晶体在自然界中广泛存在,具有高硬度、高
耐磨、抗污染等优良特性。
2.树脂:为了使石英石更具韧性和耐用性,制作过程中通常会添加树
脂作为粘合剂。
树脂主要起到粘结石英颗粒的作用,增强石英石的整体强度,并且可以使表面更光滑、易清洁、抗污渍等。
3.颜料:为了赋予石英石丰富多彩的外观,制作中会添加适量的颜料。
颜料的种类繁多,可以根据客户需求进行调配,制作出不同颜色和纹理的石英石产品。
4.其他添加剂:除了石英晶体、树脂和颜料外,制作石英石时还会添
加一些其他辅助材料,如增强剂、稳定剂等。
这些添加剂可以改善石英石的性能,如增加耐高温性、抗UV性、防霉性等。
总结:石英石主要由石英晶体、树脂、颜料和其他添加剂组成。
石英石以其具
备高硬度、耐磨、易清洁等优点,被广泛应用于厨房台面、洗手台面、地面瓷砖等领域。
通过精心配置各种原材料比例,制造石英石的生产商可以生产出色彩丰富、外观美观、质地坚固的石材产品,满足不同客户的需求和审美要求。
石英晶体俗称水晶,成分SiO2,它不仅是较好的光学材料,而且是重要的压电材料。
晶体的主要特征是其原子或分子有规律排列,反映在宏观上是外形的对称性。
人造水晶在高温高压下结晶而成。
在电场的作用下,晶体内部产生应力而形变,从而产生机械振动,获得特定的频率。
我们利用它的这种逆压电效应特性来制造石英晶体谐振器。
术语定义
AT切割用特殊的切割角度加工晶体的一种切割方法,用这种切割方法加工的晶体有良好的温度特性,是制造石英晶体元件最常用的方法。
老化率石英晶体产品频率相对于时间的稳定性,一般情况下它的变化是几个ppm/年
等效电阻RI等效电阻(ESR)通常表明石英谐振器在连续振荡中阻抗性能的好坏
调整频差各种频率可接收的变化范围(一般情况下用ppm表示)
温度频差石英晶体元件频率随温度变化而变化的特性。
不同的切割方法和不同的切割角度都有不同的特性曲线。
工作温度范围晶体元件工作在规定频差之内的工作温度范围。
储存温度范围晶体能在它的特殊性中得到完好保存的范围。
激励电平电路中用来驱动晶体元件振荡的电源叫激励电平,越好的产品需要的激励电平越小。
负载电容从晶体的两个引脚向电路系统看去电路所呈现的全部有效电容,即为负载电容,它与晶体元件一起决定晶体在电路上的工作效率。
等效电路晶体的等效电路。
可利用其表述晶体在谐振频率附近的工作特性,Co表示静态电容,是晶体两电极之间的电容和加上引线及基座带来的电容。
RI、LI、CI组成晶体等效电路的动态臂。
CI表示石英的动态电容。
LI为动态电感,RI为动态电阻。
基频晶体的定义是:设计工作在给定振动模式最低阶次上的晶体元件
泛音晶体的定义是:工作在比最低阶次要高的阶次上的晶体元件,有三次,五次,七次等
石英晶体谐振器(简称晶体)
.术语解释
1、标称频率:晶体技术条件中规定的频率,通常标识在产品外壳上。
2、工作频率:晶体与工作电路共同产生的频率。
3、调整频差:在规定条件下,基准温度(25±2℃)时工作频率相对于标称频率所允许的偏差。
4、温度频差:在规定条件下,在工作温度范围内相对于基准温度(25±2℃)时工作频率的允许偏差。
5、老化率:在规定条件下,晶体工作频率随时间而允许的相对变化。
以年为时间单位衡量时称为年老化率。
6、静电容:等效电路中与串联臂并接的电容,也叫并电容,通常用C0表示。
7、负载电容:与晶体一起决定负载谐振频率fL的有效外界电容,通常用CL表示。
负载电容系列是:8PF、12PF、15PF、20PF、30PF、50PF、100PF。
只要可能就应选推荐值:10PF、20PF、30PF、50PF、100PF。
8、负载谐振频率(fL):在规定条件下,晶体与一负载电容相串联或相并联,其组合阻抗呈现为电阻性时的两个频率中的一个频率。
在串联负载电容时,负载谐振频率是两个频率中较低的一个,在并联负载电容时,则是两个频率中较高的一个。
9、动态电阻:串联谐振频率下的等效电阻。
用R1表示。
10、负载谐振电阻:在负载谐振频率时呈现的等效电阻。
用RL表示。
RL=R1(1+C0/CL)2
11、激励电平:晶体工作时所消耗功率的表征值。
激励电平可选值有:2mW、1mW、0.5mW 、0.2mW、0.1mW、50μW、20μW、10μW、1μW、0.1μW等
12、基频:在振动模式最低阶次的振动频率。
13、泛音:晶体振动的机械谐波。
泛音频率与基频频率之比接近整数倍但不是整数倍,这是它与电气谐波的主要区别。
泛音振动有3次泛音,5次泛音,7次泛音,9次泛音等。
.应用指南
石英晶体谐振器根据其外型结构不同可分为HC-49U、HC-49U/S、
HC-49U/S·SMD、UM-1、UM-5及柱状晶体等。
HC-49U适用于具有宽阔空间的电子产品如通信设备、电视机、电话机、电子玩具中。
HC-49U/S适用于空间高度受到限制的各类薄型、小型电子设备及产品中。
HC-49U/S·SMD为准表面贴装型产品,适用于各类超薄型、小型电脑及电子设备中。
柱状石英晶体谐振器适用于空间狭小的稳频计时电子产品如计时器、电子钟、计算器等。
UM系列产品主要应用于移动通讯产品中,如BP机、移动手机等。
石英晶体谐振器主要用于频率控制和频率选择电路。
本指南有助于确保不出现性能不满意、成本不合适及可用性不良等现象。
1、振动模式与频率关系:
基频1~35MHz
3次泛音10~75MHz
5次泛音50~150MHz
7次泛音100~200MHz
9次泛音150~250MHz
2、晶体电阻:对于同一频率,当工作在高次泛音振动时其电阻值将比工作在低次振动时大。
3、工作温度范围与温度频差:在提出温度频差时,应考虑设备工作引起的温升容限。
当对温度频差要求很高,同时空间和功率都允许的情况下,应考虑恒温工作,恒温晶体振荡器就是为此而设计的。
4、负载电容与频率牵引:在许多应用中,都有用一负载电抗元件来牵引晶体频率的要求,这在锁相环回路及调频应用中非常必要,大多数情况下,这个负载电抗呈容性,当该电容值为CL时,则相对负载谐振频率偏移量为:DL=C1/[2(C0+CL)]。
而以CL作为可调元件由DL1调至DL2时,相对频率牵引为:
DL1,L2= C1(CL1-CL2)/[2(C0+CL1)(C0+CL2)]。
5、负载电容的选择:晶体工作在基频时,其负载电容的标准值为20PF、30PF、50PF、100PF。
而泛音晶体经常工作在串联谐振,在使用负载电容的地方,其负载电容值应从下列标准值中选择:8PF、12PF、15PF、20PF、30PF。
6、激励电平的影响:一般来讲,AT切晶体激励电平的增大,其频率变化是正的。
激励电平过高会引起非线性效应,导致可能出现寄生振荡;严重热频漂;过应力频漂及电阻突变。
当激励电平过低时则会造成起振阻力不易克服、工作不良及指标的不稳定。
7、滤波电路中的应用:应用于滤波电路中时,除通常的规定外,更应注意其等效电路元件的数值和误差以及寄生响应的位置和幅度,由于滤波晶体设计的特殊性,所以用户选购时应特别说明。