移项合并同类项解方程练习题
- 格式:docx
- 大小:36.86 KB
- 文档页数:3
【七年级】七年级数学上册“合并同类项与移项”练习题七年级数学上册合并同类项与移项练习题1.解一元一阶方程的变形是否正确?如果没有,指出错误并改正(1)从3x-8=2,得到3x=2-8;(2)从3x=X-6,3x-X=62.下列变形中:① 从方程x/2-6=5中去掉分母,得到x-12=10;②由方程6x=6两边同除以6,得x=1;③ 从方程6x-4=x+4的项位移中,得到7x=0;④由方程2-x/6-5/6=(x+3)/2两边同乘以6,得12-x-5=3(x+3).错误变形的数量为()a.4b.3c.2d.13.如果公式5x-7和4x+9的值相等,则X的值等于()a.2b.16c.4.5d.104.组合下列公式,并将结果写在水平线上(1)x-2x+4x=__________;(2)5y+3y-4y=_________;(3)4y-2.5y-3.5y=__________.5.求解以下方程(1)6x=3x-7(2)5=7+2x(3)-y=y-2(4)7y+6=4y-36.根据以下条件计算X值:(1)25与x的差是-8.(2)x与8的和是2.7.如果方程3x+4=0和方程3x+4K=8是同一个解方程,则k=____8.如果关于y的方程3y+4=4a和y-5=a有相同解,则a的值是________.9.天平的两个盘子里分别有50克和45克盐。
询问应该从板A中取出多少盐放入板B 中,以使两个板中的盐质量相等10.小明每天早上7:50从家出发,到距家1000米的学校上学,•每天的行走速度为80米/分.一天小明从家出发5分后,爸爸以180米/分的速度去追小明,•并且在途中追上了他.(1)爸爸花了多长时间才赶上小明?(2)追上小明时距离学校有多远?11.已知Y1=2x+8,y2=6-2x(1)当x取何值时,y1=y2?(2)当x取何值时,y1比y2小5?。
七年级数学上册3-2解一元一次方程(一)——合并同类项与移项同步练习题(含答案)1、下列叙述中,正确的是().A. 含有一个未知数的等式叫一元一次方程B. 未知数的次数是1的方程是一元一次方程C. 含有一个未知数,且未知数的次数是1,系数不等于0的整式方程叫一元一次方程D. 含有一个未知数,次数是1的代数式叫一元一次方程2、请你写出一个解为x=−1的一元一次方程.3、关于x的方程(k−4)x|k|−3+1=0是一元一次方程,则k的值是.4、解方程中的移项就是“把等式一边的某项后移到”.例如,把方程3x+20=8x中的3x变号后移到等号的右边,得.5、方程3x−4=−2x−1移项正确的是().A. 3x−2x=−1−4B. 3x+2x=−1+4C. 2x−3x=1+4D. 3x+2x=1+46、下列解方程的过程中,移项错误的是().A. 方程2x+6=−3移项,得2x=−3+6B. 方程2x−6=−3移项,得2x=−3+6C. 方程3x=4−x移项,得3x+x=4D. 方程4−x=3x移项,得x+3x=47、对方程8x+6x−10x=8合并同类项正确的是().A. 3x=8B. 4x=8C. 8x=8D. 2x=88、方程3x−4=3−2x的解答过程的正确顺序是().①合并同类项,得5x=7;②移项,得3x+2x=3+4;③系数化为1,得x=75.A. ①②③B. ③②①C. ②①③D. ③①②9、一元一次方程6x−8=8x−4的解是().A. x=−2B. x=−67C. x=27D. x=610、下列是一元一次方程的是().A. 2x +2=5 B. 3x−12+4=2x C. y2+3y=0 D. 9x−y=211、写出一个根为x=3的一元一次方程.12、已知(2m−3)x2−(2−3m)x=1是关于x的一元一次方程,则m=.13、解方程中,移项法则的依据是().A. 加法交换律B. 减去一个数等于加上这个数的相反数C. 等式的基本性质1D. 等式的基本性质214、方程3x+4=2x−5移项后,正确的是().A. 3x+2x=4−5B. 3x−2x=4−5C. 3x−2x=−5−4D. 3x+2x=−5−415、下列方程移项正确的是().A. 4x−2=−5移项,得4x=5−2B. 4x−2=−5移项,得4x=−5−2C. 3x+2=4x移项,得3x−4x=2D. 3x+2=4x移项,得4x−3x=216、按要求完成下列各题.(1) 解方程:3x+5=x+2请按所给导语,填写完整解:移项,得3x=2(依据:)合并同类项,得:,系数化为1,得,(依据:).(2) 解方程:2(x+15)=18−3(x−9).17、将方程2x+3=−2−3x,移项,得,合并同类项,得,方程两边同时除以,得.18、解方程3x+6=31−2x1 、【答案】 C;【解析】2 、【答案】x+1=0(答案不唯一);【解析】解:x+1=0的解为x=−1.故答案是:x+1=0(答案不唯一).3 、【答案】−4;【解析】由题意,得|k|−3=1,且k−4≠0,解得k=−4.4 、【答案】变号;另一边;20=8x−3x;【解析】5 、【答案】 B;【解析】3x−4=−2x−1,移项后为:3x+2x=−1+4.故选B.6 、【答案】 A;【解析】 A选项 : 移项,得2x=−3−6,故A错误;B选项 : 移项,得2x=−3+6,故B正确﹔C选项 : 移项,得3x+x=4,故C正确;D选项 : 移项,得−x−3x=−4,或3x+x=4,故D正确.7 、【答案】 B;【解析】8 、【答案】 C;【解析】3x−4=3−2x,移项,3x+2x=3+4;合并同类项,5x=4;,系数化为1,x=75综上:正确顺序为②、①、③.故选C.9 、【答案】 A;【解析】6x−8=8x−4,移项得6x−8x=−4+8,得−2x=4x=−2.故选A.10 、【答案】 B;【解析】 A选项 : 方程中的分母中含有未知数,故A不是一元一次方程;B选项 : 由于方程中含有一个未知数x,且未知数的次数为1,故B是一元一次方程;C选项 : 由于方程中未知数的次数最高为2次,所以C不是一元一次方程;D选项 : 含有两个未知数x和y,故D不是一元一次方程.11 、【答案】x−3=0;【解析】答案不唯一.x−3=0,x=3.故答案为:x−3=0.;12 、【答案】32【解析】2m−3=0,2−3m不等于0,解的m=3.213 、【答案】 C;【解析】根据等式的基本性质1,在等式两边都加上或减去同一个数或整式,所得结果仍然是等式,可得出结果,解方程时,移项法则的依据是等式的基本性质1.故选C.14 、【答案】 C;【解析】已知3x+4=2x−5,移项可得:3x−2x=−5−4.故选C.15 、【答案】 D;【解析】 A选项 : 4x−2=−5移项,得4x=−5+2,故本选项错误.B选项 : 4x−2=−5移项,得4x=−5+2,故本选项错误.C选项 : 3x+2=4x移项,得3x−4x=−2,故本选项错误.D选项 : 3x+2=4x移项,得3x−4x=−2,所以,4x−3x=2,故本选项正确.16 、【答案】 (1) −x;−5;等式两边同时加上或者减去一个相同的数,等式仍成立;2x=−3;x=−3;等式两边同时乘以一个不为0的数,等式仍成立;2(2) x=3.;【解析】 (1) 3x−x=2−5,等式两边同时加上或者减去一个相同的数,等式仍成立!2x=−3x=−3.等式两边同时乘以一个不为0的数,等式仍成立.2(2) 2(x+15)=18−3(x−9)2x+30=18−3x+275x=15x=3.17 、【答案】2x+3x=−2−3;5x=−5;5;x=−1;【解析】略.18 、【答案】x=5;【解析】移项,得:3x+2x=31−6合并同类项,得:5x=25将系数化为1得:x=5。
解一元一次方程合并同类项及移项同步测试题(有答案)一.选择题1.一元一次方程2x﹣5=0的解是()A.x=5B.x=﹣C.x=D.x=2.解关于x的方程﹣3x﹣9=x+5时,下面的变形正确的是()A.﹣3x+x=5﹣9B.﹣3x﹣x=(﹣9)+(﹣5)C.x+3x=(﹣9)+(﹣5)D.x+3x=5+93.若代数式4x﹣5与3x﹣2的值互为相反数,则x的值为()A.1B.﹣1C.0D.24.方程|x+3|﹣|1﹣x|=x+1的解是()A.x=3B.x=﹣5C.x=﹣1或3或5D.x=﹣5,或﹣1或35.若代数式3x﹣4与﹣2x+1的值相等,则x的值是()A.1B.2C.3D.56.解方程:2x﹣3=3x﹣2,正确的答案是()A.x=1B.x=﹣1C.x=5D.x=﹣5 7.在解方程﹣1=时,去分母正确的是()A.2(2x﹣1)﹣1=3(x+2)B.2(2x﹣1)﹣6=3(x+2)C.3(2x﹣1)﹣1=2(x+2)D.3(2x﹣1)﹣6=2(x+2)8.一元一次方程+++…+=的解是()A.1B.2C.2014D.2015 9.在解方程﹣=1时,对该方程进行化简正确的是()A.=100B.C.D.010.把方程3x+=3﹣去分母正确的是()A.3x+2(2x﹣1)=3﹣3(x+1)B.3x+(2x﹣1)=3﹣(x+1)C.18x+(2x﹣1)=18﹣(x+1)D.18x+2(2x﹣1)=18﹣3(x+1)二.填空题11.对于有理数a、b,规定一种新运算:a⊕b=ab+b,则方程(x﹣4)⊕3=6的解为.12.当x=时,代数式3x+1的值与代数式2(3﹣x)的值互为相反数.13.设a,b,c,d为实数,现规定一种新的运算=ad﹣bc.则满足等式=1的x的值为.14.当x=时,5(x﹣2)与2[7x﹣(4x﹣3)]的值相等.15.对于有理数a、b,定义运算“★”;a★b=,例如:2★1,因为2>1,所以2★1=22+12=5,若(x+1)★3=﹣12,则x=.三.解答题16.解方程:①2x+5=3(x﹣1);②﹣=1.17.解下列方程:(1)5x+3=2x﹣9(2)18.解下列方程:(1)=(2)=(3)278(x﹣3)﹣463(6﹣2x)﹣888(7x﹣21)=0(4){()﹣3]﹣3}﹣3=019.用“⊗”规定一种新运算:对于任意有理数a和b,规定a⊗b=ab2+2ab+a.如:1⊗3=1×32+2×1×3+1=16(1)求3⊗(﹣1)的值;(2)若(a+1)⊗2=36,求a的值;(3)若m=2⊗x,n=(x)⊗3(其中x为有理数),试比较m、n的大小.20.设a,b,c,d为有理数,现规定一种新的运算:=ad﹣bc,那么当=7时,x的值是多少?参考答案与试题解析一.选择题1.【解答】解:方程2x﹣5=0,解得:x=,故选:C.2.【解答】解:移项可知:﹣3x﹣x=9+5∴3x+x=﹣9﹣5故选:C.3.【解答】解:根据题意得:4x﹣5+3x﹣2=0,移项合并得:7x=7,解得:x=1,故选:A.4.【解答】解:当x<﹣3时,方程整理得:﹣x﹣3﹣1+x=x+1,解得:x=﹣5;当﹣3≤x<1时,方程整理得:x+3﹣1+x=x+1,解得:x=﹣1;当x≥1时,方程整理得:x+3+1﹣x=x+1,解得:x=3,则方程的解为x=﹣5,﹣1,3,故选:D.5.【解答】解:根据题意得:3x﹣4=﹣2x+1,移项合并得:5x=5,解得:x=1,故选:A.6.【解答】解:移项合并得:﹣x=1,解得:x=﹣1,故选:B.。
七年级数学上册解一元一次方程合并同类项与移项练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、填空题1.若关于x 的方程()22x m x +=-的解满足方程112x -=,则m 的值是________. 2.已知21x y =⎧⎨=-⎩是方程7mx y +=的解,则m =______. 3.若3x =是关于x 的方程3250x m --=的解,则m 的值为_________.4.求代数式的值的步骤:_______和计算.5.已知x =1是关于x 的方程6-(m -x )=5x 的解,则代数式m 2-6m +2=___________.6.有一个两位数,其数字之和是8,个位上的数字与十位上的数字互换后所得新数比原数小36,求原数.分析:设个位上和十位上的数字分别为x 、y ,则原数表示为________,新数表示为________;题目中的相等关系是:①________;①_______,故列方程组为_______.二、单选题7.方程185x =-的解为( )A .13-B .13C .23D .23-8.如果方程24=x 与方程310x k +=的解相同,则k 的值为( )A .2B .-2C .4D .-49.在物理学中,导体中的电流①跟导体两端的电压U ,导体的电阻R 之间有以下关系:U I R =去分母得IR U =,那么其变形的依据是( )A .等式的性质1B .等式的性质2C .分式的基本性质D .不等式的性质210.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6;①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.下列说法中,正确的是( )A .2与2-互为倒数B .2与12互为相反数C .0的相反数是0D .2的绝对值是2-12.已知点P 的坐标为(2,36)a a +-,且P 到两坐标轴的距离相等,则点P 的坐标为( )A .(3,3)B .(3,3)-C .(6,6)D .(6,6)或(3,3)-三、解答题13.已知关于x 的方程372x x a -=+的解与方程427x x +=-的解相同,试求a 的值.14.已知:a 、b 互为相反数,c 、d 互为倒数,m 的倒数等于它本身,则()||cd a b m m m++-的结果是多少? 15.如图是某小区的一块长为b 米、宽为2a 米的长方形草地,现在在该长方形的四个顶点处分别修建一个半径为a 米的扇形花台.(1)求修建后剩余草坪(阴影部分)的面积:(用含a ,b 的式子表示)(2)当a =10,b =40时,草坪的面积是多少平方米?(π取3.14)参考答案:1.14或134 【分析】根据112x -=解出x 的值,代入()22x m x +=-,即可求解 【详解】解112x -=,得 112x -=±, 112x ∴=±+, 32x ∴= 或12x =-, 代入()22x m x +=-,得22x m x +=+, 134m ∴= 或14, 故答案为14或134. 【点睛】本题考查解绝对值方程与根据解的情况求解参数,属于基础题.2.4【分析】把21x y =⎧⎨=-⎩代入方程7mx y +=,求解即可. 【详解】解:把21x y =⎧⎨=-⎩代入方程7mx y +=,得 2m -1=7,解得:m =4,故答案为:4.【点睛】本题考查方程的解,解一元一次方程,熟练掌握方程的解的定义:能使方程左右两边相等的未知数值叫方程的解是解题的关键.3.2【分析】将x =3代入方程计算即可求出m 的值.【详解】解:将x =3代入方程得:9-2m -5=0,解得m =2.故答案为:2.【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4.代数【解析】略5.-6【分析】根据一元一次方程的解的定义可知m 的值,然后代入求值即可.【详解】解:把x =1代入6-(m -x )=5x ,得6-(m -1)=5×1.解得m =2.所以m 2-6m +2=22-6×2+2=-6.故答案为:-6.【点睛】本题主要考查了方程的解、代数式求值.解答关键是理解方程的解的定义:就是能够使方程左右两边相等的未知数的值.6. 10y x + 10x y + 8x y += ()()101036x y x y +-+= 8(10)(10)36x y x y x y +=⎧⎨+-+=⎩【分析】设个位上和十位上的数字分别为x ,y ,则可分别表示原数和新数,再找出两个等量关系,列方程组;【详解】依题意,原数表示为10y x +,新数表示为10x y +,两个等量关系为:①个位上的数字+十位上的数字=8;①新数+36=原数;列方程组为8103610x y x y y x ⎧+=⎨++=+⎩; 故答案为:10y x +;10x y +;8x y +=;()()101036x y x y +-+=;8(10)(10)36x y x y x y +=⎧⎨+-+=⎩. 【点睛】本题主要考查了由实际问题抽象出二元一次方程组,准确计算是解题的关键.7.A【分析】先移项,再合并同类项,即可求解.【详解】解:185x =-,移项得:518x =-,解得:13x =-.故选:A【点睛】本题主要考查了解一元一次方程,熟练掌握解一元一次方程的基本步骤是解题的关键. 8.C【分析】首先求出方程24=x 的解,然后代入方程310x k +=即可求出k 的值.【详解】解:①2x =4,①x =2,①方程2x =4与方程3x +k =-2的解相同,①将x =2代入方程310x k +=得:3×2+k =10,解得,k =4,故选:C .【点睛】此题考查了一元一次方程的解的含义,已知方程的解求参数问题,解题的关键是熟练掌握解得含义并根据题意求出方程24=x 的解.9.B【分析】根据等式的性质2可得答案. 【详解】解:U I R =去分母得IR U =,其变形的依据是等式的性质2, 故选:B .【点睛】本题考查了等式的性质2:等式的两边同时乘以或除以同一个不为零的数,等式仍然成立. 10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11.C【分析】根据相反数定义,倒数定义,绝对值定义对各选项进行一一判断即可.【详解】解:A. 2与2-互为相反数,故选项A 不正确B. 2与12互为倒数,故选项B 不正确;C. 0的相反数是0,故选项C 正确;D. 2的绝对值是2,故选项D 不正确.故选C .【点睛】本题考查相反数定义,倒数定义,绝对值定义,掌握相关定义是解题关键.12.D【分析】由点P 到两坐标轴的距离相等,建立绝对值方程236a a +=-,再解方程即可得到答案. 【详解】解: 点P 到两坐标轴的距离相等,236a a ∴+=-,236a a ∴+=-或2360a a ++-=,当236a a +=-时,解得:4a =,()6,6P ∴;当2360a a ++-=时,解得:1a =,()3,3P ∴-;综上分析可知,P 的坐标为:()6,6P 或()3,3P -,故D 正确.故选:D .【点睛】本题考查的是平面直角坐标系内点的坐标特点,点到坐标轴的距离与坐标的关系,一元一次方程的解法,掌握以上知识是解题的关键.13.-6【分析】先解方程4x +2=7-x ,然后将解代入方程3x -7=2x +a 中,求出a 的值.【详解】解:解方程427x x +=-,得:1x =,方程372x x a -=+的解与方程427x x +=-的解相同,把1x =代入372x x a -=+,得:372a -=+,解得6a =-.a ∴的值为6-.【点睛】本题考查了方程的解,需要抓住“方程的解就是使方程成立的未知数的值”这个定义进行“求解——代入——求解”的过程,从而得到a 的值.14.0或-2【分析】由互为相反数两数之和为0得到a +b =0,由互为倒数两数之积为1得到cd =1,再根据倒数等于本身的数为-1和1得到m =1或m =-1,代入所求式子中计算即可求出值.【详解】解:由题意得a +b =0,cd =1,m =1或m =-1.当m =1时,原式101|1|01=+⨯-=; 当m =-1时,原式10(1)|1|21=+⨯---=--; 综上:()||cd a b m m m++-的结果是0或-2. 【点睛】此题考查了代数式求值,有理数的混合运算,相反数,以及倒数,熟练掌握相反数及倒数的定义是解本题的关键.15.(1)2ab ﹣πa 2平方米(2)486平方米【分析】(1)由图可知,四个扇形的面积等于一个圆的面积,用矩形的面积减去一个圆的面积即可, (2)将a 和b 的值代入(1)中的式子进行计算即可.(1)修建后剩余草坪的面积为22ab a π-(平方米).(2)当a =10,b =40时,22ab a π-≈221040 3.1410⨯⨯-⨯=800﹣314=486(平方米).【点睛】本题主要考查了用字母表示数,熟练掌握各个图形的面积公式是解题的关键.。
3.2解一元一次方程--移项合并同类项一、单选题1.一元一次方程21x =的解是( )A .2x =-B .0x =C .12x =- D .12x =2.方程3x =2x +7的解是( ) A .x =4B .x =﹣4C .x =7D .x =﹣73.已知5x =是方程2x −4a =2的解,则a 的值是( ) A .1B .2C .-2D .-14.若m 与13⎛⎫-- ⎪⎝⎭互为相反数,则m 的值为( )A .3-B .13-C .13D .35.代数式3310.3x a b -与323x a b 是同类项,则x 的值是( )A .0B .2C .52D .16.已知关于x 的方程3220x a +-=的解是x a =,则a 的值是( )A .1B .25C .52D .-17.某同学在解关于x 的方程3x -1=mx +3时,把m 看错了,结果解得x =4,该同学把m 看成了( ).A .-2B .2C .43D .728.关于x 的方程3x +5=0与3x =1﹣3m 的解相同,则m 等于( ) A .﹣2B .2C .4-3D .439.对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如: 5*7=5+2×7,则方程3x *12=5-x 的解为( ) A .1B .2C .2.5D .310.我们将如图所示的两种排列形式的点的个数分别叫做“平行四边形数”和“正三角形数”.设第n 个“平行四边形数”和“正三角形数”分别为a 和b .若42a =,则b 的值为( )A .190B .210C .231D .253二、填空题11.若23391m x -+=是关于x 的一元一次方程,则m 的值为_________.12.把方程2y ﹣6=y +7变形为2y ﹣y =7+6,这种变形叫_____,根据是_____. 13.若2x +与2(3)y -互为相反数,则x y -=________.14.利用方程可以将无限循环小数化成分数,例如:将0.7化成分数,可以先设0.7x =,由0.70.777=⋅⋅⋅⋅⋅⋅可知,107.777x =⋅⋅⋅⋅⋅⋅,所以107x x -=,解方程得79x =,于是得70.79=.仿此方法,0.730.7373=⋅⋅⋅⋅⋅⋅用分数表示为__________. 三、解答题 15.解方程 (1)617x +=(2)3845x x -=-16.小明在解一道有理数混合运算时,一个有理数m 被污染了. 计算:()3312m ÷+⨯-.(1)若2m =,计算:()33212÷+⨯-;(2)若()33132m ÷+⨯-=,求m 的值;(3)若要使()3312m ÷+⨯-的结果为最小正整数,求m 值.17.已知两个整式2A x x =+,B =■x +1,其中系数■被污染. (1)若■是2,化简A -B ;(2)若x =1时,A -B 的值为2.说明原题中■是几?18.对于有理数a 、b 定义一种新运算“⊗”,规定a ⊗b =|a |+|b |﹣|a ﹣b |.(1)计算2⊗3的值;(2)当a 、b 在数轴上的位置如图所示时,化简a ⊗b ; (3)已知a <0,a ⊗a =12+a ,求a 的值.19.已知关于x 的方程()()233210k x k x m ---++=是一元一次方程.(1)求k 的值.(2)若已知方程与方程3243x x -=-的解互为相反数,求m 的值. (3)若已知方程与关于x 的方程7352x x m -=-+的解相同,求m 的值.答案1.D 2.C 3.B 4.B 5.D 6.B 7.B 8.B9.A10.C11.212.移项等式基本性质1 13.-514.73 9915.(1)x=1(2)x=-316.(1)0;(2)1m=-;(3)1m=.17.(1)21x x--(2)-118.(1)4;(2)0;(3)a的值为-4.19.(1)3-;(2)2.5;(3)2.5.。
1.方程315x -=的解是 A .x =3B .x =4C .x =2D .x =62.方程x –3=–6的解是 A .x =2B .x =–2C .x =3D .x =–33.方程231x -=的解是 A .0x =1B 2x =.C 1x =.D 2x =.4.如果2005200.520.05x -=-,那么x 等于 A .1814.55 B .1824.55 C .1774.45D .1784.455.下列通过移项变形,错误的是 A .由x +2=2x –7,得x –2x =–7–2B .由x +3=2–4x ,得x +4x =2–3C .由2x –3+x =2x –4,得2x –x –2x =–4+3D .由1–2x =3,得2x =1–36.若关于x 的方程ax –4=a 的解是x =3,则a 的值是 A .–2B .2C .–1D .17.已知关于x 的方程2x –3m –12=0的解是x =3,则m 的值为 A .–2B .2C .–6D .68.若a +3=0,则a 的值是 A .–3B .13-C .13 D .39.若代数式5x –7与4x +9的值相同,则x 的值为 A .2B .16C .2916D 9.10.若代数式x –7与–2x +2的值互为相反数,则x 的值为A .3B .–3C .5D .–511.方程2x –2=4的解是A .x =2B .x =3C .x =4D .x =512.方程2x –1=3的解是A .x =1B .x =2C .x =4D .x =813.方程x –1=2018的解为A .x = 2017B .x = 2019C .x =–2017D .x =–201914.方程2–5x =9的解是A .x =–57B .x =115C .x =57D .x =–7515.方程2x +1=3的解是A .x =−1B .x =1C .x =2D .x =−216.如果□×(–3)=1,则“□”内应填的实数是A .13B .3C .–3D .13-17.下列变形属于移项的是A .由540x -=,得450x -+=B .由21x =-,得12x =- C .由430x +=,得403x =-D .由554x x -=,得154x = 18.方程3x =15–2x 的解是A .x =3B .x =4C .x =5D .x =619.方程22x x -=-的解是A .1x =B .1x =-C .x =2D .0x =20.若代数式x –3的值为2,则x 等于A .1B .–1C .5D .–521.方程226x -+=的解为__________. 22.方程250x -=的解为__________.23.如果x =2是关于x 的方程x –a =3的解,则a =__________. 24.方程35x =-的解是___________.25.若(a –1)x |a |+3=–6是关于x 的一元一次方程,则a =___________;x =___________. 26.若关于x 的方程3x +4=0与方程3x +4k =18是同解方程,则k =___________. 27.将x =–32y –1代入4x –9y =8,可得到一元一次方程_______.28.解方程:(1)–2x =6;(2)x –11=7;(3)x +13=5x +37;(4)3x –x =–13+1.29.有人问小明的生日是几号,小明说:“在日历表上,我的生日连同上、下、左、右5个日期之和是21.”小明撒谎了吗?为什么?30.已知A =2x 2+3xy –2x –1,B =–x 2+xy –1.若3A +6B 的值与x 的值无关,求y 的值.31.代数式2a -与12a -的值相等,则a 等于A .0B .1C .2D .332.若方程213x +=和203a x--=的解相同,则a 的值为 A .7B .5C .3D .033.关于x 的方程253x a +=的解与方程220x +=的解相同,则a 的值是A .1B .4C .15D .1-34.方程122x-=的解是A.14x=-B.4x=-C.14x=D.4x=35.马强在计算“41+x”时,误将“+”看成“–”,结果得12,则41+x的值应为A.29 B.53 C.67 D.70 36.方程|x–3|=6的解是A.9 B.±9 C.3 D.9或–337.对任意四个有理数a,b,c,d定义新运算:a bad bcc d=-,已知24181xx-=,则x=A.–1 B.2 C.3 D.438.a※b是新规定的这样一种运算法则:a※b=a+2b,例如3※(–2)=3+2×(–2)=–1.若(–2)※x=2+x,则x的值是A.1 B.5 C.4 D.239.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动?40.若新规定这样一种运算法则:a*b=a2+2ab,例如3*(–2)=32+2×3×(–2)=–3.(1)试求(–1)*2的值;(2)若3*x=2,求x的值;(3)(–2)*(1+x)=–x+6,求x的值.41.(2018·恩施)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店A.不盈不亏B.盈利20元C.亏损10元D.亏损30元42.(2018·武汉)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是 A . 2019B . 2018C . 2016D . 20133.【答案】D【解析】移项得:2x =3+1, 合并得:2x =4, 系数化为1得:x =2. 故选D . 4.【答案】B【解析】移项可得:20.05200.52005x -=-+-, 合并同类项可得:1824.55x -=-, 系数化为1可得:1824.55x =. 故选B . 5.【答案】C6.【答案】B【解析】把x=3代入方程得:3a–4=a,解得:a=2,故选B.7.【答案】A【解析】把x=3代入2x–3m–12=0得6–3m–12=0,所以m=–2.故选A.8.【答案】A【解析】a+3=0,移项得,a=–3.故选A.9.【答案】B【解析】根据题意得:5x−7=4x+9,移项得:5x–4x=9+7,合并同类项得:x=16,故选B.10.【答案】D【解析】根据题意得:x–7−2x+2=0,移项合并得:–x=5,解得:x=−5,故选D.11.【答案】B【解析】方程移项得:2x=4+2,合并得:2x=6,解得:x=3,故选B.12.【答案】B【解析】移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故选B.16.【答案】D【解析】设“□”内应填的实数是x,则–3x=1,解得,x=13 ,故选D.17.【答案】C【解析】选项A只是将方程左边的式子进行变形,并没有进行移项;选项B属于将方程的未知数系数化为1;选项C进行了移项;选项D为方程的左边进行合并同类项.故选C.18.【答案】A【解析】方程移项合并得:5x=15,解得:x=3.故选A.19.【答案】C【解析】移项得:x+x=2+2,合并同类项得:2x=4,解得:x=2.故选C.解得:1a =-, 故答案为:1-. 24.【答案】x =8【解析】移项可得:53x -=--, 合并同类项可得:8x -=-, 系数化为1可得:8x =. 故答案为: x =8.25.【答案】(1)–1;(2)92. 【解析】∵方程(a –1)x |a |+3=–6是关于x 的一元一次方程, 所以10 a -≠,1a =,解得1a =-, 所以原方程为:236x -+=-,解得:92x =. 故答案为:(1)–1;(2)92. 26.【答案】11227.【答案】5y+4=0【解析】将312x y=--代入498x y-=,得341982y y⎛⎫---=⎪⎝⎭,整理得:540y+=.故答案为:540y+=. 28.【解析】(1)–2x=6,x=–3;(2)x–11=7,x=7+11,x=18;(3)x+13=5x+37,x–5x=37–13,–4x=24,x=–6;(4)3x–x=–13+1,2x=23,x=13.29.【解析】小明撒谎了.理由如下.30.【解析】∵A =2x 2+3xy –2x –1,B =–x 2+xy –1,所以3A +6B =15xy –6x –9=(15y –6)x –9, 要使3A +6B 的值与x 的值无关,则15y –6=0, 解得:y =25. 31.【答案】B【解析】根据题意得:a −2=1−2a , 移项合并得:3a =3, 解得:a =1. 故选B . 32.【答案】A【解析】解第一个方程得:x =1, 解第二个方程得:x =a −6,所以a −6=1, 解得:a =7.故选A . 33.【答案】A【解析】解方程220x +=,得1x =-, 把1x =-代入253x a +=得253a -+=, 解得 1.a =故选A . 34.【答案】A【解析】122x -=,14x =-.故选A . 35.【答案】D【解析】由题意可得:4112x -=,解得:29x =, 所以41412970x +=+=.故选D .36.【答案】D 【解析】∵36x -=,所以36x -=或36x -=-,解得:9x =或3x =-.故选D .37.【答案】C【解析】∵a b ad bc c d=-,所以2x +4x =18,即:x =3,故选C .40.【解析】(1)根据题中的新定义得:原式=1–4=–3;(2)已知等式利用题中的新定义化简得:9+6x =2, 解得:x =–76; (3)已知等式利用题中的新定义化简得:4–4–4x =–x +6, 移项合并得:3x =–6,解得:x =–2.41.【答案】C【解析】设两件衣服的进价分别为x 、y 元,根据题意得:120–x =20%x ,y –120=20%y ,解得:x =100,y =150,所以120+120–100–150=–10(元).故选:C .42.【答案】D。
初中移项题解方程练习题移项题通常是数学习题中的一种类型,涉及到方程的转化和求解。
初中时期,学生们经常会遇到这种类型的练习题,下面我将给出一些典型的移项题解方程练习题,并进行详细的解答。
练习题1:将方程2x - 3 = 7x - 11转化为x的等式,并求出x的值。
解答:首先,我们可以通过移项将方程整理为x的等式。
根据移项原则,我们将包含x的项移到等号的一边,将常数项移到等号的另一边。
2x - 7x = -11 + 3合并同类项并计算常数项:-5x = -8接下来,我们可以通过除以-5来解得x的值:x = (-8)/(-5)化简表达式:x = 8/5练习题2:对于方程3(x - 4) + 2(x - 3) = 5 - 4x,化简并求解x的值。
解答:首先,我们可以通过分配律将方程中的括号展开。
3x - 12 + 2x - 6 = 5 - 4x接下来,我们可以通过合并同类项进行整理:5x - 18 = 5 - 4x然后,我们将包含x的项移到等号的一边,将常数项移到等号的另一边:5x + 4x = 5 + 18合并同类项并计算常数项:9x = 23最后,我们可以通过除以9来解得x的值:x = 23/9练习题3:解方程2(a - 1) + 3(b - 4) = 4(c - 2),其中a、b和c为未知数。
解答:首先,我们可以按照练习题2的方法,通过分配律将方程中的括号展开:2a - 2 + 3b - 12 = 4c - 8接下来,我们可以整理方程并将包含未知数的项移到等号的一边,将常数项移到等号的另一边:2a + 3b - 4c = 2 - 8 + 12合并同类项并计算常数项:2a + 3b - 4c = 6练习题4:解方程(m + 1)/2 + (4n - 3)/3 = 2(m - n)/5,其中m和n为未知数。
解答:首先,我们可以将方程中的分数进行通分,使得方程中所有的分数的分母相同。
(3m + 3)/6 + (8n - 6)/9 = (4m - 4n)/10接下来,我们可以通过乘以分母来消去分母,并整理方程:5(3m + 3) + 10(8n - 6) = 6(4m - 4n)合并同类项并计算常数项:15m + 15 + 80n - 60 = 24m - 24n继续整理方程:-9m - 104n = -75练习题5:解方程2(3a - 4b) = 6a - 8b,其中a和b为未知数。
移项合并同类项解方程练习题在代数学中,解方程是一种基本的数学技能。
移项合并同类项是解
方程中常用的操作步骤之一。
本文将介绍一些移项合并同类项解方程
的练习题,帮助读者熟悉和掌握这一技巧。
1. 例题
解方程:2x + 3 - 5x + 7 = 10
首先,将方程中的同类项按照规则合并。
合并2x和-5x,得到-3x;
合并常数项3和7,得到10。
简化后的方程为:-3x + 10 = 10
接下来,我们要将方程中的-3x和10移项,使得方程左边只剩下x。
移项的过程如下:
-3x + 10 - 10 = 10 - 10
简化后的方程为:-3x = 0
现在,我们将方程除以系数-3,得到最终的解:
x = 0
所以,原方程的解为x = 0。
2. 练习题
接下来,我们来练习一些移项合并同类项解方程的题目。
(1) 解方程:4x - 7 - 2x + 5 = 3
合并同类项,得到2x - 2 = 3。
移项,得到2x = 5。
最终解为x = 2.5。
(2) 解方程:-3y + 2 - 2y + 10 = -8
合并同类项,得到-5y + 12 = -8。
移项,得到-5y = -20。
最终解为y = 4。
(3) 解方程:2z + 5 + 3z - 6 = 10
合并同类项,得到5z - 1 = 10。
移项,得到5z = 11。
最终解为z = 11/5。
通过反复练习这些题目,我们可以更熟练地掌握移项合并同类项解方程的方法。
当然,在解方程时需要注意一些特殊情况和可能出现的错误,比如分母为零,平方根为负数等等。
在解题过程中,要仔细审题,理清思路,避免犯低级错误。
总结:
移项合并同类项是解方程中的重要步骤,通过合并同类项和移项操作,可以简化方程,最终求得方程的解。
通过练习题的解答,读者可以巩固和应用这一技巧,提高解方程的能力。
在解题过程中,要注意
特殊情况和错误的可能性,以确保得到正确的解答。
希望本文的讲解和练习对读者有所帮助。