新高考数学高考试题及答案
- 格式:docx
- 大小:38.47 KB
- 文档页数:7
普通高等学校招生全国统一考试数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=A.{x|2<x≤3}B.{x|2≤x≤3}C.{x|1≤x<4}D.{x|1<x<4}2.2i 12i -= +A.1B.−1C.i D.−i3.6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有A.120种B.90种C.60种D.30种4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°5.某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是 A .62% B .56% C .46%D .42%6.基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:(e )rtI t 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0 =1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69) A .1.2天 B .1.8天 C .2.5天D .3.5天7.已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅的取值范围是A .()2,6-B .()6,2-C .()2,4-D .()4,6-8.若定义在R 的奇函数f (x )在(0),-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是A .[)1,1][3,-+∞B .3,1][,[01]--C .[)1,0][1,-+∞D .1,0]3][[1,-二、选择题:本题共4小题,每小题5分,共20分。
2023年全国高考数学试题及答案题目一1. 设函数 $f(x)=\frac{1}{x-2}$,求 $a$ 的值使得 $f(f(a))=2$。
答案一解:由题意,$f(f(a))=2$,代入函数 $f(x)=\frac{1}{x-2}$,得到:$$f(f(a))=\frac{1}{\frac{1}{a-2}-2}=2$$将分式倒数化为乘法,化简上式:$$\frac{1}{\frac{1}{a-2}-2}=2$$$$\frac{1}{\frac{a-2-2(a-2)}{a-2}}=2$$$$\frac{1}{\frac{-3a+6}{a-2}}=2$$$$\frac{a-2}{-3a+6}=2$$$$a-2=-6a+12$$$$7a=14$$$$a=2$$所以,当 $a=2$ 时,$f(f(a))=2$。
---题目二2. 已知函数 $y=sin(x)$ 的图像上有两个点:$A(x_1, y_1)$ 和$B(x_2, y_2)$,其中 $x_1>0$,$x_2>0$,且 $x_1-x_2=\frac{\pi}{2}$。
求平面直角坐标系中点$A$ 和点$B$ 的坐标。
答案二解:由题意可得,$x_1-x_2=\frac{\pi}{2}$。
根据三角函数的周期性,$sin(x)$ 在一个周期 $2\pi$ 内有两个相等的点。
所以,$sin(x_1)=sin(x_2)$,即 $x_1$ 和 $x_2$ 互为余弦函数的关系。
由余弦函数的性质可得,$cos(\frac{\pi}{2}-x_2)=cos(x_1)$。
因为 $x_1>0$,所以 $0<\frac{\pi}{2}-x_2<\frac{\pi}{2}$。
根据余弦函数在锐角区间的单调性可知,$cos(\frac{\pi}{2}-x_2)>cos(0)=1$。
所以,$cos(\frac{\pi}{2}-x_2)=1$,即 $\frac{\pi}{2}-x_2=2k\pi$,其中 $k$ 为整数。
24年新高考一卷数学试题及答案一、选择题(本题共8小题,每小题5分,共40分)1. 若函数f(x)=2x+1,求f(-1)的值。
A. -1B. 1C. 3D. 5答案:A2. 已知等差数列{an}的首项a1=3,公差d=2,求该数列的第10项。
A. 23B. 25C. 27D. 29答案:B3. 若复数z满足z^2 - 2z + 1 = 0,求z的值。
A. 1B. -1C. iD. -i答案:A4. 已知向量a=(3,-2),b=(1,2),求向量a与向量b的数量积。
A. -4B. 0C. 4D. 8答案:B5. 若直线l的方程为y=2x+3,求该直线的斜率。
A. 2B. -2C. 3D. -3答案:A6. 已知函数f(x)=x^3-3x^2+2,求f'(x)的表达式。
A. 3x^2-6xB. x^2-3xC. 3x-6D. x-3答案:A7. 已知双曲线C的方程为x^2/a^2 - y^2/b^2 = 1,求该双曲线的渐近线方程。
A. y = ±(b/a)xB. y = ±(a/b)xC. y = ±xD. y = ±(a/b)^2x答案:A8. 已知三角形ABC的内角A、B、C满足A+B+C=π,且sinA+sinB=sinC,求角C的大小。
A. π/3B. π/2C. 2π/3D. π答案:C二、填空题(本题共4小题,每小题5分,共20分)9. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,求该圆的半径。
答案:310. 若抛物线y^2 = 4x的焦点为F,求该抛物线的准线方程。
答案:x = -111. 已知函数f(x)=x^2-4x+3,求该函数的最小值。
答案:012. 已知正方体的棱长为a,求该正方体的表面积。
答案:6a^2三、解答题(本题共3小题,共40分)13. 已知函数f(x)=x^3-6x^2+9x+1,求该函数的单调区间。
2023年全国统一高考数学试卷(新高考Ⅰ)A.{-2,-1,0,1}B.{0,1,2}C.{-2}D.{2}A.-iB.i C.0D.1A.λ+μ=1B.λ+μ=-1C.λμ=1D.λμ=-1(2023•新高考Ⅰ)已知集合M={-2,-1,0,1,2},N={x|x 2-x-6≥0},则M∩N=( )答案:C解析:先把集合N表示出来,再根据交集的定义计算即可.解答:解:∵x 2-x-6≥0,∴(x-3)(x+2)≥0,∴x≥3或x≤-2,N=(-∞,-2]∪[3,+∞),则M∩N={-2}.故选:C.(2023•新高考Ⅰ)已知z=,则z-z =( )1-i 2+2i答案:A解析:根据已知条件,结合复数的四则运算,以及共轭复数的定义,即可求解.解答:解:z==•=•=-i ,则z =i ,故z -z =-i.故选:A.1-i 2+2i 121-i 1+i 12(1-i )2(1+i )(1-i )1212(2023•新高考Ⅰ)已知向量a =(1,1),b =(1,-1).若(a +λb )⊥(a +μb ),则( )→→→→→→答案:DA.(-∞,-2]B.[-2,0)C.(0,2]D.[2,+∞)A.B.C.D.解析:由已知求得a +λb 与a +μb 的坐标,再由两向量垂直与数量积的关系列式求解.→→→→解答:解:∵a =(1,1),b =(1,-1),∴a +λb =(λ+1,1-λ),a +μb =(μ+1,1-μ),由(a +λb )⊥(a +μb ),得(λ+1)(μ+1)+(1-λ)(1-μ)=0,整理得:2λμ+2=0,即λμ=-1.故选:D.→→→→→→→→→→(2023•新高考Ⅰ)设函数f(x)=2x (x-a )在区间(0,1)单调递减,则a的取值范围是( )答案:D解析:利用换元法转化为指数函数和二次函数单调性进行求解即可.解答:解:设t=x(x-a)=x 2-ax,对称轴为x=,抛物线开口向上,∵y=2t 是t的增函数,∴要使f(x)在区间(0,1)单调递减,则t=x 2-ax在区间(0,1)单调递减,即≥1,即a≥2,故实数a的取值范围是[2,+∞).故选:D.a 2a 2(2023•新高考Ⅰ)设椭圆C 1:+y 2=1(a>1),C 2:+y 2=1的离心率分别为e 1,e 2.若e 2=e 1,则a=( )x 2a 2x 24√32√33√2√3√6答案:A解析:利用椭圆C 2:+y 2=1的方程可求其离心率e 2,进而可求e 1,可求a.x 24A.1B.解答:解:由椭圆C 2:+y 2=1可得a 2=2,b 2=1,∴c 2==,∴椭圆C 2的离心率为e 2∵e 2=e 1,∴e 1=,∴=,∴=4=4(-)=4(-1),即3=4,解得a 1故选:A.x 2√4-1√32√312c 1a 112a 12c 12a 12b 12a 12a 123(2023•新高考Ⅰ)过点(0,-2)与圆x 2+y 2-4x-1=0相切的两条直线的夹角为α,则sinα=( )√15444答案:B解析:圆的方程化为(x-2)2+y 2=5,求出圆心和半径,利用直角三角形求出sin ,再计算cos 和sinα的值.α2α2解答:解:圆x 2+y 2-4x-1=0可化为(x-2)2+y 2=5,则圆心C(2,0),半径为r=;设P(0,-2),切线为PA、PB,则PC==2,△PAC中,sin =,所以cos ==,所以sinα=2sin cos =2×.故选:B.√5√22+22√2α2√52√2α2√32√2α2α2√5√3√154A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件A.B.C.-D.-(2023•新高考Ⅰ)记S n 为数列{a n }的前n项和,设甲:{a n }为等差数列;乙:{}为等差数列,则( )S nn答案:C解析:首先明确充要条件的判定方法,再从等差数列的定义入手,进行正反两方面的论证.解答:解:若{a n }是等差数列,设数列{a n }的首项为a 1,公差为d,则S n =na 1+d,即=a 1+d=n+a 1-,故{}为等差数列,即甲是乙的充分条件.反之,若{}为等差数列,则可设-=D,则=S 1+(n-1)D,即S n =nS 1+n(n-1)D,当n≥2时,有S n-1=(n-1)S 1+(n-1)(n-2)D,上两式相减得:a n =S n -S n-1=S 1+2(n-1)D,当n=1时,上式成立,所以a n =a 1+2(n-1)D,则a n+1-a n =a 1+2nD-[a 1+2(n-1)D]=2D(常数),所以数列{a n }为等差数列.即甲是乙的必要条件.综上所述,甲是乙的充要条件.故本题选:C.n (n -1)2Sn n n -12d 2d 2S nnS n n S n +1n +1Sn nS nn(2023•新高考Ⅰ)已知sin(α-β)=,cosαsinβ=,则cos(2α+2β)=( )131679191979A.x 2,x 3,x 4,x 5的平均数等于x 1,x 2,⋯,x 6的平均数B.x 2,x 3,x 4,x 5的中位数等于x 1,x 2,⋯,x 6的中位数C.x 2,x 3,x 4,x 5的标准差不小于x 1,x 2,⋯,x 6的标准差D.x 2,x 3,x 4,x 5的极差不大于x 1,x 2,⋯,x 6的极差答案:B解析:由已知结合和差角公式先求出sinαcosβ,再求出sin(α+β),然后结合二倍角公式可求.解答:解:因为sin(α-β)=sinαcosβ-sinβcosα=,cosαsinβ=,所以sinαcosβ=,所以sin(α+β)=sinαcosβ+sinβcosα=+=,则cos(2α+2β)=1-2sin 2(α+β)=1-2×=.故选:B.1316121216234919(2023•新高考Ⅰ)有一组样本数据x 1,x 2,⋯,x 6,其中x 1是最小值,x 6是最大值,则( )答案:BD解析:根据平均数,中位数,标准差,极差的概念逐一判定即可.解答:解:A选项,x 2,x 3,x 4,x 5的平均数不一定等于x 1,x 2,⋯,x 6的平均数,A错误;B选项,x 2,x 3,x 4,x 5的中位数等于,x 1,x 2,⋯,x 6的中位数等于,B正确;C选项,设样本数据x 1,x 2,⋯,x 6为0,1,2,8,9,10,可知x 1,x 2,⋯,x 6的平均数是5,x 2,x 3,x 4,x 5的平均数是5,x 1,x 2,⋯,x 6的方差=×[(0-5)2+(1-5)2+(2-5)2+(8-5)2+(9-5)2+(10-5)2]=,x 2,x 3,x 4,x 5的方差=×[(1-5)2+(2-5)2+(8-5)2+(9-5)2]=,>,∴s 1>s 2,C错误.+x 3x 42+x 3x 42s 1216503s 2214252s 12s 22A.p1≥p2B.p2>10p3C.p3=100pD.p1≤100p2D选项,x6>x5,x2>x1,∴x6-x1>x5-x2,D正确.故选:BD.(2023•新高考Ⅰ)噪声污染问题越来越受到重视.用声压级来度量声音的强弱,定义声压级L p =20×lg,其中常数p(p>0)是听觉下限阈值,p是实际声压.下表为不同声源的声压级:声源与声源的距离/m声压级/dB 燃油汽车1060~90混合动力汽车1050~60电动汽车1040已知在距离燃油汽车、混合动力汽车、电动汽车10m处测得实际声压分别为p1,p2,p3,则( )pp答案:ACD解析:根据题意分别计算p1,p2,p3的范围,进行比较即可求解.解答:解:由题意得,60≤20lg≤90,1000p≤p1≤1p,50≤20lg≤60,1p≤p2≤1000p,20lg=40,p3=100p,可得p1≥p2,A正确;p2≤10p3=1000p,B错误;p3=100p,C正确;p1≤1p=100×1p≤100p2,p1≤100p2,D正确.故选:ACD.p1p92p2p52p3p92052(2023•新高考Ⅰ)已知函数f(x)的定义域为R,f(xy)=y2f(x)+x2f(y),则( )A.f(0)=0B.f(1)=0C.f(x)是偶函数D.x=0为f(x)的极小值点A.直径为0.99m的球体B.所有棱长均为1.4m的四面体C.底面直径为0.01m,高为1.8m的圆柱体D.底面直径为1.2m,高为0.01m的圆柱体答案:ABC解析:在已知等式中,取x=y=0判断A;取x=y=1判断B;求出f(-1),再取y=-1判断C;取满足等式的特殊函数判断D.解答:解:由f(xy)=y 2f(x)+x 2f(y),取x=y=0,可得f(0)=0,故A正确;取x=y=1,可得f(1)=2f(1),即f(1)=0,故B正确;取x=y=-1,得f(1)=2f(-1),即f(-1)=f(1)=0,取y=-1,得f(-x)=f(x),可得f(x)是偶函数,故C正确;由上可知,f(-1)=f(0)=f(1)=0,而函数解析式不确定,不妨取f(x)=0,满足f(xy)=y 2f(x)+x 2f(y),常数函数f(x)=0无极值,故D错误.故选:ABC.12(2023•新高考Ⅰ)下列物体中,能够被整体放入棱长为1(单位:m)的正方体容器(容器壁厚度忽略不计)内的有( )答案:ABD解析:对于A,由正方体的内切球直径大于0.99可判断;对于B,由正方体内部最大的正四面体的棱长大于1.4可判断;对于C,由正方体的体对角线小于1.8可判断;对于D,取E,F,G,H,I,J都为棱中点,则六边形EFGHIJ为正六边形,由正六边形的内切圆直径大于1.2可判断.解答:解:对于A,棱长为1的正方体内切球的直径为1>0.99,选项A正确;对于B,如图,正方体内部最大的正四面体D-A 1BC 1的棱长为=>1.4,选项B正确;对于C,棱长为1的正方体的体对角线为<1.8,选项C错误;对于D,(法一)如图,六边形EFGHIJ为正六边形,E,F,G,H,I,J为棱的中点,高为0.01米可忽略不计,看作直径为1.2米的平面圆,所以FH =FG =GH =米,故六边形EFGHIJ内切圆直径为米,而=>(1.2=1.44,选项D正确.(法二)因为1.2m>1m,可知底面正方形不能包含圆柱的底面圆,如图,过AC 1的中点O作OE⊥AC 1,设OE∩AC=E,可知AC =,C=1,A =,OA 则tan ∠CA ==,即OE且==>=0.0.6,故以AC 1为轴可能对称放置底面直径为1.2m的圆柱,√+1212√2√32√3√3√62√622232)2√2C 1C 1√32C 1CC 1AC OE AO 344238924925624若底面直径为1.2m的圆柱与正方体的上下底面均相切,设圆柱的底面圆心为O 1,与正方体的下底面的切点为M,可知,AC 1⊥O 1M,O 1M=0.6,则tan ∠CA ==,,解得A =0.6,根据对称性可知圆柱的高为-2×0.6≈1.732-1.2×1.414=0.0352>0.01,所以能够被整体放入正方体内,故选项D正确.故选:ABD.C 1CC 1ACM O 1AO 10.6AO 1O 1√2√3√2(2023•新高考Ⅰ)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有 64种(用数字作答).答案:见试题解答内容解析:利用分类计数原理进行计算即可.解答:解:若选2门,则只能各选1门,有=16种,如选3门,则分体育类选修课选2,艺术类选修课选1,或体育类选修课选1,艺术类选修课选2,则有+=24+24=48,综上共有16+48=64种不同的方案.故答案为:64.C 41C 41C 41C 42C 42C 41(2023•新高考Ⅰ)在正四棱台ABCD-A 1B1C 1D 1中,AB=2,A 1B 1=1,AA 1=,则该棱台的体积为.√27√66答案:见试题解答内容解析:先根据题意求出四棱台的高,再代入台体的体积公式即可求解.解答:解:如图,设正四棱台ABCD-A 1B 1C 1D 1的上下底面中心分别为M,N,过A 1作A 1H⊥AC,垂足点为H,由题意易知A 1,∴AH=AN-HN=,又AA 1=,∴A 1H=MN=2√2√22√2,∴该四棱台的体积为×(1+4+故答案为:.√6213√1×4267√66(2023•新高考Ⅰ)已知函数f(x)=cosωx-1(ω>0)在区间[0,2π]有且仅有3个零点,则ω的取值范围是 [2,3).答案:见试题解答内容解析:利用余弦函数的周期,结合函数的零点个数,列出不等式求解即可.解答:解:x∈[0,2π],函数的周期为(ω>0),cosωx-1=0,可得cosωx=1,函数f(x)=cosωx-1(ω>0)在区间[0,2π]有且仅有3个零点,可得2•≤2π<3•,所以2≤ω<3.故答案为:[2,3).2πω2πω2πω(2023•新高考Ⅰ)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F 1,F 2.点A在C上,点B在y轴上,A ⊥B ,A =-B ,则C的离心率为.x 2a 2y 2b 2→F 1→F 1→F 223→F 23√55答案:见试题解答内容解析:(法一)设F 1(-c,0),F 2(c,0),B(0,n),根据题意可得点A的坐标,进一步得到A =(c ,-n ),B =(c ,n ),再由A ⊥B ,可得n 2=4c 2.结合点A在双曲线上,可得解;(法二)易知=,设|A |=2t ,|B |=3t ,∠F 1AF 2=θ,解三角形可知5c 2=9a 2,进而得解.→F 18323→F 1→F 1→F 1|A |→F 2|B |→F 223→F 2→F 2解答:解:(法一)如图,设F 1(-c,0),F 2(c,0),B (0,n),设A(x,y),则A =(x -c ,y ),B =(-c ,n ),→F 2→F 2又A =-B ,则,可得A (c ,-n ),又A ⊥B ,且A =(c ,-n ),B =(c ,n ),则A •B =-=0,化简得n 2=4c 2.又点A在C上,则-=1,整理可得-=1,代n 2=4c 2,可得-=9,即25-=9,解得=或(舍去),故e(法二)由A =-B ,得=,设|A |=2t ,|B |=3t ,由对称性可得|B |=3t ,则|A |=2t +2a ,|AB |=5t ,设∠F 1AF 2=θ,则sinθ==,所以cosθ==,解得t=a,所以|A |=2t +2a =4a ,|A |=2a ,在△AF 1F 2 中,由余弦定理可得cosθ==,即5c 2=9a 2,则e 故答案为:.→F 223→F 2⎧⎨⎩x -c =c y =-n 23235323→F 1→F 1→F 18323→F 1→F 1→F 183c 223n 2259c 2a 249n 2b225c 29a 24n 29b 225c 2a 216c 2b2e 216e 2-1e 2e 29155→F 223→F 2|A |→F 2|B |→F 223→F 2→F 2→F 1→F 1→3t 5t 35452t +2a 5t →F 1→F 216+4-4a 2a 2c 216a 24553√55(2023•新高考Ⅰ)已知在△ABC中,A+B=3C,2sin(A-C)=sinB.(1)求sinA;(2)设AB=5,求AB边上的高.答案:见试题解答内容解析:(1)由三角形内角和可得C=,由2sin(A-C)=sinB,可得2sin(A-C)=sin(A+C),再利用两角和与差的三角函数公式化简可得sinA=3cosA,再结合平方关系即可求出sinA;(2)由sinB=sin(A+C)求出sinB,再利用正弦定理求出AC,BC,由等面积法即可求出AB边上的高.π4解答:解:(1)∵A+B=3C,A+B+C=π,∴4C=π,∴C=,∵2sin(A-C)=sinB,∴2sin(A-C)=sin[π-(A+C)]=sin(A+C),∴2sinAcosC-2cosAsinC=sinAcosC+cosAsinC,∴sinAcosC=3cosAsinC,=3,∴sinA=3cosA,即cosA=sinA,又∵sin 2A+cos 2A=1,∴si A +si A =1,解得sin 2A=,又∵A∈(0,π),∴sinA>0,(2)由(1)可知sinA=,cosA=sinA=,∴====5,∴AC=5sinB=5×=2,BC=5×sinA =5×=3,设AB边上的高为h,则AB •h =×AC ×BC ×sinC ,∴h =×2×3×解得h=6,即AB边上的高为6.π42213n 219n 2910103√101013√101021025AB sinC AC sinB BC sinA 5sin π4√2√2√22√55√10√2√23√1010√512125212√10√52(2023•新高考Ⅰ)如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AB=2,AA 1=4.点A 2,B 2,C 2,D 2分别在棱AA 1,BB 1,CC 1,DD 1上,AA 2=1,BB 2=DD 2=2,CC 2=3.(1)证明:B 2C 2∥A 2D 2;(2)点P在棱BB 1上,当二面角P-A 2C 2-D 2为150°时,求B 2P.答案:见试题解答内容解析:(1)建系,根据坐标法及向量共线定理,即可证明;(2)建系,根据向量法,向量夹角公式,方程思想,即可求解.解答:解:(1)证明:根据题意建系如图,则有:B 2(0,2,2),C 2(0,0,3),A 2(2,2,1),D 2(2,0,2),∴=(0,-2,1),=(0,-2,1),∴=,又B 2,C 2,A 2,D 2四点不共线,∴B 2C 2∥A 2D 2;(2)在(1)的坐标系下,可设P(0,2,t),t∈[0,4],又由(1)知C 2(0,0,3),A 2(2,2,1),D 2(2,0,2),∴=(2,2,-2),P =(0,2,t -3),=(0,-2,1),设平面PA 2C 2的法向量为m =(x ,y ,z ),则,取m =(t -1,3-t ,2),设平面A 2C 2D 2的法向量为n =(a ,b ,c ),则,取n =(1,1,2),∴根据题意可得|cos150°|=|cos<m ,n >|=,→B 2C 2→A 2D 2→B 2C 2→A 2D 2→C 2A 2→C 2→A 2D 2→⎧⎨⎩m •=2x +2y -2z =0m •P =2y +(t -3)z =0→→C 2A 2→→C 2→→{n •=2a +2b -2c =0n •=-2b +c =0→→C 2A 2→→A 2D 2→→→|m •n |→→|m ||n |→→∴=,∴t 2-4t+3=0,又t∈[0,4],∴解得t=1或t=3,∴P为B 1B 2的中点或B 2B的中点,∴B 2P=1.√326×√(t -1+(3-t +4)2)2√6(2023•新高考Ⅰ)已知函数f(x)=a(e x +a)-x.(1)讨论f(x)的单调性;(2)证明:当a>0时,f(x)>2lna+.32答案:见试题解答内容解析:(1)先求出导函数f'(x),再对a分a≤0和a>0两种情况讨论,判断f'(x)的符号,进而得到f(x)的单调性;(2)由(1)可知,当a>0时,f(x)min =f(ln )=1+a 2+lna,要证f(x)>2lna+,只需证1+a 2+lna>2lna+,只需证-lna ->0,设g(a)=-lna -,a>0,求导可得g(x)min =g()>0,从而证得f(x)>2lna+.1a3232a 212a 212√2232解答:解:(1)f(x)=a(e x +a)-x,则f'(x)=ae x -1,①当a≤0时,f'(x)<0恒成立,f(x)在R上单调递减,②当a>0时,令f'(x)=0得,x=ln ,当x∈(-∞,ln )时,f'(x)<0,f(x)单调递减;当x∈(ln ,+∞)时,f'(x)>0,f(x)单调递增,综上所述,当a≤0时,f(x)在R上单调递减;当a>0时,f(x)在(-∞,ln )上单调递减,在(ln ,+∞)上单调递增.证明:(2)由(1)可知,当a>0时,f(x)min =f(ln )=a(+a)-ln =1+a 2+lna,要证f(x)>2lna+,只需证1+a 2+lna>2lna+,只需证-lna ->0,设g(a)=-lna -,a>0,则g'(a)=2a-=,1a1a 1a1a1a1a 1a 1a3232a 212a 2121a 2-1a 22当a∈(0,)时,g'(a)<0,g(a)单调递减,当a∈(,+∞)时,g'(a)>0,g(a)单调递增,)=--=-ln 即g(a)>0,所以-lna ->0得证,即f(x)>2lna+得证.√22√222122122a 21232(2023•新高考Ⅰ)设等差数列{a n }的公差为d,且d>1.令b n =,记S n ,T n 分别为数列{a n },{b n }的前n项和.(1)若3a 2=3a 1+a 3,S 3+T 3=21,求{a n }的通项公式;(2)若{b n }为等差数列,且S 99-T 99=99,求d.+n n 2a n答案:见试题解答内容解析:(1)根据题意及等差数列的通项公式与求和公式,建立方程组,即可求解;(2)根据题意及等差数列的通项公式的特点,可设a n =tn,则=,且d=t>1;或设a n =k(n+1),则=,且d=k>1,再分类讨论,建立方程,即可求解.b n n +1tb n n k 解答:解:(1)∵3a 2=3a 1+a 3,S 3+T 3=21,∴根据题意可得,∴,∴2d 2-7d+3=0,又d>1,∴解得d=3,∴a 1=d=3,∴a n =a 1+(n-1)d=3n,n∈N*;(2)∵{a n }为等差数列,{b n }为等差数列,且b n =,∴根据等差数列的通项公式的特点,可设a n =tn,则=,且d=t>1;或设a n =k(n+1),则=,且d=k>1,①当a n =tn,=,d=t>1时,则S 99-T 99=-(+)×=99,⎧⎨⎩3(+d )=3++2d3+3d +(++)=21a 1a 1a 1a 12a16+da 112+2da 1{=d6d +=21a 19d+n n 2a nb n n +1tb n n kb n n +1t(t +99t )×9922t 100t 992∴50t -=1,∴50t 2-t-51=0,又d=t>1,∴解得d=t=;②当a n =k(n+1),=,d=k>1时,则S 99-T 99=-(+)×=99,∴51k -=1,∴51k 2-k-50=0,又d=k>1,∴此时k无解,∴综合可得d=.51t5150b n n k(2k +100k )×9921k 99k99250k5150(2023•新高考Ⅰ)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若未命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5.(1)求第2次投篮的人是乙的概率;(2)求第i次投篮的人是甲的概率;(3)已知:若随机变量X i 服从两点分布,且P(X i =1)=1-P(X i =0)=q i ,i=1,2,⋯,n,则E ()=.记前n次(即从第1次到第n次投篮)中甲投篮的次数为Y,求E(Y).∑ni =1X i ∑ni =1q i答案:见试题解答内容解析:(1)设第2次投篮的人是乙的概率为P,结合题意,即可得出答案;(2)由题意设P n 为第n次投篮的是甲,则P n+1=0.6P n +0.2(1-P n )=0.4P n +0.2,构造得P n+1-=0.4(P n -),结合等比数列的定义可得{P n -}是首项为,公比为0.4的等比数列,即可得出答案;(3)由(2)得P i =+×()i-1,当n∈N *时,E(Y)=P 1+P 2+...+P n ,求解即可得出答案.13131316131625解答:解:(1)设第2次投篮的人是乙的概率为P,由题意得P=0.5×0.4+0.5×0.8=0.6;(2)由题意设P n 为第n次投篮的是甲,则P n+1=0.6P n +0.2(1-P n )=0.4P n +0.2,∴P n+1-=0.4(P n -),又P 1-=-=≠0,则{P n -}是首项为,公比为0.4的等比数列,∴P n -=×()n-1,即P n =+×()n-1,∴第i次投篮的人是甲的概率为P i =+×()i-1;1313131213161316131625131625131625(3)由(2)得P i =+×()i-1,∴当n∈N *时,E(Y)=P 1+P 2+...+P n =(+=+=[1-()n ]+,综上所述,E(Y)=[1-()n ]+,n∈N *.13162516∑n i =125)i -1n 3[1-(]1625)n 1-25n 351825n 351825n 3(2023•新高考Ⅰ)在直角坐标系xOy中,点P到x轴的距离等于点P到点(0,)的距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3.12√3答案:见试题解答内容解析:(1)设点p坐标,结合几何条件即可得出W的方程.(2)首先利用平移性,化简W的方程可简化计算,核心是把两邻边的和用其他方式表示出来.解答:解:(1)设点P点坐标为(x,y),由题意得|y|=两边平方可得:y 2=x 2+y 2-y+,化简得:y=x 2+,符合题意.故W的方程为y=x 2+.(2)解法一:不妨设A,B,C三点在W上,且AB⊥BC.设A(a,a 2+),B(b,+),C(c,+),则AB =(b -a ,-),BC =(c -b ,-).由题意,AB •BC =0,即(b-a)(c-b)+(b 2-a 2)(c 2-b 2)=0,显然(b-a)(c-b)≠0,于是1+(b+a)(c+b)=0.此时,|b+a|.|c+b|=1.于是min{|b+a|,|c+b|}≤1.不妨设|c+b|≤1,则a=-b-,则|AB|+|BC|=|b-a|+|c-b|=|b-a|14141414b 214c 214→b 2a 2→c 2b 2→→1b +c√1+(a +b )2√1+(c +b )2√1+(c +b )2≥|b-a|+|c-b|≥|c-a|=|b+c+|.设x=|b+c|,则f(x)=(x+),即f(x)=,又f′(x)==.故矩形ABCD的周长为2(|AB|+|BC|)≥2f(x)≥3.这显然是无法同时取到的,所以等号不成立,命题得证.解法二:不妨设A,B,D在抛物线W上,C不在抛物线W上,欲证命题为|AB|+|AD|>.由图象的平移可知,将抛物线W看作y=x2不影响问题的证明.设A(a,a2)(a≥0),平移坐标系使A为坐标原点,则新抛物线方程为y′=x′2+2ax′,写为极坐标方程,即ρsinθ=ρ2cos2θ+2aρcosθ,即ρ=.欲证明的结论为||+||>也即|-|+|+|>不妨设||≥||,将不等式左边看成关于a的函数,根据绝对值函数的性质,其最小值当•a-=0即a=时取得,因此欲证不等式为|+|>,即||>根据均值不等式,有|cosθsin2θ|由题意,等号不成立,故原命题得证.√1+(c+b)2√1+(c+b)2√1+(c+b)21b+c√1+(c+b)21x√1+x2(1+)x232x.(3-1-)(1+)x212x2x2x2.(2-1)(1+)x212x22222√323√32sinθ-2acosθθcos2sinθ-2acosθθcos2sin(θ+)-2acos(θ+)π2π2(θ+)cos2π22 2acosθsinθθcos22asinθcosθθsin222cosθ2sinθ2cosθsinθθcos2sinθ1cosθcosθθsin221cosθsiθn22√2coθ(1-coθ)(1-coθ)s2s2s2。
2023高考全国甲卷数学真题及答案(文数)2023年普通高等学校招生全国统一考试文科数学试题2023年普通高等学校招生全国统一考试文科数学参考答案学好高考数学的技巧高考数学题目的总结比较。
建立自己的题库。
多做。
主要是指做高考数学习题,学数学一定要做习题,并且应该适当地多做些。
养成好的学习习惯,做好预习,把预习没看懂的东西,第二天上课着重听。
抓住课堂。
高考数学理科学习重在平日功夫,不适于突击复习。
高质量完成作业。
所谓高质量是指高正确率和高速度。
翻译:把中文翻译成为数学语言,包括:字母表示未知数、图像表示函数式或几何题目、概率语言等等。
该方法常用于函数,几何以及不等式等题目。
特殊化:在面对抽象或者难以理解的题目的时候,我们尝试用最极端最特殊的数字来代替变量,帮助我们理解题目。
该方法常用于在选择题目中排除选项,在解大题的过程中也经常会用到特殊化的结论。
盯住目标:把高考数学目标和已知结合,联想相关的定理、定义、方法。
在压轴题目中,往往需要不断转化目标,即盯住目标需要反复使用!各省高考用卷情况1、新高考一卷(8个省份)适用省份:山东、河北、湖北、福建、湖南、广东、江苏,浙江考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理、信息技术等。
特点:语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。
其中广东、福建、江苏、湖南、湖北、河北6个省是3+1+2模式的高考省份,山东省是综合改革3+3省份。
2、新高考二卷(3个省份)适用省份:海南、辽宁、重庆考试科目:语文、数学、外语、物理、化学、生物、政治、历史、地理等。
特点:语文、数学、外语三门考试由教育部考试中心统一命题;物理、历史、化学、政治、生物、地理由各省自行命题。
其中辽宁、重庆两省市是3+1+2省份,海南是综合改革3+3省份。
3、全国甲卷(5个省份)适用省份:云南、贵州、四川、西藏、广西考试科目:语文、数学、外语、文综、理综特点:语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题。
绝密★启用前2023年普通高等学校招生全国统一考试(新高考全国Ⅱ卷)数学本试卷共4页,22小题,满分150分。
考试用时120分钟。
注意事项:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写。
在试题卷和答题卡上。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案:不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本大题共8小题, 每小题5分, 共40分. 在每小题给出的四个选项中, 只有一项是符合题目要求的。
1.在复平面内, 1+3i3-i对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】A【解析】1+3i3-i=6+8i,故对应的点在第一象限,选A。
2.设集合A={0,-a},B={1,a-2,2a-2}, 若A⊆B, 则a=()A.2B.1C.23D.-1【答案】B【解析】若a-2=0,则a=2,此时A=0,-2},B=1,0,2},不满足题意;若2a-2=0,则a =1,此时A={0,-1},B={1,-1,0},满足题意。
选B。
3.某学校为了解学生参加体育运动的情况, 用比例分配的分层随机抽样方法作抽样调查, 拟从初中部和高中部两层共抽取60名学生, 已知该校初中部和高中部分别有400名和200名学生, 则不同的抽样结果共有()A.C45400⋅C15200种 B.C20400⋅C40200种 C.C30400⋅C30200种 D.C40400⋅C20200种【答案】D【解析】根据按比例分配的分层抽样可知初中部抽40人,高中部抽20人,选D。
2022年全国统一高考数学试卷(新高考Ⅰ)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)若集合{|4}M x =,{|31}N x x =,则(M N = )A .{|02}x x <B .1{|2}3x x < C .{|316}x x < D .1{|16}3x x < 2.(5分)若(1)1i z -=,则(z z += ) A .2-B .1-C .1D .23.(5分)在ABC ∆中,点D 在边AB 上,2BD DA =.记CA m =,CD n =,则(CB = ) A .32m n -B .23m n -+C .32m n +D .23m n +4.(5分)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为2140.0km ;水位为海拔157.5m 时,相应水面的面积为2180.0km .将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为2.65)(≈ )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯5.(5分)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( ) A .16B .13C .12D .236.(5分)记函数()sin()(0)4f x x b πωω=++>的最小正周期为T .若23T ππ<<,且()y f x =的图像关于点3(,2)2π中心对称,则()(2f π= ) A .1 B .32C .52D .37.(5分)设0.10.1a e =,19b =,0.9c ln =-,则( ) A .a b c <<B .c b a <<C .c a b <<D .a c b <<8.(5分)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ,则该正四棱锥体积的取值范围是( ) A .81[18,]4B .2781[,]44C .2764[,]43D .[18,27]二、选择题:本题共4小题,每小题5分,共20分。
2023年新高考全国Ⅱ卷数学试题一、单选题二、多选题9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒和2PA =,点C 在底面圆周上,且二面角.OMN 为等腰三角形既有极大值也有极小值,则(28b ac +>信号的传输相互独立.发送0时,的概率为1-三、填空题.已知向量a ,b 满足3a b -=和2a b a b +=-,则b =______与():1C x -“ABC 面积为)ϕ,如图A ,2的两个交点,若6四、解答题.记ABC 的内角,已知ABC 的面积为60,E为⊥;BC DA满足EF DA=,求二面角.已知双曲线C的中心为坐标原点,左焦点为的方程;(2)记C 的左、右顶点分别为1A 和2A ,过点()4,0-的直线与C 的左支交于M ,N 两点,M 在第二象限,直线1MA 与2NA 交于点P .证明:点P 在定直线上.22.(1)证明:当01x <<时sin x x x x 2-<<;(2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围。
2023年新高考全国Ⅱ卷数学试题答案解析1.(2023·新高考Ⅱ卷·1·★)在复平面内,(13i)(3i)+-对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 答案:A解析:2(13i)(3i)3i 9i 3i 68i +-=-+-=+,所以该复数对应的点为(6,8),位于第一象限. 2.(2023·新高考Ⅱ卷·2·★)设集合{0,}A a =-和{1,2,22}B a a =--,若A B ⊆,则a =( )(A )2 (B )1 (C )23(D )1-答案:B解析:观察发现集合A 中有元素0,故只需考虑B 中的哪个元素是0。
24年新高考一卷数学试题及答案一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个是正确的。
1. 若函数f(x)=\sin x+\cos x,则f(0)的值为A. 1B. 0C. -1D. 22. 已知数列{a_n}满足a_1=1,a_{n+1}=2a_n+1,求a_5的值为A. 31B. 63C. 127D. 2553. 设等差数列{a_n}的前n项和为S_n,若S_5=75,则a_3的值为A. 15B. 10C. 5D. 34. 若复数z满足z^2+z+1=0,则|z|的值为A. 1B. √2C. √3D. 25. 已知函数f(x)=x^3-3x^2+2,若f'(x)=0的根为x_1,x_2,则|x_1-x_2|的值为A. 2B. √2C. √3D. 36. 设椭圆C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)的离心率为e,若e=\frac{1}{2},则a与b的关系为A. a=2bB. a=√3bC. a=√2bD. a=3b7. 若直线l:y=kx+1与圆x^2+y^2=1相交于A,B两点,且|AB|=\sqrt{2},则k的值为A. 1B. -1C. 0D. ±18. 设函数f(x)=x^2-2x+1,若f(x)=0的根为x_1,x_2,则x_1+x_2的值为A. 2B. 0C. -2D. 1二、填空题:本题共4小题,每小题5分,共20分。
9. 已知向量\vec{a}=(1,2),\vec{b}=(2,-1),则\vec{a}·\vec{b}的值为______。
10. 设函数f(x)=\ln(x+\sqrt{x^2+1}),若f'(x)=\frac{1}{x+\sqrt{x^2+1}},则f''(x)的值为______。
11. 已知双曲线C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)的渐近线方程为y=±\frac{b}{a}x,则双曲线C的离心率e的值为______。
新高考数学高考试题及答案一、选择题1. 已知函数$f(x) = \sin(2x+\pi/4)$,则其最小正周期是:(A) $\pi$(B) $\frac{\pi}{2}$(C) $\frac{\pi}{4}$(D) $\frac{\pi}{8}$2. 在平面直角坐标系$xOy$中,点$A(-3, 2)$在直线$y=2x$上的投影点为$B$,则$\triangle AOB$的面积为:(A) $4$(B) $6$(C) $8$(D) $10$3. 设实数$t$满足方程$(2t+1)x^2-(4t+3)x+2t+1=0$有两个不等实根,则$t$的取值范围是:(A) $t \in \left(-\infty, -\frac{1}{2}\right)$(B) $t \in \left(-\infty, -\frac{3}{4}\right)$(C) $t \in \left(-\infty, -\frac{1}{4}\right)$(D) $t \in \left(-\infty, -\frac{1}{6}\right)$4. 已知曲线$C:y=x^3-3x^2+mx-3$经过点$A(1, -2)$,则$m$的值为:(A) $-2$(B) $-4$(C) $-6$(D) $-8$5. 在$\triangle ABC$中,已知$\angle C=90^\circ$,$\sin A =\frac{1}{3}$,$\cos B = \frac{4}{5}$,则$\cos(A+B)$的值为:(A) $\frac{56}{75}$(B) $\frac{33}{56}$(C) $\frac{3}{5}$(D) $\frac{4}{5}$二、填空题6. 设函数$f(x) = \log_2x$,则$f(f(4))$的值为$\underline{\hspace{2cm}}$。
7. 已知点$A(-2, 1)$,$B(1, 3)$,过点$B$作直线$l$与$x$轴交于$C$,直线$l$与$y$轴交于$D$,则$CD$的斜率为$\underline{\hspace{2cm}}$。
8. 设函数$f(x) = \frac{x^2+x-1}{x-1}$,则$f(x)$的值域为$\underline{\hspace{2cm}}$。
9. 在等腰梯形$ABCD$中,$AB\parallel CD$,$AB=2CD$,$AD$和$BC$的交点为$E$,则$\frac{S_{\triangle AED}}{S_{\triangle ABE}}$的值为$\underline{\hspace{2cm}}$。
10. 已知向量$\vec{a}=(2, 1)$,$\vec{b}=(3, -2)$,则$\vec{a} \cdot\vec{b} = \underline{\hspace{2cm}}$。
三、解答题11. 解方程$\frac{1}{\log_2x}+\frac{1}{\log_3(1-2x)} = 6$,并写出解的取值范围。
12. 已知$\cos\alpha+\cos\beta = \frac{5}{4}$,$\sin\alpha+\sin\beta =\frac{3}{4}$,求$\cos(\alpha-\beta)$的值。
13. 已知函数$f(x) = x^3+x^2+x$,点$P(x, f(x))$在曲线$y=f(x)$上移动,$P$与$x$轴正半轴的夹角为$\theta$,若$\sin 2\theta = \frac{1}{3}$,求函数$f(x)$的单调增区间。
14. 设函数$f(x) = \frac{ax+b}{cx+d}$,其中$a, b, c, d$均为正数且满足$ad-bc=1$。
若对于任意的$x>0$,都有$f(x) \geq 1$,求证$f(f(x))\geq 1$。
15. 设数列$\{a_n\}$满足$a_1=1$,$a_{n+1} = \frac{1}{1-a_n}$,求证:对于$n \geq 2$,均有$a_n < 0$。
【答案】一、选择题1. (B)2. (D)3. (B)4. (C)5. (A)二、填空题6. $2$7. $-\frac{1}{3}$8. $(-\infty, 2) \cup (2, +\infty)$9. $\frac{1}{3}$10. $4$三、解答题11. 解:首先,方程中要求$log_2x$和$log_3(1-2x)$存在,即$x>0$且$1-2x>0$,解得$x \in \left(0, \frac{1}{2}\right)$。
令$t=\log_2x$,则方程化为$\frac{1}{t}+\frac{1}{\log_3(1-2^t)}=6$。
观察方程两边,当$t>0$时,$\frac{1}{t}$是递增函数,而$\frac{1}{\log_3(1-2^t)}$也是递增函数,因此方程只有唯一解。
通过数值计算,解得$t \approx 0.415$,代入原方程解得$x \approx2^{0.415} \approx 1.326$。
综上,方程的解为$x \approx 1.326$,且$x \in \left(0,\frac{1}{2}\right)$。
12. 解:根据三角函数的和差化简公式,有$\cos(\alpha-\beta) = \cos\alpha\cos\beta+\sin\alpha\sin\beta$$\quad \quad \quad =\left(\cos\alpha+\sin\alpha\right)\left(\cos\beta+\sin\beta\right)$ $\quad \quad \quad = \frac{5}{4} \cdot \frac{3}{4}$$\quad \quad \quad = \frac{15}{16}$所以,$\cos(\alpha-\beta)$的值为$\frac{15}{16}$。
13. 解:根据题意,可知$\sin 2\theta = \frac{1}{3}$,即$2\sin\theta\cos\theta = \frac{1}{3}$。
考虑到$\sin^2\theta+\cos^2\theta=1$,将$\sin\theta$替换为$\sqrt{1-\cos^2\theta}$,得到$2\sqrt{1-\cos^2\theta}\cos\theta = \frac{1}{3}$。
整理后,得到$4\cos^3\theta-2\cos^2\theta-\frac{1}{3}\cos\theta+\frac{1}{9}=0$。
观察系数发现,$\cos\theta = \frac{1}{3}$是方程的一个解。
通过求根公式,可以得到$\cos\theta = \frac{1}{3}$,或$\cos\theta = -\frac{1}{2}$,或$\cos\theta = \frac{1}{6}$。
由于$\sin 2\theta = \frac{1}{3}$,所以$\sin\theta =\frac{\sqrt{8}}{3}$。
根据单位圆上角度与三角函数的关系,可以得到$\theta \approx0.395$。
综上,函数$f(x)$的单调增区间为$x \in \left(\frac{1}{6},\frac{\sqrt{8}}{3}\right)$。
14. 证明:首先,由题意知$f(x) = \frac{ax+b}{cx+d}$中$a, b, c, d$均为正数。
对于任意的$x>0$,有$f(x) \geq 1$,即$\frac{ax+b}{cx+d} \geq 1$,整理得$ax+b \geq cx+d$。
另一方面,根据已知条件$ad-bc=1$,可以得到$d = \frac{1+bc}{a}$,代入不等式中得到$ax+b \geq cx+\frac{1+bc}{a}$。
进一步整理得到$x \leq \frac{1+bc-b}{a-c}$。
由于$x>0$,所以只需证明$\frac{1+bc-b}{a-c} > 0$即可。
通过分析$a, b, c$的取值范围,可以发现$\frac{1+bc-b}{a-c} > 0$恒成立。
因此,对于任意的$x>0$,都有$f(x) \geq 1$成立。
那么,对于$f(x)$的取值域中的任意一个元素$f(y)$,都有$f(y) \geq1$。
综上,得证$f(f(x)) \geq 1$。
15. 证明:通过计算数列的前几项可以发现,数列$\{a_n\}$的前几项为$a_1 = 1, a_2 = 2, a_3 = -1, a_4 = 0$。
可以猜测数列$\{a_n\}$有周期性,且以$a_3$为起始点之后的数列为循环序列。
下面使用数学归纳法证明这个猜测。
(1) 基础情况:前四项的情况已经验证。
(2) 归纳假设:假设对于某个整数$k \geq 1$,有$a_k = a_{k+3}$,$a_{k+1} = a_{k+4}$,$a_{k+2} = a_{k+5}$成立。
(3) 归纳步骤:考虑$a_{k+3}$与$a_{k+4}$之间的关系,有$a_{k+3} = \frac{1}{1-a_{k+2}}$和$a_{k+4} = \frac{1}{1-a_{k+3}}$。
由归纳假设,可以得到$a_{k+3} = a_k$和$a_{k+4} = a_{k+1}$。
将它们带入上述关系式,可以得到$a_k = \frac{1}{1-a_{k+2}}$和$a_{k+1} = \frac{1}{1-a_k}$。
整理得到$a_{k+2} = 1-a_k = a_{k+5}$。
综上所述,数列$\{a_n\}$有周期性且以$a_3$为起始点之后的数列为循环序列。
根据归纳法,对于$n \geq 2$,均有$a_n < 0$成立。
证毕。